REPUBLIQUE DU SENEGAL UNIVERSITE CHEIKH ANTA DIOP DE DAKAR

GC 0334

ECOLE SUPERIEURE POLYTECHNIQUE Centre de THIES

DEPARTEMENT GENIE CIVIL

PROJET DE FIN D'ETUDES

EN VUE DE L'OBTENTION DU DIPLOME D'INGENIEUR DE CONCEPTION

Titre:

Restructuration du réseau d'assainissement des eaux usées de Hann : diagnostic et propositions de solutions.

Année Académique: 2005 / 2006

Auteurs : Abiboulaye DIAGNE

Papa Modou GUEYE

Directeurs internes : M. Séni TAMBA

M. El Hadj Bamba DIAW

Directeur externe: M.Papa Samba Diop (ONAS)

DEDICACES

Papa Modou GUEYE

Ce travail est dédié:

- A mes parents pour tout le soutien qu'ils m'ont apporté et pour tous les sacrifices qu'ils ont consenti à mon endroit pour mon éducation.
- A mes frères et sœurs pour leur soutien et leur affection qu'ils ont su m'apporter.
- > A l'ensemble du personnel enseignant de l'ESP pour la bonne formation qu'ils nous ont donné
- > A l'ensemble des étudiants de l'école particulièrement à mes camarades de promotion pour les bons moments partagés à l'école.

Abiboulaye DIAGNE

Je dédie ce travail à :

- A feu mon père rappelé à Dieu à la veille de ma formation à l'ESP
- > A ma mère pour tout son appui.
- > Et à toute ma famille pour les conseils et le soutien psychologique en ma faveur.

REMERCIEMENTS

Nous saisissons cette occasion pour exprimer nos sincères remerciements à nos Directeurs internes Monsieur Séni TAMBA et Monsieur El hadj Bamba DIAW, professeurs à l'ESP, pour leur disponibilité et l'appui incessant qu'ils nous ont fourni tout au long de ce travail.

Nos remerciements s'adressent également à notre encadreur externe Monsieur Papa Samba DIOP, Direction exploitation de l'Office Nationale de l'Assainissement (ONAS), qui malgré son emploi du temps chargé, n'a ménagé aucun effort pour la réussite de ce projet.

Nous remercions aussi:

- Monsieur Famara DIEDHIOU, technicien à l'ONAS, pour sa disponibilité.
- Monsieur Alassane BA, professeur à l'ESP Thiès.
- Mme Dominique R GAYE, assistante communication à la SDE.
- Monsieur Faly NDAO, Agence SDE du Front de Terre
- Mme Bolo LO de la mairie de Hann Bel Air.

Nous remercions également la direction de l'ONAS pour son soutien matériel

Nous voudrons enfin remercier la Direction de l'Ecole Supérieure Polytechnique et l'ensemble du corps professoral ainsi que tout ceux qui, de près ou de loin, ont contribué à la rédaction de ce rapport.

SOMMAIRE

Le but de ce travail est de faire l'étude diagnostique du réseau d'assainissement des eaux usées de Harin et de proposer des solutions pour optimiser son fonctionnement.

Ce projet est d'une importance capitale du fait qu'il va dans le sens de contribuer à l'amélioration des conditions de vie des populations.

En effet, le réseau actuel est vétuste et est sujet à plusieurs dysfonctionnements. L'évacuation n'est pas bien assurée, ce qui se traduit par des déversements d'eaux usées par endroits. Cette situation menace la santé des populations et la préservation de l'environnement.

Il a tout d'abord été question de multiplier les descentes sur le terrain pour s'enquérir de la situation existante du réseau. Ensuite, en collaboration avec les services de l'ONAS et de la SDE, nous avons pu rassembler certaines données concernant le réseau actuel et la consommation en eau potable de la zone d'étude. Enfin, après une recherche documentaire, nous avons eu à effectuer des levés topographiques et à utiliser le logiciel Covadis.

L'étude diagnostique du réseau existant a permis d'identifier les principales causes des problèmes constatés telles que, entres autres, les pentes faibles de certains tronçons. Des solutions sont ainsi proposées, ce qui nous permet de disposer d'un nouveau système vérifiant les propriétés hydrauliques de l'écoulement en réseaux.

La complexité de l'étude est surtout due à la forte occupation du sol et aux habitations irrégulières dans la zone d'étude.

Ce travail, une fois mis en œuvre, servira à faire bénéficier les populations d'un système répondant aux normes techniques et environnementales.

TABLE DES MATIERES

D	EDICACES	I
R	EMERCIEMENTS	II
S	OMMAIRE	.III
Т	ABLE DES MATIERES	IV
L	ISTE DES TABLEAUX	VI
L	ISTE DES FIGURES	VII
Ĺ	ISTE DES ABREVIATIONSV	III
	NTRODUCTION GENERALE	1
C	hapitre 1: GENERALITES	3
	1.1. Nature des eaux usées	3
	1.1.1. Les eaux usées domestiques	3
	1.1.2. Les eaux industrielles	3
	1.2. Nature et types de réseaux d'assainissement	4
	1.2.1. Le système unitaire	4
	1.2.2 Le système pseudo séparatif	4
	1.2.3 Le système séparatif	4
	1.3. Contraintes liées à un réseau d'eaux usées	5
	1.4. Planification d'un réseau d'eaux usées	5
	1.5. Description des composantes d'un réseau d'assainissement	6
C	Chapitre 2: PRESENTATION DE LA ZONE D'ETUDE	8
	2.1. Situation géographique	8
-	2.2 Situation démographique	11
	2.3 Situation socio-économique	11

Chapitre 3: ETAT DES LIEUX	12
3.1 Description du réseau existant	12
3.2 Etude diagnostique du réseau	15
3.2.1 Dysfonctionnements du réseau	15
3.2.2 Etude topographique	16
3.2.2.1 Détermination des Cotes du terrain naturel.	18
3.2.2.2 Détermination des profondeurs radier des regards et fil d'eau des conduites	21
3.2.3 Evaluation des pentes des conduites du réseau existant.	23
3.2.4. Causes des dysfonctionnements constatés	25
Chapitre 4: PROPOSITIONS DE SOLUTIONS	26
4.1. Fonctionnement d'un système séparatif	26
4.2 Conception du nouveau réseau.	27
4.2.1 Tracé du réseau	27
4.2.2 Elaboration du modèle numérique du terrain (MNT)	31
4.2.3 Délimitation en surfaces tributaires.	35
4.2.4 Evaluation des débits véhiculés	38
4.2.4.1 Volume des eaux de consommation	38
4.2.4.2 Estimation des rejets moyens.	39
4.2.4.3 Débits de design	42
a) Débit d'infiltration.	42
b) Débit de captage.	42
c) Débit maximal	43
4.2.5 Pentes des conduites.	45
4.3 Dimensionnement du nouveau réseau	47
4.4 Evaluation quantitative du projet	50
4.4.1 Les conduites	50
4.4.2 Les regards	52
4.4.3 Les stations de relèvement	54
4.4.4 Volume des terres à enlever (déblais)	54
CONCLUSION ET RECOMMANDATIONS	57
REFERENCES BIBLIOGRAPHIQUES	59
ANNEXES	60

LISTE DES TABLEAUX

Tableau 1 :	Détermination des Cotes du terrain naturel	19
Tableau 2 :	cotes radier des regards et fil d'eau des conduites.	22
Tableau 3 :	Evaluation des pentes des conduites du réseau existant	24
Tableau 4 :	Coordonnées des points connus sur le terrain	32
Tableau 5 :	Délimitation de la zone en surfaces tributaires	37
Tableau 6 :	Estimation des rejets moyens	41
Tableau 7:	Débit maximal	44
Tableau 8 :	Pentes des conduites.	46
Tableau 9 :	Dimensionnement du nouveau réseau	49
Tableau 10 :	caractéristiques des conduites	51
Tableau 11 :	les caractéristiques des regards	53
Tableau 12:	Volume des déblais	56

LISTE DES FIGURES

Figure 1:	Processus de l'assainissement d'amont en aval	7
Figure 2:	Localisation de la zone d'étude	9
Figure 3:	Situation géographique	10
Figure 4:	Tracé du réseau existant	14
Figure 5:	Position des points connus sur le terrain	17
Figure 6:	Schéma de principe pour déterminer l'altitude à l'aide d'un niveau	20
Figure 7:	Tronçons sujets à des empiètements	29
Figure 8:	Tracé du nouveau réseau	30
Figure 9:	Modèle numérique du terrain (MNT)	33
Figure10:	Exemples de profils en long du terrain	34
Figure11:	Délimitation de la zone en surfaces tributaires	36
Figure12:	Schéma type regard de visite	52
Figure13:	Section transversale entre deux regards	54

LISTE DES ABREVIATIONS

O.N.A.S : Office Nationale de l'Assainissement du Sénégal

N.G.S : Nivellement Générale du Sénégal

S.D.E : Sénégalaise Des Eaux

C.C.I.S : Compagnie Commerciale et Industrielle du Sénégal

A.D.M : Agence de Développement Municipale

L.A : Lecture Arrière

L.V : Lecture Avant

M.N.T : Modèle Numérique du Terrain

F.P : Facteur de Pointe

E.U : Eaux Usées

H.A : Hauteur Appareil

T.N : Terrain Naturel

E.S.P : Ecole Supérieure Polytechnique

P.V.C: Polychlorure de Vinyle

P.T.I.V : Plan Triennal d'Investissement de la Ville

A.G.E.T.I.P: Agence d'Exécution des Travaux d'Intérêt Publique contre le sous-emploi

O.M.S : Organisation Mondiale de la Santé.

INTRODUCTION GENERALE

De nos jours les besoins en eau ne cessent de croître surtout dans les grandes villes où la population est très nombreuse. Après usage, une grande partie des eaux distribuées est polluée et donc nuisible à la santé.

L'évolution industrielle enregistrée à l'échelle mondiale au cours de la dernière décennie, avec ses effets sur la fabrication des produits et le comportement des individus en matière de consommation et d'hygiène, s'est traduite par un accroissement considérable des quantités d'eaux usées produites. Pour éliminer ces déchets, il est nécessaire de doter les grandes villes de systèmes d'assainissement adéquats.

Par ailleurs la pluviométrie, relativement importante, occasionne également des problèmes récurrents de drainage des eaux en milieu urbain.

Pour des problèmes de santé publique, toute agglomération doit être dotée d'un système efficace d'évacuation des eaux usées et pluviales.

Dans de nombreux pays, il existe un profond déséquilibre entre l'approvisionnement en eau et l'assainissement. Ceci est dû au fait que les pays en question accordent une nette priorité à l'alimentation en eau sans développer pour autant les capacités au niveau de l'élimination des effluents.

Ainsi, le domaine d'intervention de l'assainissement peut englober notamment les étapes suivantes : collecte et évacuation des eaux usées, leur traitement et le rejet dans le milieu récepteur, traitement des boues.

Les eaux pluviales devraient respecter certaines normes établies par l'Organisation Mondiale de la Santé (OMS) avant leur rejet dans le milieu naturel.

Il convient également de mentionner l'existence des eaux parasites telles les eaux souterraines parvenant dans les égouts par suite de défauts d'étanchéité des canalisations, et les eaux de drainage résultant d'abaissement de la nappe phréatique et s'écoulant par le réseau d'assainissement.

Dans une ville comme Dakar, une bonne partie des communes est dotée de réseaux d'assainissement, mais au fil du temps certains sont devenus vétustes et présentent beaucoup de dysfonctionnements au point de créer une mauvaise évacuation et des déversements d'eaux usées dans les rues.

Dans la commune de Hann, avec l'augmentation de la population et les contraintes liées à l'exploitation du réseau, plusieurs défaillances se manifestent dans le système.

Cette situation entrave le fonctionnement normal du réseau qui est d'assurer la collecte et l'évacuation des eaux usées loin des concessions sans porter atteinte à l'hygiène et à la santé des populations.

Le projet a pour but d'identifier les défaillances qui entravent le bon fonctionnement du réseau dans cette zone et de proposer des solutions. Il sera question de faire un diagnostic du réseau existant pour ensuite établir un nouveau système vérifiant les conditions d'écoulement.

La méthodologie adoptée dans le cadre de ce travail s'articule autour des points suivants :

- > le travail de terrain (visites périodiques du site, enquêtes, topographie, recueil de données)
- > la recherche documentaire
- > l'état des lieux
- ➤ le traitement et l'exploitation des données pour la conception et le dimensionnement du nouveau réseau.

Chapitre 1: GENERALITES

La réalisation d'un projet d'assainissement nécessite la maîtrise des différents concepts qui sont :

- Nature des eaux usées
- > Nature et types de réseaux d'assainissement
- > Contraintes liées à un réseau d'eaux usées
- Planification d'un réseau d'eaux usées
- Description des composantes d'un réseau d'assainissement.

La figure 1 montre le processus de l'assainissement de la collecte au rejet.

1.1. Nature des eaux usées

Les eaux usées véhiculées dans les réseaux d'assainissement sont d'origine domestique et industrielle.

1.1.1. Les eaux usées domestiques

Elles proviennent des différents usages domestiques de l'eau .Elles sont essentiellement porteuses de pollution organique. Elles se répartissent en eaux ménagères, qui ont pour origine les salles de bains et les cuisines, et sont généralement chargées de détergents, de graisses, de solvants, de débris organiques, etc., et en eaux "vannes" : il s'agit des rejets des toilettes chargés de diverses matières organiques azotées et de germes fécaux.

1.1.2. Les eaux industrielles

Elles sont très différentes des eaux usées domestiques. Leurs caractéristiques varient d'une industrie à une autre.

En plus des matières organiques, azotées ou phosphorées, elles peuvent également contenir des produits toxiques, des solvants, des métaux lourds, des micropolluants organiques, des hydrocarbures.

Certaines d'entre elles doivent faire l'objet d'un prétraitement de la part des industriels avant d'être rejetées dans les réseaux de collecte. Elles ne sont mêlées aux eaux domestiques que lorsqu'elles ne présentent plus de danger pour les réseaux de collecte et ne perturbent pas le fonctionnement des usines de dépollution.

1.2. Nature et types de réseaux d'assainissement

Les systèmes d'égouts se présentent généralement sous trois formes selon les eaux qu'ils transportent.

1.2.1. Le système unitaire

Ce système est conçu pour véhiculer toutes les eaux usées d'origine domestique et industrielle et les eaux pluviales. En période de pluie les débits véhiculés sont très importants. Ce système présente l'avantage de la simplicité, puisqu'il suffit d'une canalisation unique dans chaque voie publique et d'un seul branchement pour chaque bloc d'habitations sans souci de conformité. Il présente, toutefois, un inconvénient majeur qui consiste parfois en des déversements d'eaux usées dans les rues.

1.2.2 Le système pseudo séparatif

Un réseau pseudo séparatif reçoit les eaux usées d'origine domestique et certaines eaux pluviales, soit celles provenant des drains de fondations. Les concessions desservies par un tel réseau ont un seul branchement de service.

1.2.3 Le système séparatif

Dans un système séparatif, seuls les effluents domestiques et industriels, sous la condition qu'ils aient des caractéristiques analogues aux eaux usées domestiques, y sont véhiculés. Un autre réseau assure l'évacuation des eaux pluviales qui doivent respecter les normes de l'OMS avant leur rejet dans le milieu naturel. Le système séparatif assure à la station d'épuration un fonctionnement régulier, puisque les eaux à traiter ont des débits les plus faibles et les plus réguliers ; la station d'épuration reçoit alors des eaux ayant un degré de pollution relativement uniforme.

Ce système a aussi l'avantage d'éviter des débordements d'eaux usées dans les rues lorsqu'il pleut et permet de réduire dans une large mesure les coûts d'exploitation de la station d'épuration vus les volumes importants d'eau avec des concentrations relativement faibles en matières organiques.

Cet aménagement est plus performant car il éloigne de l'installation de traitement la masse volumineuse des matériaux entraînés par les pluies. Il rend flexible le fonctionnement de l'installation et limite la pollution causée par le débordement du réseau unitaire qui se produit lorsque les égouts ne sont pas assez larges pour transporter à la fois les eaux domestiques et pluviales.

Le système séparatif est celui utilisé dans le cadre de ce projet.

1.3. Contraintes liées à un réseau d'eaux usées

Un réseau d'eaux usées doit être conçu de façon à pouvoir capter toutes les eaux provenant des concessions et de les véhiculer jusqu'à l'exutoire. Il doit par conséquent répondre à un certain nombre d'exigences.

- ➤ Le réseau doit être suffisamment profond pour pouvoir capter les eaux qui lui sont destinées.
 - Il doit pouvoir résister aux charges mortes (remblai) et vives (circulation).
- Nous devons avoir, pour chaque tronçon, une pente et une capacité hydraulique suffisantes pour véhiculer les débits de pointe anticipés et éviter toute déposition de matières solides.
- > La conception d'un réseau doit aussi tenir compte de l'emplacement, du diamètre et du matériau de la conduite.

En règle générale l'évacuation des eaux usées se fait par gravité. Une pente suffisante est une condition nécessaire, cependant il faudra éviter des profondeurs très importantes. A l'occasion on pourra faire usage des stations de relèvement pour pallier aux difficultés d'évacuation par gravité.

1.4. Planification d'un réseau d'eaux usées

La planification d'un réseau d'égout commence par le choix d'un point de déversement, prenant soin de bien identifier les bassins et sous bassins, de même que les infrastructures déjà existantes. Les cartes topographiques avec des lignes de contours sont nécessaires dés le début. L'agencement du réseau suivra en règle générale la direction établie par les lignes de contour de façon à éviter le pompage des eaux d'égouts ou des excavations trop profondes.

Les limites du territoire qui doit être considéré sont le plus souvent dictées par les limites du bassin de drainage naturel. On prendra soin de bien examiner les besoins futurs et les caractéristiques d'occupation éventuelle du bassin. Pour ce faire on doit s'assurer que les ouvrages projetés et les limites des bassins considérés sont conformes, s'il existe, à un plan directeur d'égout régional du territoire

1.5. Description des composantes d'un réseau d'assainissement.

Un réseau d'eaux usées est constitué de diverses infrastructures dont chacune a sa fonction pour sa bonne marche. Parmi ces éléments on peut retenir les conduites, les regards et les stations de relèvement.

- Nous avons des égouts locaux qui sont de faible diamètre; ils desservent une rue ou un nombre restreint de concessions.
- > Les collecteurs sont des conduites dans lesquelles sont véhiculées les eaux usées acheminées par plusieurs conduites de moindres dimensions (égouts locaux). Un collecteur doit pouvoir transporter la totalité des débits que lui apportent les conduites qu'il dessert.
- > L'intercepteur d'égout reçoit les eaux véhiculées par les collecteurs, il doit être suffisamment profond pour capter ces eaux qui lui sont destinées. Certains égouts intercepteurs sont trop profonds pour pouvoir conduire les eaux jusqu'à la station d'épuration. Les eaux collectées par ces derniers sont donc acheminées jusqu'à la station de relèvement.
- > L'émissaire est une conduite qui transporte les eaux traitées vers le milieu récepteur. Si le réseau n'est pas pourvu en station d'épuration, le dernier tronçon le plus en aval constitue l'émissaire.
- Les stations de relèvement sont destinées à élever les eaux usées d'un certain niveau par rapport à la décharge (mer). Ces stations sont en effet destinées à relever, à faible hauteur, les eaux d'un collecteur ne pouvant plus s'approfondir vu la contrainte imposée par le niveau de la mer. Le système d'évacuation étant gravitaire, l'inconvénient est qu'une panne sur un poste entraîne une paralysie du branchement.
- Nous avons aussi des ouvrages annexes constitués par des regards qui sont des dispositifs de raccordement, d'accès, de réception des eaux usées par les installations ayant pour rôle fonctionnel l'exploitation rationnelle du réseau. Ils permettent l'accès à la conduite pour effectuer des tâches d'entretien et assurent une ventilation dans le réseau permettant ainsi aux gaz nocifs de s'échapper. Le regard d'égout permet également les changements de pente, de diamètre et assure la jonction des conduites. Il doit offrir un minimum d'obstruction à l'écoulement de façon à éviter des pertes de charges excessives.

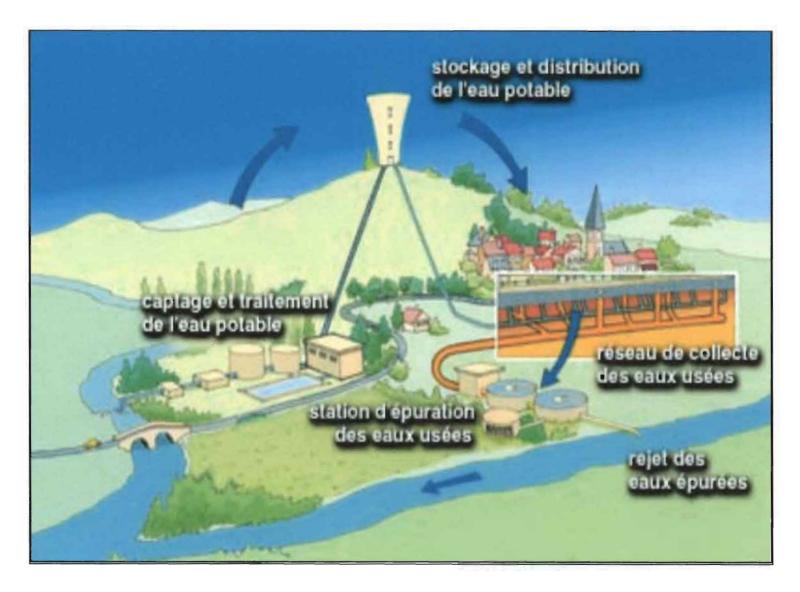


Figure 1 Processus de l'assainissement d'amont en aval

Chapitre 2: PRESENTATION DE LA ZONE D'ETUDE.

La zone d'étude est partagée entre deux quartiers de Hann : une partie de Hann équipe et Hann village. Cette zone est affiliée à la commune d'arrondissement de Hann Bel Air qui a été créée le 30–04-2006 conformément au décret n° 96-745 portant création des communes d'arrondissement dans les villes de Dakar, Pikine et Guédiawaye. La loi n° 96-09 fixe l'organisation administrative et financière de la commune d'arrondissement et ses rapports avec la ville. Subdivisée en trois zones naturelles séparées par la route du Front de Terre au nord et la Rocad Bel Air au centre, la commune d'arrondissement de Hann Bel Air couvre une superficie de 40 Km² environ.

D'après les statistiques de la mairie de Hann la population actuelle est estimée à 70 000 habitants environ. Elle est originellement composée de walo walo et de Lébous dans les quartiers traditionnels et d'ethnies diverses dans les autres quartiers. C'est une population jeune dont plus de la moitié est constituée de femmes.

L'Hôtel de ville, siège de la commune se situe au km 6.5 du boulevard du Centenaire de la commune de Dakar. Il a été entièrement financé par l'Agence de développement Municipal (ADM) par le biais du plan triennal d'investissement de la ville de Dakar (PTIV 2000/2002).

2.1. Situation géographique

La ville de Hann est une commune de la région de Dakar. L'essentiel du tissu industriel (prés de 80%) y est installé. La zone d'étude ne correspond pas à une entité entière administrative ; c'est ce qui fait la complexité de sa délimitation. Elle est en effet limitée au Nord –Est par la Route du Front de terre, au Sud par CARNAUD SENEGAL, à l'Est par le chemin de fer et à l'Ouest par les locaux du Quotidien le Soleil et les cimetières de Hann.

La situation géographique du site est présentée à la figure 3.

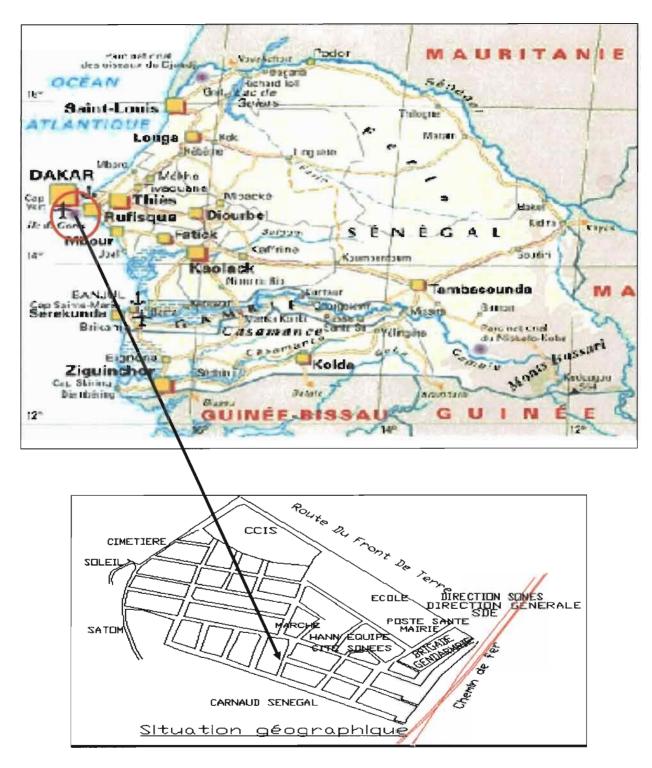


Figure 2 Localisation de la zone d'étude

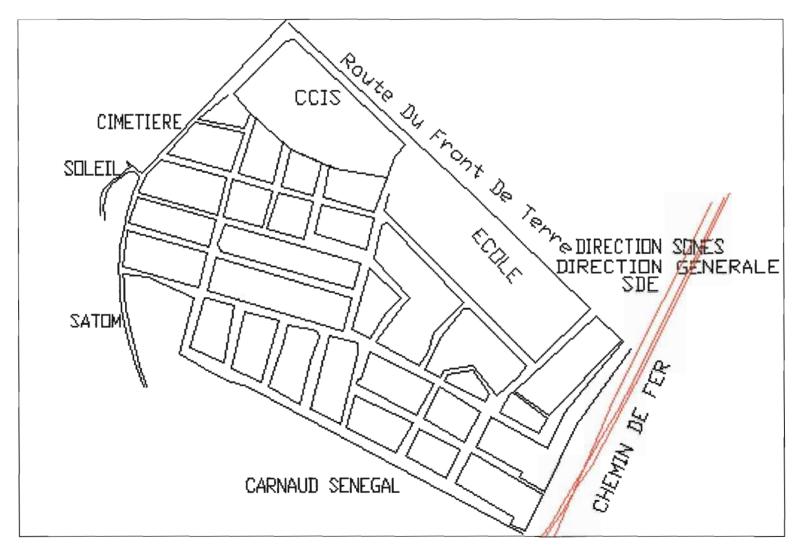


Figure 3 Situation géographique

2.2 Situation démographique

. Les recensements ou estimations démographiques disponibles auprès de la mairie font état de la population globale de Hann. Les recherches effectuées ne nous ont pas permis de disposer du nombre d'habitants dans la zone d'étude.

C'est pourquoi l'estimation de la population a été faite en posant l'hypothèse suivante : la zone est divisée en parcelles de 150 m² à raison d'une population maximale de 12 habitants par unité.

La population de la zone d'étude est alors estimée à environ 5325 habitants sur une superficie de prés de 10. 94 hectares soit une densité de prés de 487 habitants à l'hectare.

Nous assistons à la saturation de l'espace vue l'occupation presque totale du sol.

2.3 Situation socio-économique

Le village de Hann doit son nom à un certain hollandais qui a eu à y séjourner. Sa création remonte vers 1903 et portait jadis le nom de quartier Mr Hann. Son historique reste très lié à l'existence du parc de Hann. Les principales ethnies résidant dans la zone sont principalement les wolofs, les toucouleurs, les sérères.

L'essentiel des activités économiques qui y sont menées s'articulent autour du marché. On note la présence d'une seule unité industrielle dans la zone d'étude : la Compagnie Commerciale et Industrielle du Sénégal (CCIS) qui fabrique des tuyaux en PVC (Polychlorure de Vinyle). Cette industrie est le principal partenaire des jeunes dans la recherche de solutions aux différents problèmes de la société. Face au taux très élevé de chômage, les jeunes se sont regroupés en association et proposent des projets aux partenaires au développement. Parmi ces projets on note le Programme d'Amélioration de l'Assainissement des quartiers Péri urbains de Dakar. Il est piloté par les jeunes qui font des enquêtes auprès des populations. Les bénéficiaires participent à hauteur de 25% pour se procurer d'ouvrages d'assainissement individuel.

En collaboration avec l'Agence d'Exécution des Travaux d'Intérêt Publique contre le sousemploi (AGETIP), l'association des jeunes a mis en place un centre multifonctionnel avec un jardin d'enfant et un programme de nutrition communautaire.

Les jeunes bénéficient aussi de formation en micro jardinage en collaboration avec le Centre horticole de Cameberène. On note aussi la présence de l'union nationale des femmes de Hann village financée à hauteur de 2 000 000 FCFA. Elle s'active essentiellement dans le commerce.

Chapitre 3: ETAT DES LIEUX.

La réussite d'un projet de restructuration d'un réseau d'eaux usées suppose une maîtrise préalable des difficultés de fonctionnement et leurs causes. Pour ce faire il est nécessaire de multiplier les descentes sur le terrain afin d'identifier les défaillances qui font que le réseau ne joue pas de façon optimale son rôle qui est d'évacuer les eaux usées loin des concessions sans porter atteinte à l'environnement.

Dans cette partie nous allons, dans un premier temps, faire la description du réseau existant. Ensuite il sera question de faire l'étude diagnostique du réseau en commençant par identifier les dysfonctionnements et leurs causes.

3.1 Description du réseau existant

Le réseau en question est de type séparatif avec une structure étoilée. Il est destiné à l'évacuation des eaux usées domestiques (eaux vannes et eaux ménagères) et des effluents industriels de la CCIS.

La figure 4 représente le tracé du réseau existant.

Les conduites qui servent à l'évacuation sont de diamètres croissants d'amont en aval.

Nous avons principalement des égouts locaux, des collecteurs et un intercepteur.

Leur répartition suivant leurs diamètres et leurs longueurs est la suivante :

Types de conduites	Longueur (mL)	Nature	Diamètre (mm)		
Egouts locaux	1012	PVC	250		
Collecteurs	1588	PVC	300		

L'intercepteur part du regard le plus en aval du réseau à savoir HF30 jusqu'à la station de relèvement située à Fann. Il n'est pas pris en compte dans l'évaluation du linéaire total car se situant en dehors de la zone d'étude.

La longueur totale des canalisations du réseau existant est évaluée à 2,6 Km.

Le PVC est un matériau qui a l'avantage d'offrir une bonne résistance à l'agression d'ordre chimique.

➤ En outre nous avons aussi des regards qui sont des ouvrages annexes pour l'entretien et l'accès au réseau. Ils sont au nombre de 95 et sont situés aux changements de pente du terrain, de direction et aux jonctions de tronçons.

La distance moyenne entre regards est de 35 m .Nous avons des profondeurs de regard allant jusqu'à.4 m. Les regards sont en maçonnerie et les tampons en fonte.

> Une station de relèvement se situe à Fann. Elle est chargée d'élever le niveau des eaux par rapport à la mer.

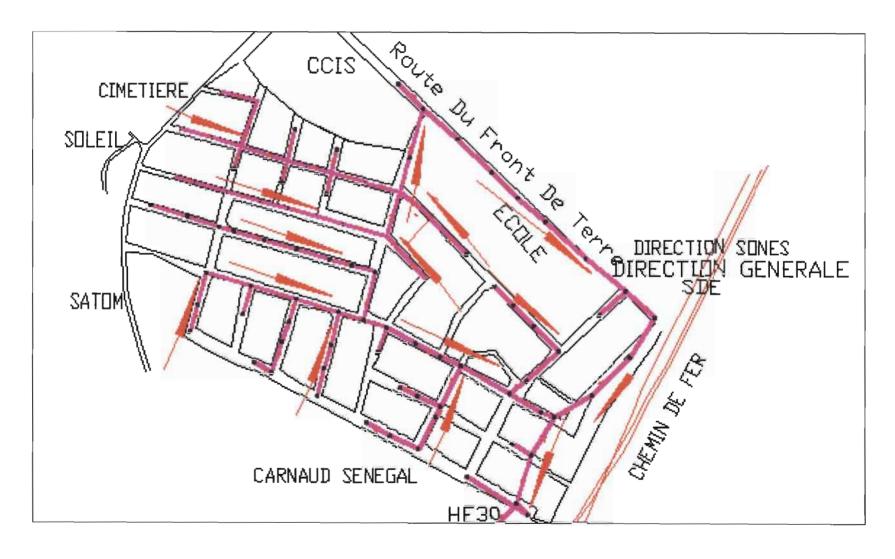


Figure 4 Tracé du réseau existant

3.2 Etude diagnostique du réseau

Le diagnostic est une phase très importante pour la restructuration d'un réseau d'eaux usées. Il permet, à travers une analyse, de déceler les difficultés auxquels le réseau est confronté.

Nous allons dans cette partie développer les points suivants :

- Dysfonctionnements du réseau
- > Etude topographique
- > Evaluation des pentes des conduites du réseau existant.
- Causes des dysfonctionnements constatés.

3.2.1 Dysfonctionnements du réseau

Le réseau actuel est sujet à plusieurs dysfonctionnements qui remettent en cause sa fiabilité.

On a une mauvaise évacuation des eaux dans les conduites qui fait que les propriétés hydrauliques ne sont pas vérifiées partout dans le réseau.

Nous constatons les problèmes suivants :

- Empiétement de maisons sur conduites.
- Accessibilité difficile au réseau.
- Regards toujours remplis d'eaux usées.
- Absence de tampons pour certains regards.
- Dépôts importants de déchets solides dans les regards et ensablement des canalisations.

Cette situation a pour conséquences des déversements d'eaux usées dans les rues, ce qui pousse les populations à dévier ces eaux stagnantes vers le réseau d'eaux pluviales.

Le réseau actuel présente de sérieux problèmes d'accessibilité, or un réseau d'assainissement d'eaux usées doit être conçu de façon à permettre un accès plus facile aux différentes installations pour effectuer des travaux d'entretien. L'empiétement de certaines maisons sur le réseau se traduit par l'existence de regards à l'intérieur des concessions. Les services chargés du curage trouvent d'énormes difficultés pour accéder à certains tronçons. La zone d'étude est aussi marquée par l'étroitesse des rues à cause des occupations irrégulières de certaines habitations.

Les stagnations permanentes d'eaux usées font que les populations sont régulièrement confrontées à des odeurs nauséabondes et à des risques élevés de maladies. Cette situation est contraire à l'objectif même de l'assainissement qui est essentiellement la préservation de l'environnement.

3.2.2 Etude topographique

Elle apparaît comme un élément fondamental en assainissement. Sous l'effet de la gravité une goutte d'eau se déplacera d'un point A à un point B d'un tronçon donné si ce dernier point est en dessous du premier c'est-à-dire si la cote du premier est supérieure au second. La détermination de la topographie du terrain en assainissement est donc primordiale. En effet, la vitesse critique d'autocurage obtenue à partir d'une vitesse minimale qui doit être supérieure à 0.60m/s maintient les particules en suspension et évite les dépôts. En terrain plat, ces conditions entraînent, de l'amont vers l'aval, un approfondissement coûteux du réseau. Le réseau doit épouser le plus possible le terrain naturel. Si cela n'est pas possible on peut recourir à des stations de relèvements.

L'étude topographique nous permet en effet de connaître les cotes d'un nombre important de points dans la zone d'étude. Les coordonnées X et Y sont obtenues dans le repère local de Autocad où sont représentés les regards du réseau existant. Avec des logiciels comme Covadis il est possible de connaître les coordonnées d'un point quelconque de la zone sur la base d'une interpolation. La précision est d'autant meilleure que le nombre de points connus est important. La génération des profils en long nous permet d'apprécier la pente du terrain.

Les points connus sur le terrain sont représentés sur la figure 5.

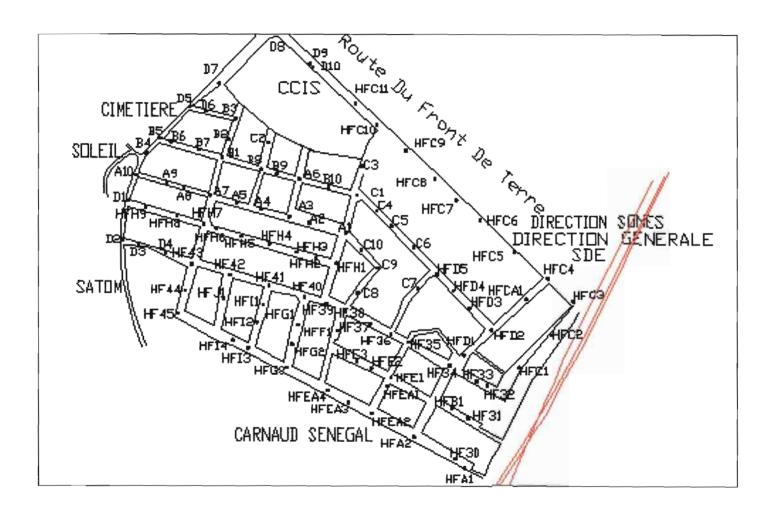


Figure 5 Position des points connus sur le terrain

3.2.2.1 Détermination des Cotes du terrain naturel.

Des données relatives à certains points du site nous ont été fournies. Pour avoir une bonne interpolation lors de l'élaboration d'un modèle numérique du terrain, il a été question de lever un nombre important de points de la zone. Comme matériel nous avons un niveau, une mire, un trépied et un décamètre. Nous avons pris comme repère un point connu (HFC1). Par le principe du nivellement nous avons eu à déterminer les altitudes des points en question en prenant soin de mesurer à chaque fois les distances. Les altitudes des différents points sont déterminées dans le nivellement général du Sénégal (NGS).

Soit A un repère d'altitude Z_A et B un point dont on veut connaître l'altitude (Z_B). On effectue une lecture arrière sur A notée LA, puis une lecture avant sur B notée LB. La hauteur de l'appareil est obtenue par

$$H_{APP} = Z_A + LA$$

L'altitude de B est $Z_B = H_{APP}$ - LB.

Pour une bonne illustration nous allons donner l'exemple de calcul de l'altitude d'un point de notre zone d'étude :

Calcul de l'altitude de A1

Pour ce point le repère est le point HFH1

L'altitude du point HFH1 est : $Z_{HFH1} = 8,87 \text{ m}$

La lecture arrière sur HFH1 est : L_{HFH1} = 1,775 m

La lecture avant sur A1 est : $L_{A1} = 1,970 \text{ m}$

Il vient que la hauteur de l'appareil est : $H_{APP} = Z_{HFH1} + L_{HFH1} = 8,87 + 1,775 = 10,645 \text{ m}$

Et l'altitude du point A1 est : $Z_{A1} = H_{APP} - L_{A1} = 10,645 - 1,97 = 8,675 \text{ m}$

Il ressort de l'ensemble de nos calculs que la zone est marquée par des écarts d'altitudes importants. Nous avons des altitudes de l'ordre de 5 m par endroits et 13m par d'autres.

La figure 6 représente le schéma de principe pour déterminer l'altitude à l'aide d'un niveau Les résultats sont présentés dans le tableau 1.

Points	Réf	Dist (m)	Repère	Alt Rep (m)	Lect AR (m)	Haut APP (m)	Lect AV (m)	Alt Point (mNGS)
A1	HFH1	39,80	HFH1	8,87	1,775	10,645	1,970	8,675
A2	Al	38,50	A1	8,675	1,470	10,145	1,565	8,580
A3	A2	22,00	A1	8,675	1,470	10,145	1,563	8,582
A4	A3	28,60	A1	8,675	1,470	10,145	1,377	8,768
A5	A4	25,40	A1	8,675	1,470	10,145	1,390	8,755
A6	A3	39,00	A1	8,675	1,470	10,145	1,690	8,455
A7	A5	26,2	A5	8,755	2,040	10,795	1,601	9,194
A8	A7	28,30	A5	8,755	2,040	10,795	1,072	9,723
A9	A8	18,00	A5	8,755	2,040	10,795	0,166	10,629
A10	A9	32,70	A9	10,629	3,560	14,189	1,560	12,629
B1	A7	39,60	A5	8,755	2,040	10,795	1,938	8,857
B2	B1	19,40	A5	8,755	2,040	10,795	1,700	9,095
В3	В2	16,00	A5	8,755	2,040	10,795	1,560	9,235
B4	A10	29,70	A9	10,629	3,560	14,189	1,860	12,329
B5	В4	15,60	A9	10,629	3,560	14,189	2,242	11,947
B6	В5	10,40	B5	11,947	0,537	12,484	0,957	11,527
В7	В6	29,80	B5	11,947	0,537	12,484	2,870	9,614
B1	В7	25,00	В7	9,614	0,555	10,169	1,309	8,860
B8	B1	42,30	В7	9,614	0,555	10,169	1,712	8,457
B9	B8	12,00	В7	9,614	0,555	10,169	1,670	8,499
A6	B9	23,50	В7	9,614	0,555	10,169	1,710	8,459
B10	A6	31,20	A6	8,459	1,506	9,965	1,547	8,418
C1	B10	30,50	A6	8,459	1,506	9,965	1,350	8,615
C2 .	В8	28,00	В8	8,457	1,626	10,083	1,530	8,553
C3	C1	29,30	C1	8,615	1,549	10,164	2,000	8,164
C4	C1	25,80	C1	8,615	2,395	11,010	2,182	8,828
C5	C4	21,50	C1	8,615	2,395	11,010	1,650	9,360
C6	C5	31,80	C1	8,615	2,395	11,010	1,665	9,345

Tableau 1 Détermination des Cotes du terrain naturel

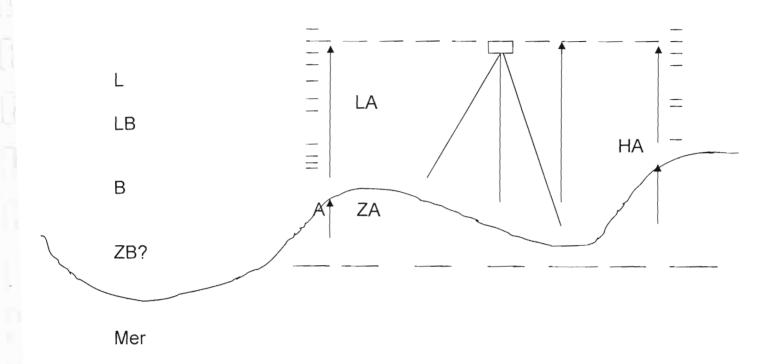


Figure 6 Schéma de principe pour déterminer l'altitude à l'aide d'un niveau

A : repère d'altitude connu.

ZA: altitude de A

LA: lecture avant sur A

HA: hauteur de l'appareil, HA = LA + ZA

B: point dont on veut connaître l'altitude.

LB: lecture arrière sur B.

ZB: l'altitude du point B, ZB = HA - LB.

Le repère est celui du nivellement général du Sénégal (NGS).

3.2.2.2 Détermination des profondeurs radier des regards et fil d'eau des conduites.

Les cotes radier des regards sont obtenues à partir des cotes des tampons par déduction de la profondeur du radier. En effet pour certains tronçons la profondeur est mesurée sur place. Notons qu'il est presque impossible d'avoir cette mesure pour la plupart des regards car ils sont tout le temps plein d'eaux usées et sont sujets à des dépôts importants. Ainsi, lors des levés il fallait ouvrir tous les regards pour apprécier si possible leur profondeur.

Les cotes des fils d'eau des conduites sont obtenues par le même procédé par déduction de la profondeur du radier de la conduite considérée. Ces valeurs étant variables selon que la conduite arrive ou parte du regard. Les cotes des fils d'eau nous permettent d'apprécier les pentes des différents tronçons.

Les cotes radier des regards et fil d'eau des conduites sont présentées dans le tableau 2.

	TAMPON	REGARDS	A	ARRIVE	E 1	A	DEP 1		
N° regard	Altitude (mNGS)	Prof jusqu'au radier (m)	Prof fil d'eau (m)	N° du regard amont	Dist du regard amont (m)	Prof fil d'eau (m)	N° du regard amont	Dist du regard amont (m)	Prof fil d'eau (m)
HF30	7,01	4,4	4,4	HF31	35,2	1,85	HFA1	4,85	4,4
HF31	6,85	4,14	4,14	HF32	35,2	1,34	HFB1	18,3	4,14
HF32	7,25	4,44	2,04	HF33	29,3	4,44	HFC1	35,2	4,44
HF33				HF34	22,4				
HF34	8,82	3,15	3,15	HF35	10,5	2,6	HFD1	10,5	3,15
HF35				HF36	21,2		HFE1	38	
HF36	10,21	3,17	3,17	HF37	25,3				3,17
HF37	9,9	2,3	2,3	HF38	30,2				2,3
HF38	10,11			HF39	19		HFF1	24	
HF39				HF40	22,8		HFH1	36	
HF40	9,4	1,51	1,51	HF41	41,1	1,31	HFG1	32,5	1,51
HF41	10,1	1,9	1,88	HF42	38,65	1,4	HFI1	25	1,9
HF42	10,18	1,84	1,84	HF43	37,7	1,27	HFJ1	38,05	1,84
HF43	10,4	2	1,71	HF44	28,2				2
HF44	10,98	1,45	1,45	HF45	25,2				1,45
HF45	11,6	1,62							1,62
HFA1	6,96	1,72	1,57	HFA2	46,8				1,72
HFA2	8,37	1,61							1,61
HFB1	7,05	1,1							1,1
HFC1	7,12	4,24	4,24	HFC2	33,4				4,24
HFC10	7,24	3,15	3,12	HFC11	44,8				3,15
HFC11	6,74	2,53	2,47	HFC12	40				2,53
HFC2	5,03	2,13	2,13	HFC3	50				2,13
HFC3	4,95	1,93	1,93	HFC4	30,2				1,93
HFC4	5,17	2,15	2,08	HFC5	39,4	1,26	HFCA1	28	2,15
HFC5	5,1	1,61	1,61	HFC6	40				1,61
HFC6	6,57	2,9	2,88	HFC7	40				2,9
HFC7	7,1	3,35	3,33	HFC8	40				3,35

Tableau 2 profondeurs radier des regards et fil d'eau des conduites.

3.2.3 Evaluation des pentes des conduites du réseau existant.

Les systèmes d'évacuation d'eaux usées sont gravitaires.

Après avoir effectué les différents levés topographiques et mesuré les profondeurs des regards et fil d'eau, il est nécessaire de calculer les pentes des conduites du réseau existant. Cette opération nous permet d'apprécier si les propriétés hydrauliques des tronçons sont suffisantes pour un bon fonctionnement du réseau.

La pente d'un tronçon du réseau est calculée en considérant les regards amont et aval. Soit AB un tronçon quelconque de regard amont A et de regard aval B. Notons HA et HB les profondeurs du fil d'eau de la conduite considérée respectivement en A et B relativement au niveau supérieur des tampons. Les altitudes du fil d'eau sont alors obtenues par les formules suivantes :

ZA= FA-HA et ZB= FB-HB avec FA et FB respectivement les cotes des tampons des regards A et B. La pente de la conduite AB est alors donnée par :

P (m/m)=
$$\frac{\Delta Z}{L} = \frac{ZA - ZB}{L}$$
, L (m) étant la longueur de la conduite AB.

Exemple de calcul sur la pente du tronçon HF31-HF30:

 $H_{HF31} = 4.14 \text{ m}$; $H_{HF30} = 4.4 \text{ m}$

 $F_{HF31} = 6.85 \text{ m}$; $F_{HF30} = 7.01 \text{ m}$

 $Z_{HF31} = F_{HF31} - H_{HF31} = 6,85 - 4,14 = 2,71 \text{ m}$; $Z_{HF30} = F_{HF30} - H_{HF30} = 7,01 - 4,4 = 2,61 \text{ m}$

La longueur du tronçon est L = 35.2 m.

Il vient que la pente du tronçon HF31-HF30 est :

$$P(m/m) = \frac{\Delta Z}{L} = \frac{ZA - ZB}{L} = \frac{2,71 - 2,61}{35,2} = 2,841 \%$$

Cependant, certaines pentes de tronçons n'ont pas pu être calculées à cause des difficultés de mesures de profondeur de certains regards. Cela est lié au fait que ces regards sont tout le temps remplis d'eaux usées ou sont sujets à des dépôts importants.

Les résultats obtenus sont présentés dans le tableau 3.

	Profondeur fil d'eau (m)		Altitude (mNGS)		Long		Pente
Tronçons	Amont	Aval	Amont	Aval	(m)	Pente (m/m)	(%)
HF31-HF30	4,14	4,4	2,71	2,61	35,2	0,00284	2,841
HF32-HF31	4,44	4,14	2,81	2,71	35,2	0,00284	2,841
HFA1-HF30	1,72	1,85	5,24	5,16	4,85	0,01649	16,495
HFB1-HF31	1,1	1,34	5,95	5,51	18,3	0,02404	24,044
HFC1-HF32	4,24	4,44	2,88	2,81	35,2	0,00199	1,989
HFD1-HF34	2,03	2,6	6,28	6,22	10,5	0,00571	5,714
HF37-HF36	2,3	3,17	7,6	7,04	25,3	0,02213	22,134
HF41-HF40	1,9	1,51	8,2	7,89	41,1	0,00754	7,543
HFG1-HF40	1,28	1,31	8,34	8,09	32,5	0,00769	7,692
HF42-HF41	1,84	1,88	8,34	8,22	38,65	0,00310	3,105
HFI1-HF41	1,3	1,4	8,58	8,7	25	- 0,00480	- 4,800
HF43-HF42	2	1,84	8,4	8,34	37,7	0,00159	1,592
HF44-HF43	1,45	1,71	9,53	8,69	28,2	0,02979	29,787
HF45-HF44	1,62	1,45	9,98	9,53	25,2	0,01786	17,857
HFA2-HFA1	1,61	1,57	6,76	5,39	46,8	0,02927	29,274
HFC2-HFC1	2,13	4,24	2,9	2,88	33,4	0,00060	0,599
HFC11-HFC10	2,53	3,12	4,21	4,12	44,8	0,00201	2,009
HFC3-HFC2	1,93	2,13	3,02	2,9	50	0,00240	2,400
HFC4-HFC3	2,15	1,93	3,02	3,02	30,2	- 0,00000	- 0.000
HFC5-HFC4	1,61	2,08	3,49	3,09	39,4	0,01015	10,152
HFC6-HFC5	2,9	1,61	3,67	3,49	40	0,00450	4,500
HFC7-HFC6	3,35	2,88	3,75	3,69	40	0,00150	1,500
HFC8-HFC7	3,62	3,33	3,82	3,77	40	0,00125	1,250
HFC9-HFC8	2,94	3,59	4,03	3,85	40	0,00450	4,500
HFC10-HFC9	3,15	2,9	4,09	4,07	35,2	0,00057	0,568
HFD2-HFD1	1,13	2,03	6,65	6,28	45	0,00822	8,222
HFD3-HFD2	1,82	1,13	6,91	6,65	20,7	0,01256	12,560
HFD4-HFD3	1,8	1,82	7,05	6,91	25,7	0,00545	5,447
HFD5-HFD4	0,96	1,59	7,78	7,26	26,2	0,01985	19,847
HFE2-HFE1	1,25	1,2	7,59	7,63	21,6	- 0,00185	- 1,852
HFE3-HFE2	1,2	1,25	7,92	7,59	15,5	0,02129	21,290
HFEA2-HFEA1	1,22	1,07	8,08	7,77	22,4	0,01384	13,839
HFEA3-HFEA2	1,16	1,18	8,28	8,12	25,6	0,00625	6,250
HFEA4-HFEA3	1,07	1,16	8,55	8,28	26	0,01038	10,385
HFG2-HFG1	1,2	1,28	8,5	8,34	24	0,00667	6,667
HFG3-HFG2	1,18	1,2	8,63	8,5	21	0,00619	6,190

Tableau 3 Evaluation des pentes des conduites du réseau existant.

3.2.4. Causes des dysfonctionnements constatés.

minimale de 3‰ dans tout le réseau.

Les tronçons examinés sont un échantillon très représentatif du réseau existant (des mesures ont été effectuées sur 61 regards, soit un pourcentage de 65%).

Rappelons que le fait que certains regards n'aient pas été visités est dû au fait que ces derniers sont toujours remplis d'eaux usées. Après évaluation des différentes pentes, nous remarquons que les valeurs trouvées se présentent sous deux formes. Certains tronçons ont des pentes suffisantes (supérieure à 3‰) alors que d'autres ont des pentes relativement faibles (HFC10-HFC9). Nous avons même des pentes nulles (HFC4-HFC3) voire des contre-pentes (HFI1-HF41) c'est-à-dire que la pente du tronçon est contraire au sens de l'écoulement. Ceci expliquer en partie le fait que l'évacuation n'est pas bien assurée dans certains tronçons. En effet les conditions d'autocurage exigent une pente minimale de 3‰, ce qui permet d'assurer une évacuation normale sans risque de dépôts importants préjudiciables à l'écoulement gravitaire. Pour la conception du nouveau réseau nous nous fixons comme objectif de maintenir une pente

La vétusté du réseau explique aussi ces problèmes récurrents. De même les dépôts importants dans les canalisations portent préjudice à l'écoulement. Nous assistons aussi à la présence dans certains regards de matières incompatibles avec les eaux susceptibles d'être transportées dans le réseau. Ces déchets solides sont le plus souvent introduits par les populations dans les regards. On note aussi l'ensablement des canalisations

. Les stagnations sont plus courantes dans les parties où des maisons empiètent sur le réseau. Ces constructions étant postérieures à la mise en place du réseau, les charges dues aux poids des ouvrages sont susceptibles de porter atteinte à la résistance à la rupture des matériaux en PVC constituant les canalisations du réseau.

Chapitre 4: PROPOSITIONS DE SOLUTIONS

Suite à l'analyse effectuée dans la phase état des lieux, nous allons proposer des solutions techniques afin de remédier à l'ensemble des dysfonctionnements.

Dans un premier temps nous allons étudier le fonctionnement d'un réseau séparatif.

Ensuite nous ferons la conception du nouveau réseau. Cette phase comprend les points suivants :

- > Tracé du nouveau réseau
- Elaboration du modèle numérique du terrain (MNT)
- Délimitation de la zone d'étude en bassins et sous-bassins.
- > Evaluation des débits véhiculés
- > Pentes des conduites du nouveau réseau

Enfin il sera question d'effectuer le dimensionnement du réseau en prenant soin de vérifier les conditions d'autocurage.

4.1. Fonctionnement d'un système séparatif

La collecte des eaux usées se faisant par gravité, toute conduite chargée de desservir un bassin donné doit pouvoir capter les eaux qui lui sont destinées. L'idéal serait de réussir un écoulement gravitaire jusqu'à la décharge (mer ou station d'épuration) mais l'existence de points bas dais la zone nécessite une station de relèvement qui est chargée d'élever les eaux par rapport au niveau de la mer.

Les pentes suffisantes entraînent des vitesses admissibles et donc de bonnes conditions d'autocurage des canalisations, ce qui permet d'éviter des dépôts importants dans les conduites. Un réseau est dimensionné de façon à avoir une capacité hydraulique suffisante pour véhiculer les débits de pointe. L'existence d'ouvrages comme les regards devrait permettre l'évacuation et l'entretien efficace du réseau. En outre le réseau doit être parfaitement étanche aux points de raccordement et surtout au niveau des regards pour éviter l'introduction des eaux pluviales ou souterraines dans les canalisations; ce qui introduit une surcharge hydraulique qui augmente considérablement les coûts d'exploitation de la station de relèvement.

Les conditions d'autocurage pour lesquelles les vitesses d'écoulement sont telles que les débits solides sont entraînés sans formation de dépôts. Cette vitesse ne doit pas être faible pour éviter la déposition de matières ni excessive pour éviter toute atteinte à la résistance des conduites.

4.2 Conception du nouveau réseau.

Les dysfonctionnements notés dans des réseaux existants sont, le plus souvent, à imputer à des erreurs initiales de conception et de dimensionnement. C'est pourquoi, il est nécessaire d'accorder une attention toute particulière à ces phases lors de l'étude.

4.2.1 Tracé du réseau

Comme explicité précédemment dans la phase état des lieux, le réseau actuel est sujet à plusieurs dysfonctionnements.

Pour la conception du nouveau réseau l'empiètement de maison sur conduites sera le motif principal de suppression de certains tronçons. Le fait de déplacer des populations reste une solution quasi irréalisable et très coûteuse. Ensuite viennent des motifs d'insuffisance de fonctionnement dus à des contre-pentes ou des dépôts solides importants dans le réseau.

L'empiètement de maison sur conduites occasionne des difficultés d'accès au réseau pour des opérations d'entretien et donc entraîne à la longue des dépôts très préjudiciables à l'écoulement gravitaire.

Pour cause d'empiètement le tronçon HFC3-HFC1-HF32-HF31-HF30 sera supprimé. De même toute conduite qui y déverse ses eaux sera déviée vers d'autres collecteurs dans le nouveau réseau. Il s'agit des tronçons HFC4-HFC3, HF34-HF33, HFB1-HF31.

En dehors de la zone d'empiétement d'autres tronçons présentent des insuffisances qui se manifestent par des débordements au niveau des regards. Il s'agit entre autres des tronçons B5-B1-A6-C1 et A1-C3-HFC10.

Dans le réseau actuel l'égout intercepteur qui collecte toutes les eaux pour les acheminer vers la station de relèvement traverse l'usine CARNAUD. Pour pallier aux problèmes récurrents d'accessibilité du réseau pour son entretien, il est nécessaire de changer la direction de ce tronçon. La difficulté réside dans le fait qu'on a une forte occupation du sol.

Face à la saturation de la zone d'étude et aux problèmes d'urbanisation, les solutions restent limitées pour le tracé du nouveau réseau.

Nous préconisons de créer un tronçon du coté du chemin de fer et longeant les habitations jusqu'à l'exutoire (E1-G7). Le tronçon qui arrive à la gendarmerie du coté de la route du front de terre y sera raccordé. Un deuxième collecteur principal va partir de HFD2jusqu'à l'exutoire en passant par HFA2.

Nous décidons, en ce qui concerne l'égout intercepteur, de raccorder le tronçon HFA2-HF30 au collecteur longeant le chemin de fer. A l'intersection nous plaçons le regard amont de l'intercepteur qui sera chargé d'acheminer les eaux jusqu'à la station de relèvement. Cette opération nécessite la démolition sur au moins 3m du mur de l'usine CARNAUD. La topographie du terrain ne permet pas des libertés importantes de la position de l'intercepteur vu l'écoulement gravitaire imposé dans tout le réseau.

La figure 7 met en relief la partie du réseau sujet à des empiètements.

La figure 8 représente le tracé du nouveau réseau.

Le plan sur lequel est représenté l'ensemble des regards du nouveau réseau est mis en annexe à la page 82.

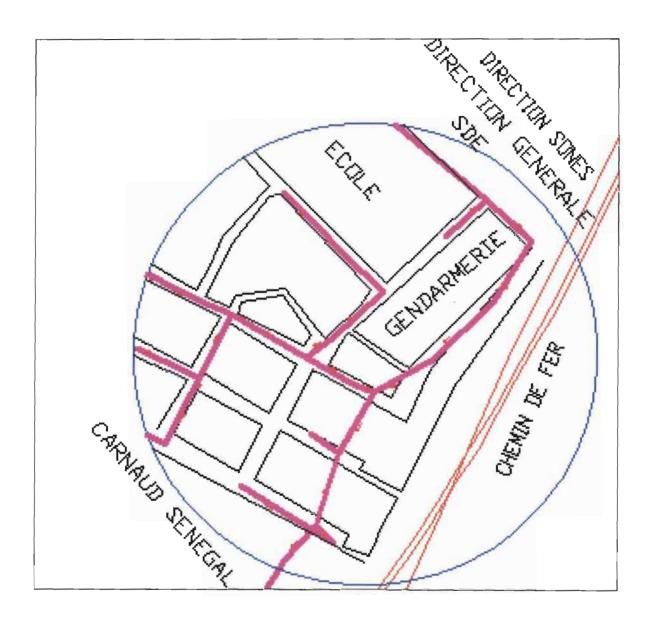


Figure 7 Tronçons sujets à des empiètements

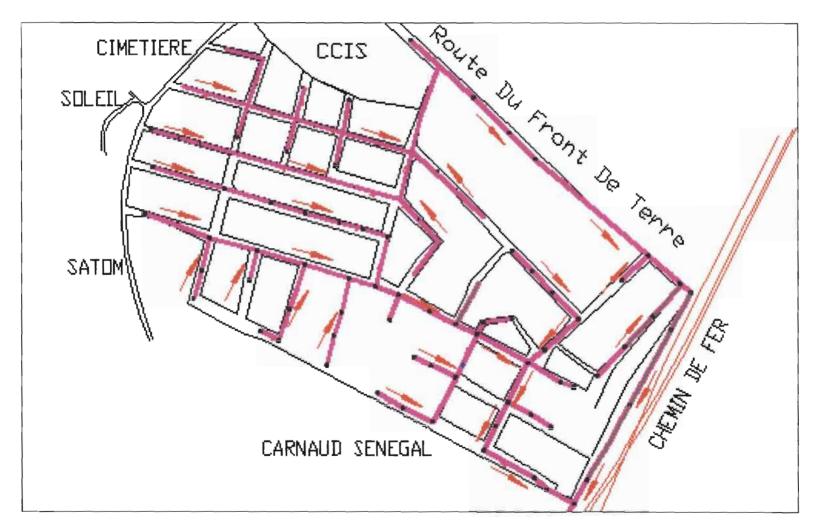


Figure 8 Tracé du nouveau réseau

4.2.2 Elaboration du modèle numérique du terrain (MNT)

Le MNT permet d'avoir une représentation en 3D de la zone d'étude, autrement dit par le principe de l'interpolation nous pouvons avoir les coordonnées de chaque point du terrain La précision est naturellement plus grande que le nombre de points connus est important.

Une centaine de points est connue en altitude sur le terrain par le principe de nivellement. En s'appuyant sur le plan Autocad où sont représentés les regards du réseau existant nous avons effectué les lectures des coordonnées X et Y dans le repère local (Plan Autocad) de tous ces points. Les coordonnées de ces points sont présentées dans le tableau 4.

Notons que le fait qu'un repère local soit choisi pour l'élaboration du MNT n'entrave en rien la fiabilité de l'étude. Il suffira par la suite lors de l'exécution d'avoir les coordonnées d'un point du terrain dans un repère global pour retrouver les coordonnées réelles de tous les points de la zone.

Avec le logiciel Covadis nous avons eu à générer le MNT avec les différentes courbes de niveau. Nous traçons par la suite les profils en long de toutes les rues, ce qui nous permet d'apprécier la pente du terrain.

La figure 9 et la figure 10 représentent respectivement le MNT et des exemples de profils en long.

Points	X (m)	Y (m)	Z (mNGS)
HF30	872.3726	1059.9345	7.01
HF31	885.8926	1101.8465	6.85
HF32	905.5226	1135.4875	7.25
HF34	866.8656	1155.7825	8.82
HF36	806.0646	1187.7145	10.21
HF37	784.7979	1198.5303	9.9
HF38	759.0226	1212.2979	10.11
HF40	717.2402	1226.2128	9.4
HF41	680.6201	1237.5295	10.1
HF42	640.5528	1248.697	10.18
HF43	601.0386	1259.5215	10.4
HF44	594.3912	1232.2312	10.98
HF45	587.2656	1209.2865	11.6
HFA1	882.4336	1050.3675	6.96
HFA2	830.0736	1082.7255	8.37
HFB1	869.4536	1112.1605	7.05
HFC1	938.3881	1154.0527	7.12
HFC10	791.7646	1402.8125	7.24
HFC11	769.6746	1424.5305	6.74
HFC2	971.6376	1186.8845	5.03
HFC3	993.9356	1221.7355	4.95
HFC4	967.7786	1245.1585	5.17
HFC5	933.1181	1273.2997	5.1
HFC6	898.134	1304.8168	6.57
HFC7	873.7086	1325.5215	7.1
HFC8	851.4535	1347.3448	7.44
HFC9	821.6056	1376.4395	6.97
HFD1	881.2886	1166.5135	8.31
HFD2	909.6466	1192.6675	7.78
HFD3	887.6456	1214.6695	8.73
HFD4	870.366	1232.4986	8.85
HFD5	853.6646	1249.1425	8.74
HFE1	806.3566	1143.6685	8.83
HFE2	786,0126	1153,2645	8.84
HFE3	771.3676	1160.4175	9.12
HFEA1	802.0573	1134.6675	8.84
HFEA2	786.9188	1106.812	9.3
HFEA3	762.3744	1118.2868	9.44
HFEA4	741.4956	1130.0845	9.62
HFF1	751.4966	1191.7275	9.92
HFG1	710.7726	1197.3235	9.62
HFG2	704.3226	1177.6225	9.7
HFG3	698.9176	1153.5695	9.81

Tableau 4 Coordonnées des points connus sur le terrain

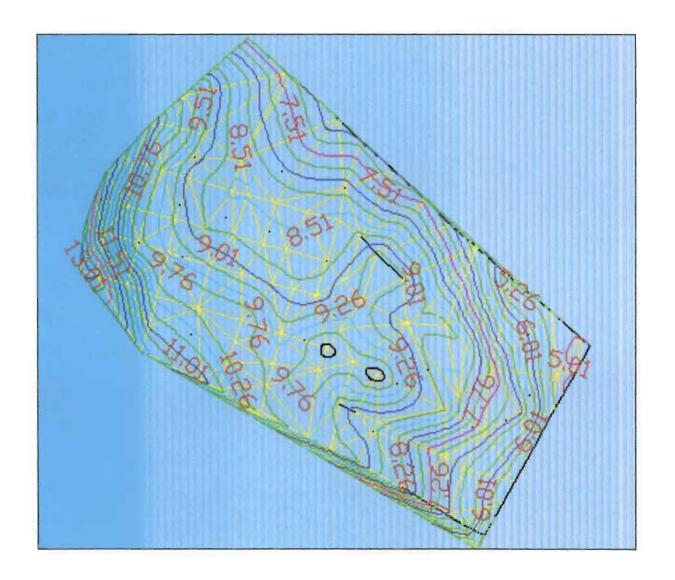
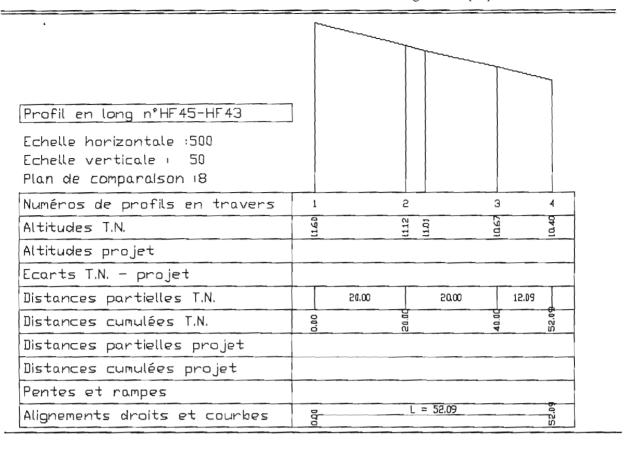



Figure 9 Modèle numérique du terrain (MNT)

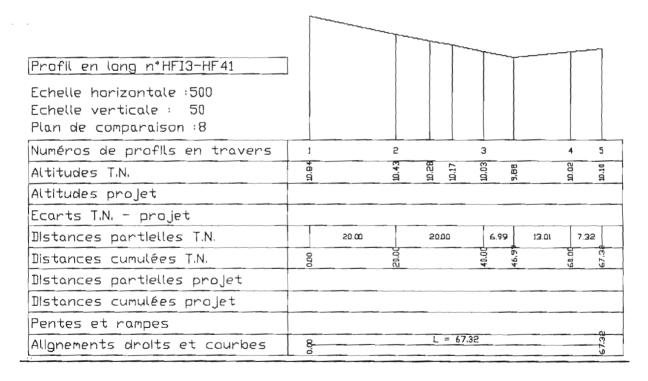


Figure 10 Exemples de profils en long du terrain

4.2.3 Délimitation en surfaces tributaires.

Le dimensionnement du nouveau réseau nécessite, entre autres, la connaissance des débits véhiculés par chaque tronçon. Pour cela il faut connaître l'aire effectivement desservie par chaque tronçon.

Nous avons plusieurs méthodes pour évaluer les débits véhiculés par chaque tronçon du réseau. La plus précise consisterait à considérer les quantités d'eaux usées issues des concessions desservies par un tronçon donné. Cette méthode nécessite par exemple la connaissance des rejets de chaque concession ou de groupe d'habitations. Vu la complexité de cette opération, il est nécessaire de recourir à des valeurs moyennes.

Le site est un bassin subdivisé en surfaces tributaires qui sont affectées aux différents tronçons. Un tronçon chargé de desservir une surface donnée doit pouvoir véhiculer toutes les eaux issues des concessions de ce périmètre.

Nous chercherons à concevoir le réseau de façon que la longueur de raccordement de chaque habitation soit la plus petite possible. Des surfaces partielles sont attribuées à chaque tronçon. L'aire effectivement desservie par un tronçon est obtenue en considérant, en plus de sa surface partielle, celles des tronçons en amont. Nous obtenons ainsi les surfaces cumulatives de chaque tronçon.

Notons que les tronçons qui desservent l'industrie CCIS et l'école ne sont pas pris en compte dans l'évaluation des surfaces tributaires. Les débits de ces établissements sont connus. Cependant ils ont la même surface cumulative que le tronçon en amont.

Les surfaces desservies par chaque tronçon sont présentées dans le tableau 5.

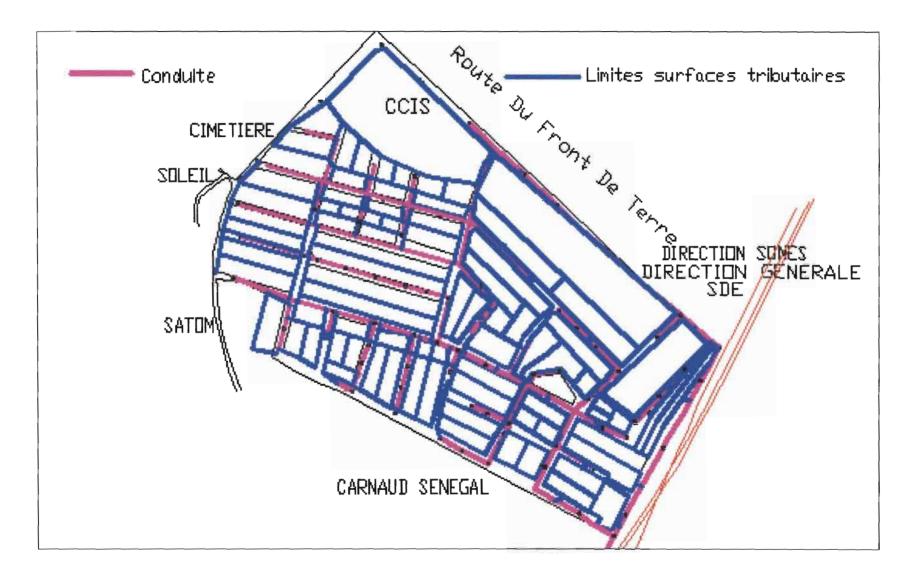


Figure 11 Délimitation de la zone en surfaces tributaires.

Tronçons	Surface partielle desservie (m²)	Surface cumulative(m²)
B6-B7	1436,7312	1436,7312
B7-B1	802,9812	2239,7124
D6-B3	1698,5332	1698,5332
B3-B2	572,0014	2270,5346
B2-B1	0	2270,5346
F1-B1	220,5576	220,5576
B1-B8	883,8998	5614,7044
F2-B8	445,1829	445,1829
C2-B8	789,3181	789,3181
B8-A6	821,4507	7670,6561
F3-A6	212,4046	212,4046
F4-A6	749,5105	749,5105
A6-B10	661,4827	9294,0539
B10-C1	583,9417	9877,9956
F5-A9	964,5947	964,5947
A9-A8	561,5995	1526,1942
A8-A7	777,0678	2303,262
A7-A5	563,7271	2866,9891
A5-A4	571,7533	3438,7424
A4-A3	673,2907	4112,0331
A3-A2	530,3261	4642,3592
A2-A1	902,919	5545,2782
C8-C9	1222,4368	1222,4368
C9-C10	839,6984	2062,1352
C10-A1	271,7204	2333,8556
A1-C1	0	7879,1338
C6-C5	2006,8338	2006,8338
C5-C4	809,3404	2816,1742
C4-C1	1011,9404	3828,1146
C1-C3	571,7146	22156,9586
C3-HFC10	0	22156,9586
HFC11-HFC10	0	0
HFC10-HFC9	0	22156,9586
HFC9-HFC8	0	22156,9586
HFC8-HFC7	0	22156,9586
HFC7-HFC6	0	22156,9586
· HFC6-HFC5	0	22156,9586
HFC5-HFC4	912,0063	23068,9649
HFCA1-HFC4	946,7539	946,7539
HFC4-HFC3	1683,1151	25698,8339
G1-F10	2229,2196	2229,2196

Tableau 5 Délimitation de la zone en surfaces tributaires

4.2.4 Evaluation des débits véhiculés

4.2.4.1 Volume des eaux de consommation.

Nous avons une grande corrélation entre les eaux de consommation et les eaux usées qui retournent à l'égout. C'est pourquoi il est nécessaire de quantifier ces eaux pour en déduire les quantités à évacuer.

Pour cela faire il a été question de chercher auprès des services de la SDE les données relatives à la consommation en eau potable de la zone d'étude.

Le site en question est un peu complexe par ses limites, ce qui n'a pas facilité la tâche. Les tournées d'enregistrement au niveau de la SDE se font généralement sur des zones assez vastes. Une synthèse est donc nécessaire pour circonscrire le site afin de déterminer avec une grande précision les consommations en eau potable domestiques et industrielles. La zone d'étude est ainsi constituée par une partie de Hann équipe et Hann village pour des quantités respectives de 97 967 m³ et 26 153 m³ soit au total 124 120 m³.

TOURNEES	ADRESSES GEOGRAPHIQUES	CUBAGE	Nbre Abonnés
950	Hann équipe	97967	342
951	Hann village	26153	105

Les cimetières, TP SOM, les locaux du Journal Le Soleil et quelques concessions sont en dehors du domaine d'étude et ont une consommation globale de 7 061 m³.

Finalement nous avons 117 059 m³ de consommation en eau potable de la zone d'étude. Particulièrement la CCIS et l'école ont respectivement comme consommation 511 et 126 m³.

4.2.4.2 Estimation des rejets moyens.

Les eaux usées domestiques et industrielles proviennent presque exclusivement des eaux de consommation. Cependant, il est difficile de faire une corrélation entre la consommation d'eau et les rejets à l'égout. En effet, une partie seulement des eaux de consommation rejoint l'égout domestique. Les eaux qui servent à l'arrosage des pelouses, à l'extinction des incendies, rejoignent plutôt l'égout pluvial. Une partie est perdue par évaporation ou infiltration dans le sol . A cela s'ajoutent les pertes dans le réseau d'alimentation.

Toutefois nous supposons que le rejet journalier moyen est évalué à 80 % du volume total des eaux distribuées (pertes, arrosage pelouses et débits incendie non compris), (se référer au document « Distribution et collecte des eaux en milieu urbain, 2^{ème} édition, Page48).

Notons Q1 la consommation bimensuelle en eau potable de la zone, on a :

$$Q1=117059 \text{ m}^3$$

Soient:

Qd le retour domestique moyen à l'égout,

Qe le retour à l'égout dû à l'école

Qi le retour à l'égout dû à l'industrie CCIS.

80 % des eaux de consommation retournent à l'égout.

On a:

La consommation bimensuelle en eau potable dans l'école est de 126 m³

$$Qe = \frac{126*0.8}{(60*24*3600)} = 1.95.10^{-5} \, m^3 \, / \, s$$

La consommation mensuelle en eau potable de l'industrie CCIS est de 511 m³

$$Qi = \frac{511*0.8}{(30*24*3600)} = 1.58.10^{-4} m^3 / s$$

La consommation domestique, bimensuelle en eau potable est de 116 422 m³

$$Qd = \frac{116422 * 0.8}{(60 * 24 * 3600)} = 0.01797m^3 / s$$

Les rejets domestiques et industriels ont été calculés précédemment en considérant que 80% des eaux de consommation retournent à l'égout.

La surface totale des habitations est obtenue directement par la somme de toutes les surfaces partielles

Soit S l'aire totale des concessions. Le débit moyen Qi véhiculé par un tronçon de surface cumulative Si est obtenu par la relation :

$$Qi = Qd * \frac{Si}{S}$$

Les débits des tronçons situés du côté de la CCIS sont obtenus en considérant en plus les rejets de cette industrie et de l'école respectivement Qi et Qe.

Nous obtenons ainsi les débits actuels qui seront véhiculés par le réseau.

Les résultats sont présentés dans le tableau 6.

		Rej	ets moyens (m3/		
Tronçons	Surf cumul	Habitations	Ecole	CCIS	Débits moyen(m3/s)
B6-B7	1436,7312	0,000388			0,00038807
B7-B1	2239,7124	0,000605			0,00060496
D6-B3	1698,5332	0,000459			0,00045878
B3-B2	2270,5346	0,000613			0,00061328
B2-B1	2270,5346	0,000613			0,00061328
F1-B1	220,5576	0,000060			0,00005957
B1-B8	5614,7044	0,001517			0,00151655
F2-B8	445,1829	0,000120			0,00012025
C2-B8	789,3181	0,000213			0,00021320
B8-A6	7670,6561	0,002072			0,00207188
F3-A6	212,4046	0,000057			0,00005737
F4-A6	749,5105	0,000202			0,00020245
A6-B10	9294,0539	0,002510			0,00251036
B10-C1	9877,9956	0,002668			0,00266809
F5-A9	964,5947	0,000261			0,00026054
A9-A8	1526,1942	0,000412			0,00041223
A8-A7	2303,262	0,000622			0,00062212
A7-A5	2866,9891	0,000774			0,00077439
A5-A4	3438,7424	0,000929			0,00092882
A4-A3	4112,0331	0,001111			0,00111068
A3-A2	4642,3592	0,001254			0,00125392
A2-A1	5545,2782	0,001498			0,00149780
C8-C9	1222,4368	0,000330			0,00033019
C9-C10	2062,1352	0,000557			0,00055699
C10-A1	2333,8556	0,000630			0,00063038
A1-C1	7879,1338	0,002128			0,00212819
C6-C5	2006,8338	0,000542			0,00054205
C5-C4	2816,1742	0,000761			0,00076066
C4-C1	3828,1146	0,001034			0,00103399
C1-C3	22156,9586	0,005985			0,00598469
C3-HFC10	22156,9586	0,005985			0,00598469
HFC11-HFC10	0	0,00		0,000158	0,00015772
HFC10-HFC9	22156,9586	0,005985	0,0000194	0,000158	0,00616185
HFC9-HFC8	22156,9586	0,005985	0,0000194	0,000158	0,00616185
HFC8-HFC7	22156,9586	0,005985	0,0000194	0,000158	0,00616185
HFC7-HFC6	22156,9586	0,005985	0,0000194	0,000158	0,00616185
HFC6-HFC5	22156,9586	0,005985	0,0000194	0,000158	0,00616185
HFC5-HFC4	23068,9649	0,006231	0,0000194	0,000158	0,00640818
HFCA1-HFC4	946,7539	0,000256	-		0,00025572
HFC4-HFC3	25698,8339	0,006941	0,0000194	0,000158	0,00711852
G1-F10	2229,2196	0,000602	-	-	0,00060212

Tableau 6 Estimation des rejets moyens.

4.2.4.3 Débits de design

Le débit pour lequel le réseau est calculé tient compte des eaux usées domestiques, des établissements commerciaux et industriels des diverses institutions sans oublier les infiltrations dans le réseau de collecte et une partie des eaux de surface qui constituent les eaux parasites.

a) Débit d'infiltration.

Il est d'origine souterraine et pénètrent dans un réseau d'égout de façon continue à cause de défectuosités comme la mauvaise qualité des joints et les fissures dans les conduites, les regards ou les entrées de service. Des infiltrations se produisent lorsque les conduites d'évacuation sont placées en dessous du niveau hydrostatique, ou lorsque les eaux de pluies s'infiltrent jusqu'au fond du tuyau. Ces phénomènes ne sont pas souhaitables parce qu'ils exercent une charge supplémentaire sur le système de canalisations et l'usine de traitement Ainsi les eaux usées ne se perdent pas dans le sol par les mauvais joints. Au contraire, les eaux d'infiltration s'y glissent et augmentent le volume de l'égout domestique Pour ces différentes raisons, on pourrait tolérer une certaine infiltration par pondération du débit. Notre zone d'étude est marquée par une nappe assez profonde Il s'y ajoute aussi le fait que le sol est sablonneux donc très perméable. Pour ces différentes raisons nous allons considérer que le débit d'infiltration est nul.

b) Débit de captage.

Ce sont les eaux canalisées dans un réseau d'égouts de façon intermittente ou parfois continue, mais surtout en période de pluie, suite à diverses pratiques comme le raccordement des drains de fondation au réseau domestique, l'interception de fossés et de ruisseaux, ainsi que le raccordement d'égouts pluviaux au réseau domestique. Les eaux de captage peuvent pénétrer dans le réseau par des trous de levage des tampons (couvercles) des regards situés dans les légers affaissements de terrain.

Nous supposons que les eaux de captage représentent 10% des rejets moyens.

En effet si on se réfère au cours de l'Université de Laval le débit d'eaux usées d'origine domestique est d'ordre de 200 à 225 L / habitant / jour et le débit des eaux de captage est de 25 L / habitant / jour soit un pourcentage qu'on peut estimer à 10% des rejets. (Se référer au site

c) Débit maximal

Les égouts sont conçus pour écouler la charge de pointe (débit de pointe maximale) et les installations de traitement des eaux usées doivent être capables de faire face, hydrauliquement, à ces pointes. Cependant une conduite ne coulera pas toujours pleine car le débit maximal se produit relativement peu souvent. Pour cette raison il est nécessaire d'appliquer un facteur de pointe au rejet moyen. On a donc pour chaque tronçon du réseau :

$$Q_{\text{max}} = FP \times Q_m + Q_{\text{infiltration}} + Q_{\text{captage}}$$

Avec:

Q_m: rejet moyen (total) dans un tronçon (en m³/s)

Qinfiltration=0

 $Q_{captage} = 10\% Q_{m}$

FP: facteur de pointe

• Calcul du facteur de pointe

Nous utilisons la formule suivante (se référer au document « Guide technique de l'assainissement, 2^{ème} édition, page 91)

$$FP = a + \frac{b}{\sqrt{Q_m}}$$

- \triangleright a est un paramètre adimensionnel qui exprime la limite inférieure à ne pas dépasser lorsque Qm croît vers l'infini. (a = 1.5)
- > b est un paramètre adimensionnel en rapport avec a, qui exprime la valeur croissante lorsque Qm tend vers zéro.

(b = 2.5 pouvant être réduit à 1).

> Qm : débit moyen journalier des rejets exprimé en L/s.

Suivant le type d'étude, le coefficient de pointe ne doit pas être supérieur à 4 pour la partie amont du réseau ni descendre au-dessous de la valeur limite de 1.5 pour la partie aval du réseau.

Les résultats obtenus sont présentés dans le tableau 7

Tronçons	Débit moyen (m3/s)	FP	Captage (m³/s)	Qmax (m³/s)
B6-B7	0,00038807	4,00	0,00003881	0,00159107
B7-B1	0,00060496	4,00	0,00006050	0,00248032
D6-B3	0,00045878	4,00	0,00004588	0,00188100
B3-B2	0,00061328	4,00	0,00006133	0,00251445
B2-B1	0,00061328	4,00	0,00006133	0,00251445
F1-B1	0,00005957	4,00	0,00000596	0,00024425
B1-B8	0,00151655	3,53	0,00015166	0,00550520
F2-B8	0,00012025	4,00	0,00001202	0,00049301
C2-B8	0,00021320	4,00	0,00002132	0,00087411
B8-A6	0,00207188	3,24	0,00020719	0,00691350
F3-A6	0,00005737	4,00	0,00000574	0,00023522
F4-A6	0,00020245	4,00	0,00002024	0,00083003
A6-B10	0,00251036	3,08	0,00025104	0,00797761
B10-C1	0,00266809	3,03	0,00026681	0,00835251
F5-A9	0,00026054	4,00	0,00002605	0,00106822
A9-A8	0,00041223	4,00	0,00004122	0,00169015
A8-A7	0,00062212	4,00	0,00006221	0,00255069
A7-A5	0,00077439	4,00	0,00007744	0,00317498
A5-A4	0,00092882	4,00	0,00009288	0,00380816
A4-A3	0,00111068	3,87	0,00011107	0,00441180
A3-A2	0,00125392	3,73	0,00012539	0,00480574
A2-A1	0,00149780	3,54	0,00014978	0,00545610
C8-C9	0,00033019	4,00	0,00003302	0,00135376
C9-C10	0,00055699	4,00	0,00005570	0,00228366
C10-A1	0,00063038	4,00	0,00006304	0,00258457
A1-C1	0,00212819	3,21	0,00021282	0,00705218
C6-C5	0,00054205	4,00	0,00005421	0,00222242
C5-C4	0,00076066	4,00	0,00007607	0,00311871
C4-C1	0,00103399	3,96	0,00010340	0,00419652
C1-C3	0,00598469	2,52	0,00059847	0,01569140
C3-HFC10	0,00598469	2,52	0,00059847	0,01569140
HFC11-HFC10	0,00015772	4,00	0,00001577	0,00064664
HFC10-HFC9	0,00616185	2,51	0,00061618	0,01606472
HFC9-HFC8	0,00616185	2,51	0,00061618	0,01606472
HFC8-HFC7	0,00616185	2,51	0,00061618	0,01606472
HFC7-HFC6	0,00616185	2,51	0,00061618	0,01606472
HFC6-HFC5	0,00616185	2,51	0,00061618	0,01606472
HFC5-HFC4	0,00640818	2,49	0,00064082	0,01658169
HFCA1-HFC4	0,00025572	4,00	0,00002557	0,00104846
HFC4-HFC3	0,00711852	2,44	0,00071185	0,01805977
G1-F10	0,00060212	4,00	0,00006021	0,00246870

Tableau 7 Débit maximal

4.2.5 Pentes des conduites.

C'est une phase importante de la conception du réseau. Les conduites sont posées de sorte que celles qui partent d'un regard reprennent toutes les eaux qui arrivent au regard. La pente doit toujours être suffisante pour qu'on obtienne une vitesse d'autocurage des conduites. Il sera question d'épouser au mieux possible la pente du terrain naturel, ce qui nous permet d'éviter des profondeurs importantes. Partant du point le plus en aval du réseau (G7) avec une profondeur de pose d'altitude Z=3.145 m NGS, nous considérons à chaque fois la pente du terrain naturel pour retrouver la cote de pose au regard amont.

Soit Z_A la profondeur de pose d'un tronçon au regard aval et m la pentes du terrain naturel.

Si la pente suit le sens de l'écoulement l'altitude de pose au regard amont est $Z_B=m^*L+Z_A$ avec L: longueur du tronçon considéré.

Si le terrain naturel suit une contre-pente par rapport au sens de l'écoulement, nous fixons une pente minimale de 3‰.

On doit toutefois avoir un recouvrement minimum de 80cm. Dans le cas où la dénivelée n'est pas suffisante on ajuste légèrement la pente pour éviter des remblais importants.

Exemple de détermination de la pente du tronçon F8-G7 et de l'altitude de la profondeur de pose au regard amont F8 :

Considérons une pente moyenne pour l'ensemble des tronçons compris entre le point G7 et le point E1.

L'altitude du point aval G7 est $H_{G7} = 5,17$ m et celle du point amont E1 est $H_{E1} = 4,975$ m.

On voit que l'altitude du point amont est plus petite que l'altitude du point aval, ce qui constitue une contre pente. On fixe donc pour l'ensemble des tronçons situés entre ces deux points une pente $r_2 = 3\%$.

Par ailleurs la profondeur de pose au regard G7 a pour profondeur de pose $Z_{G7}=3,14$ m et la distance entre le regard G7 et le regard F8 est L=22,39 m. Il vient que la profondeur de pose au regard amont F8 aura pour altitude : $Z_{F8}=m*L+Z_{G7}=0,003*22,39+3,14=3,21$ m

Les résultats obtenus sont présentés dans le tableau 8.

E7-F8	
F8-G7 5,28 5,17 2,07 2,03 3,21 3,14 22,39 (E7-F8 5,353 5,28 2,04 2,07 3,32 3,21 35 (F7-E7 5,32 5,353 1,89 2,04 3,43 3,32 37 (E4-F7 5,338 5,32 1,81 1,89 3,53 3,43 35 (F6-E4 5 5,338 1,36 1,81 3,64 3,53 37 (E1-F6 4,975 5 1,23 1,36 3,75 3,64 35 (HFC3-E1 4,95 4,975 1,14 1,23 3,81 3,75 12,3 (HFC4-HFC3 5,17 4,95 1,21 1,14 3,96 3,81 30,2 (HFC5-HFC4 5,1 5,17 0,94 1,21 4,16 3,96 39,4 (HFC6-HFC5 6,57 5,1 2,21 0,94 4,36 4,16 40 (HFC7-HFC6 7,1 6,57 2,54 2,21 4,56 4,36 40 (HFC8-HFC7 7,44 7,1 2,68 2,54 4,76 4,56 40 (HFC9-HFC8 6,97 7,44 2,01 2,68 4,96 4,76 40 (HFC10-HFC9 7,24 6,97 2,11 2,01 5,13 4,96 35,2 (HFC1-HFC10 6,74 7,24 1,38 2,11 5,36 5,13 44,8 (F9-HFC3 5,05 4,95 1,13 1,14 3,92 3,81 35 (F10-F9 6,43 5,05 1,29 1,13 5,14 3,92 3,492 (G1-F10 7,12 6,43 1,32 1,29 5,80 5,14 32,98 (HFCA1-HFC4 6,16 5,17 1,29 1,21 4,87 3,96 30,41 (C3-HFC10 8,164 7,24 2,21 2,11 5,96 5,13 45,76 (m)
E7-F8 5,353 5,28 2,04 2,07 3,32 3,21 35 (F7-E7 5,32 5,353 1,89 2,04 3,43 3,32 37 (E4-F7 5,338 5,32 1,81 1,89 3,53 3,43 35 (F6-E4 5 5,338 1,36 1,81 3,64 3,53 37 (E1-F6 4,975 5 1,23 1,36 3,75 3,64 35 (HFC3-E1 4,95 4,975 1,14 1,23 3,81 3,75 12,3 (HFC4-HFC3 5,17 4,95 1,21 1,14 3,96 3,81 30,2 (HFC5-HFC4 5,1 5,17 0,94 1,21 4,16 3,96 39,4 (HFC6-HFC5 6,57 5,1 2,21 0,94 4,36 4,16 40 (HFC8-HFC7 7,44 7,1 2,68	002
F7-E7 5,32 5,353 1,89 2,04 3,43 3,32 37 0 E4-F7 5,338 5,32 1,81 1,89 3,53 3,43 35 0 F6-E4 5 5,338 1,36 1,81 3,64 3,53 37 0 E1-F6 4,975 5 1,23 1,36 3,75 3,64 35 0 HFC3-E1 4,95 4,975 1,14 1,23 3,81 3,75 12,3 0 HFC4-HFC3 5,17 4,95 1,21 1,14 3,96 3,81 30,2 0 HFC5-HFC4 5,1 5,17 0,94 1,21 4,16 3,96 39,4 0 HFC6-HFC5 6,57 5,1 2,21 0,94 4,36 4,16 40 0 HFC8-HFC7 7,44 7,1 2,68 2,54 4,76 4,56 40 0 HFC9-HFC8 6,97 7,44 2,01	0,003
E4-F7 5,338 5,32 1,81 1,89 3,53 3,43 35 F6-E4 5 5,338 1,36 1,81 3,64 3,53 37 0 E1-F6 4,975 5 1,23 1,36 3,75 3,64 35 0 HFC3-E1 4,95 4,975 1,14 1,23 3,81 3,75 12,3 0 HFC4-HFC3 5,17 4,95 1,21 1,14 3,96 3,81 30,2 0 HFC5-HFC4 5,1 5,17 0,94 1,21 4,16 3,96 39,4 0 HFC6-HFC5 6,57 5,1 2,21 0,94 4,36 4,16 40 0 HFC7-HFC6 7,1 6,57 2,54 2,21 4,56 4,36 40 0 HFC9-HFC8 6,97 7,44 7,1 2,68 2,54 4,76 4,56 40 0 HFC1-HFC9 7,24 6,97 2,11	0,003
F6-E4 5 5,338 1,36 1,81 3,64 3,53 37 (E1-F6 4,975 5 1,23 1,36 3,75 3,64 35 (HFC3-E1 4,95 4,975 1,14 1,23 3,81 3,75 12,3 (HFC4-HFC3 5,17 4,95 1,21 1,14 3,96 3,81 30,2 (HFC5-HFC4 5,1 5,17 0,94 1,21 4,16 3,96 39,4 (HFC6-HFC5 6,57 5,1 2,21 0,94 4,36 4,16 40 (HFC7-HFC6 7,1 6,57 2,54 2,21 4,56 4,36 40 (HFC8-HFC7 7,44 7,1 2,68 2,54 4,76 4,56 40 (HFC9-HFC8 6,97 7,44 2,01 2,68 4,96 4,76 40 (HFC11-HFC10 6,74 7,24 1,38 <td>0,003</td>	0,003
E1-F6 4,975 5 1,23 1,36 3,75 3,64 35 0 HFC3-E1 4,95 4,975 1,14 1,23 3,81 3,75 12,3 0 HFC4-HFC3 5,17 4,95 1,21 1,14 3,96 3,81 30,2 0 HFC5-HFC4 5,1 5,17 0,94 1,21 4,16 3,96 39,4 0 HFC6-HFC5 6,57 5,1 2,21 0,94 4,36 4,16 40 0 HFC7-HFC6 7,1 6,57 2,54 2,21 4,56 4,36 40 0 HFC8-HFC7 7,44 7,1 2,68 2,54 4,76 4,56 40 0 HFC9-HFC8 6,97 7,44 2,01 2,68 4,96 4,76 40 0 HFC11-HFC9 7,24 6,97 2,11 2,01 5,13 4,96 35,2 0 HFC11-HFC10 6,74 7,24 <td< td=""><td>0,003</td></td<>	0,003
HFC3-E1 4,95 4,975 1,14 1,23 3,81 3,75 12,3 0 HFC4-HFC3 5,17 4,95 1,21 1,14 3,96 3,81 30,2 0 HFC5-HFC4 5,1 5,17 0,94 1,21 4,16 3,96 39,4 0 HFC6-HFC5 6,57 5,1 2,21 0,94 4,36 4,16 40 0 HFC7-HFC6 7,1 6,57 2,54 2,21 4,56 4,36 40 0 HFC8-HFC7 7,44 7,1 2,68 2,54 4,76 4,56 40 0 HFC9-HFC8 6,97 7,44 2,01 2,68 4,96 4,76 40 0 HFC10-HFC9 7,24 6,97 2,11 2,01 5,13 4,96 35,2 0 HFC11-HFC10 6,74 7,24 1,38 2,11 5,36 5,13 44,8 0 F9-HFC3 5,05 4,95	0,003
HFC4-HFC3 5,17 4,95 1,21 1,14 3,96 3,81 30,2 0 HFC5-HFC4 5,1 5,17 0,94 1,21 4,16 3,96 39,4 0 HFC6-HFC5 6,57 5,1 2,21 0,94 4,36 4,16 40 0 HFC7-HFC6 7,1 6,57 2,54 2,21 4,56 4,36 40 0 HFC8-HFC7 7,44 7,1 2,68 2,54 4,76 4,56 40 0 HFC9-HFC8 6,97 7,44 2,01 2,68 4,96 4,76 40 0 HFC10-HFC9 7,24 6,97 2,11 2,01 5,13 4,96 35,2 0 HFC11-HFC10 6,74 7,24 1,38 2,11 5,36 5,13 44,8 0 F9-HFC3 5,05 4,95 1,13 1,14 3,92 3,81 35 0 G1-F10 7,12 6,43 <	,003
HFC5-HFC4 5,1 5,17 0,94 1,21 4,16 3,96 39,4 0 HFC6-HFC5 6,57 5,1 2,21 0,94 4,36 4,16 40 0 HFC7-HFC6 7,1 6,57 2,54 2,21 4,56 4,36 40 0 HFC8-HFC7 7,44 7,1 2,68 2,54 4,76 4,56 40 0 HFC9-HFC8 6,97 7,44 2,01 2,68 4,96 4,76 40 0 HFC10-HFC9 7,24 6,97 2,11 2,01 5,13 4,96 35,2 0 HFC11-HFC10 6,74 7,24 1,38 2,11 5,36 5,13 44,8 0 F9-HFC3 5,05 4,95 1,13 1,14 3,92 3,81 35 0 F10-F9 6,43 5,05 1,29 1,13 5,14 3,92 34,92 0 G1-F10 7,12 6,43 <td< td=""><td>,005</td></td<>	,005
HFC6-HFC5 6,57 5,1 2,21 0,94 4,36 4,16 40 0 HFC7-HFC6 7,1 6,57 2,54 2,21 4,56 4,36 40 0 HFC8-HFC7 7,44 7,1 2,68 2,54 4,76 4,56 40 0 HFC9-HFC8 6,97 7,44 2,01 2,68 4,96 4,76 40 0 HFC10-HFC9 7,24 6,97 2,11 2,01 5,13 4,96 35,2 0 HFC11-HFC10 6,74 7,24 1,38 2,11 5,36 5,13 44,8 0 F9-HFC3 5,05 4,95 1,13 1,14 3,92 3,81 35 0 F10-F9 6,43 5,05 1,29 1,13 5,14 3,92 34,92 0 G1-F10 7,12 6,43 1,32 1,29 5,80 5,14 32,98 0 HFCA1-HFC4 6,16 5,17	,005
HFC7-HFC6 7,1 6,57 2,54 2,21 4,56 4,36 40 0 HFC8-HFC7 7,44 7,1 2,68 2,54 4,76 4,56 40 0 HFC9-HFC8 6,97 7,44 2,01 2,68 4,96 4,76 40 0 HFC10-HFC9 7,24 6,97 2,11 2,01 5,13 4,96 35,2 0 HFC11-HFC10 6,74 7,24 1,38 2,11 5,36 5,13 44,8 0 F9-HFC3 5,05 4,95 1,13 1,14 3,92 3,81 35 0 F10-F9 6,43 5,05 1,29 1,13 5,14 3,92 34,92 0 G1-F10 7,12 6,43 1,32 1,29 5,80 5,14 32,98 0 HFCA1-HFC4 6,16 5,17 1,29 1,21 4,87 3,96 30,41 0 C3-HFC10 8,164 7,24	,005
HFC8-HFC7 7,44 7,1 2,68 2,54 4,76 4,56 40 0 HFC9-HFC8 6,97 7,44 2,01 2,68 4,96 4,76 40 0 HFC10-HFC9 7,24 6,97 2,11 2,01 5,13 4,96 35,2 0 HFC11-HFC10 6,74 7,24 1,38 2,11 5,36 5,13 44,8 0 F9-HFC3 5,05 4,95 1,13 1,14 3,92 3,81 35 0 F10-F9 6,43 5,05 1,29 1,13 5,14 3,92 34,92 0 G1-F10 7,12 6,43 1,32 1,29 5,80 5,14 32,98 0 HFCA1-HFC4 6,16 5,17 1,29 1,21 4,87 3,96 30,41 0 C3-HFC10 8,164 7,24 2,21 2,11 5,96 5,13 45,76 0	,005
HFC9-HFC8 6,97 7,44 2,01 2,68 4,96 4,76 40 0 HFC10-HFC9 7,24 6,97 2,11 2,01 5,13 4,96 35,2 0 HFC11-HFC10 6,74 7,24 1,38 2,11 5,36 5,13 44,8 0 F9-HFC3 5,05 4,95 1,13 1,14 3,92 3,81 35 0 F10-F9 6,43 5,05 1,29 1,13 5,14 3,92 34,92 0 G1-F10 7,12 6,43 1,32 1,29 5,80 5,14 32,98 0 HFCA1-HFC4 6,16 5,17 1,29 1,21 4,87 3,96 30,41 0 C3-HFC10 8,164 7,24 2,21 2,11 5,96 5,13 45,76 0	,005
HFC10-HFC9 7,24 6,97 2,11 2,01 5,13 4,96 35,2 0 HFC11-HFC10 6,74 7,24 1,38 2,11 5,36 5,13 44,8 0 F9-HFC3 5,05 4,95 1,13 1,14 3,92 3,81 35 0 F10-F9 6,43 5,05 1,29 1,13 5,14 3,92 34,92 0 G1-F10 7,12 6,43 1,32 1,29 5,80 5,14 32,98 0 HFCA1-HFC4 6,16 5,17 1,29 1,21 4,87 3,96 30,41 0 C3-HFC10 8,164 7,24 2,21 2,11 5,96 5,13 45,76 0	,005
HFC11-HFC10 6,74 7,24 1,38 2,11 5,36 5,13 44,8 0 F9-HFC3 5,05 4,95 1,13 1,14 3,92 3,81 35 0 F10-F9 6,43 5,05 1,29 1,13 5,14 3,92 34,92 0 G1-F10 7,12 6,43 1,32 1,29 5,80 5,14 32,98 0 HFCA1-HFC4 6,16 5,17 1,29 1,21 4,87 3,96 30,41 0 C3-HFC10 8,164 7,24 2,21 2,11 5,96 5,13 45,76 0	,005
F9-HFC3 5,05 4,95 1,13 1,14 3,92 3,81 35 0 F10-F9 6,43 5,05 1,29 1,13 5,14 3,92 34,92 0 G1-F10 7,12 6,43 1,32 1,29 5,80 5,14 32,98 0 HFCA1-HFC4 6,16 5,17 1,29 1,21 4,87 3,96 30,41 0 C3-HFC10 8,164 7,24 2,21 2,11 5,96 5,13 45,76 0	,005_
F10-F9 6,43 5,05 1,29 1,13 5,14 3,92 34,92 0 G1-F10 7,12 6,43 1,32 1,29 5,80 5,14 32,98 0 HFCA1-HFC4 6,16 5,17 1,29 1,21 4,87 3,96 30,41 0 C3-HFC10 8,164 7,24 2,21 2,11 5,96 5,13 45,76 0	,005
G1-F10 7,12 6,43 1,32 1,29 5,80 5,14 32,98 0 HFCA1-HFC4 6,16 5,17 1,29 1,21 4,87 3,96 30,41 0 C3-HFC10 8,164 7,24 2,21 2,11 5,96 5,13 45,76 0	,003
HFCA1-HFC4 6,16 5,17 1,29 1,21 4,87 3,96 30,41 0 C3-HFC10 8,164 7,24 2,21 2,11 5,96 5,13 45,76 0	,035
C3-HFC10 8,164 7,24 2,21 2,11 5,96 5,13 45,76 (,020
	,030
C1-C3 8.615 8.164 2.12 2.21 6.49 5.96 29.81 (,018
2,12 2,21 0,77 2,50 2,50	,018
A1-C1 8,675 8,615 1,28 1,82 7,40 6,79 40,16 (,015
A2-A1 8,58 8,675 1,07 1,28 7,51 7,40 38,94 (,003
A3-A2 8,582 8,58 1,00 1,07 7,58 7,51 21,73 (,003
A4-A3 8,768 8,582 1,10 1,00 7,67 7,58 30,15 (,003
	,003
	,015
	,015
	,050
	,050
	,007
	,007
	,007
	,007
	,007
	,030
	,064
	,008
	,009
	,009

Tableau 8 Pentes des conduites

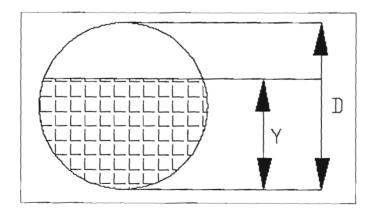
4.3 Dimensionnement du nouveau réseau

Une conduite d'égout est ordinairement calculée pour prendre le débit maximal lorsqu'elle coule plein, ce qui se produit rarement. Il s'avère nécessaire de considérer ce qui va se passer aux conditions d'écoulement de débit minimal. Après avoir choisi une conduite en fonction du débit maximal, il est important de vérifier les vitesses d'écoulement pour les faibles débits.

Les conditions hydrauliques dans les conduites partiellement pleines seront évaluées à partir du monogramme de Manning.

Hypothèses de Calcul

- Utilisation de l'équation de Manning-Strickler
- La profondeur d'écoulement Y est telle que $\frac{Y}{D} = 0.67$


Avec D le diamètre de la conduite.

• Le coefficient de rugosité des conduites en PVC est n = 0.013

Procédure

• Calcul de Qplein

A partir de
$$\frac{Y}{D}$$
 = 0.67 , le monogramme de Manning donne $\frac{Q_{\text{max}}}{Q_{\text{Plein}}}$ = 0.80

Diamètre des conduites

Pour chaque tronçon de conduite, le diamètre théorique est calculé en fonction de la pente et du débit de pointe. Ainsi le diamètre théorique est donné par la formule de Manning-Strickler qui est la suivante :

$$D_{th} = \left[\frac{nQ_{plein}}{0.312 * m^{1/2}} \right]^{3/8}$$

Avec m : pente de la conduite en m/m

n : coefficient de rugosité de Manning

n = 0.013 pour des conduites en PVC.

Ainsi le diamètre économique choisi est celui qui est immédiatement supérieur au diamètre théorique dans les séries 250, 300, 350, 500 mm.

Cependant, on a fixé un diamètre minimal de 250 mm dans tout le réseau pour palier à d'éventuels variations des débits à évacuer qui sont fonction des habitudes des populations.

Le calcul des diamètres théoriques étant effectué, le choix du diamètre minimal revient à l'appréciation de l'ONAS.

· Calcul du débit Qc correspondant au diamètre commercial Dc

$$Qc = \frac{0.312 * Dc^{8/3} * m^{1/2}}{n}$$

• Vérification des conditions d'autocurage.

Les vitesses calculées dans chaque conduite sont fonctions de la pente et du diamètre économique .La vitesse réelle d'écoulement est obtenue par :

$$Vr = \frac{0.396 * Dc^{2/3} * S^{1/2}}{n}$$

Les conditions d'autocurage des canalisations doivent être telles que Vr > 0.60 m/s.

Après dimensionnement, la vitesse minimale qu'on a obtenue est de 0.664 m/s qui est bien supérieure à 0.60 m/s. Les conditions d'autocurage sont donc bien vérifiées.

Les résultats obtenus sont présentés dans le tableau 9

Notons que ,dans le réseau actuel ,nous avons plusieurs conduites de diamètre 300 mm alors dans le nouveau réseau seul l'intercepteur a une section de cet ordre, les autres tronçons ont une section de 250 mm.

Donc on peut affirmer que les problèmes constatés sont indépendants de la capacité du réseau actuel mais d'autres facteurs comme ceux développés dans la phase état des lieux.

Tronçons	Qmax (m3/s)	Pente (m/m)	Q plein (m3/s)	D(mm)	Dc(mm)	Qc(m3/s)	Vr (m/s)
B6-B7	0,001591075	0,064	0,001988844	49,344	250	0,00198884	3,0659
B7-B1	0,002480318	0,0300	0,003100397	67,180	250	0,0031004	2,0991
D6-B3	0,001881001	0,047	0,002351252	55,672	250	0,00235125	2,6274
B3-B2	0,002514451	0,009	0,003143064	84,627	250	0,00314306	1,1497
B2-B1	0,002514451	0,009	0,003143064	84,627	250	0,00314306	1,1497
F1-B1	0,000244251	0,008	0,000305314	36,089	250	0,00030531	1,084
B1-B8	0,0055052	0,0070	0,0068815	119,013	250	0,0068815	1,014
F2-B8	0,000493008	0,0080	0,000616259	46,963	250	0,00061626	1,084
C2-B8	0,000874112	0,0030	0,00109264	69,966	250	0,00109264	0,6638
B8-A6	0,006913505	0,0070	0,008641881	129,626	250	0,00864188	1,014
F3-A6	0,000235223	0,0030	0,000294028	42,767	250	0,00029403	0,6638
F4-A6	0,000830028	0,0030	0,001037535	68,622	250	0,00103754	0,6638
A6-B10	0,007977611	0,0070	0,009972013	136,776	250	0,00997201	1,014
B10-C1	0,00835251	0,0070	0,010440638	139,151	250	0,01044064	1,014
F5-A9	0,001068218	0,0500	0,001335273	44,509	250	0,00133527	2,7099
A9-A8	0,001690149	0,0500	0,002112686	52,866	250	0,00211269	2,7099
A8-A7	0,002550694	0,0150	0,003188368	77,311	250	0,00318837	1,4843
A7-A5	0,003174981	0,0150	0,003968726	83,926	250	0,00396873	1,4843
A5-A4	0,003808156	0,0030	0,004760195	121,498	250	0,0047602	0,6638
A4-A3	0,0044118	0,0030	0,00551475	128,390	250	0,00551475	0,6638
A3-A2	0,004805737	0,0030	0,006007172	132,575	250	0,00600717	0,6638
A2-A1	0,005456103	0,0030	0,006820128	139,038	250	0,00682013	0,6638
C8-C9	0,001353759	0,0120	0,001692199	63,569	250	0,0016922	1,3276
C9-C10	0,002283664	0,0080	0,00285458	83,449	250	0,00285458	1,084
C10-A1	0,002584575	0,0200	0,003230713	73,615	250	0,00323072	1,7139
A1-C1	0,007052175	0,0150	0,008815219	113,205	250	0,00881522	1,4843
C6-C5	0,002222422	0,0200	0,002778027	69,563	250	0,00277803	1,7139
C5-C4	0,003118707	0,0250	0,003898384	75,751	250	0,00389838	1,9162
C4-C1	0,004196515	0,0080	0,005245644	104,837	250	0,00524564	1,084
C1-C3	0,015691402	0,0180	0,019614253	147,663	250	0,01961425	1,626
C3-HFC10	0,015691402	0,0180	0,019614253	147,663	250	0,01961425	1,626
HFC11-HFC10	0,00021686	0,0050	0,000271074	37,694	250	0,00027107	0,857
HFC10-HFC9	0,015959558	0,0050	0,019949447	188,946	250	0,01994945	0,857
HFC9-HFC8	0,015959558	0,0050	0,019949447	188,946	250	0,01994945	0,857
HFC8-HFC7	0,015959558	0,0050	0,019949447	188,946	250	0,01994945	0,857
HFC7-HFC6	0,015959558	0,0050	0,019949447	188,946	250	0,01994945	0,857
HFC6-HFC5	0,015959558	0,0050	0,019949447	188,946	250	0,01994945	0,857
HFC5-HFC4	0,016478049	0,0050	0,020597561	191,225	250	0,02059756	0,857

Tableau 9 Dimensionnement du nouveau réseau

4.4 Evaluation quantitative du projet

Après les phases diagnostic, conception et dimensionnement, il est nécessaire de passer à l'évaluation du projet pour apprécier le coût de sa réalisation.

Cependant, dans ce rapport, nous nous limiterons à l'évaluation quantitative des travaux, les coûts d'exécution étant variables suivant les entreprises.

4.4.1 Les conduites

Les conduites sont en PVC et ont un diamètre de 250 mm.

La longueur totale des canalisations est de 3078,14 mL

Notons que cette longueur ne concerne que la zone d'étude, l'intercepteur partant du regard G7 (situé au nord est de l'usine Carnaud) à la station de relèvement située à Fann n'est pas pris en compte.

Les caractéristiques des conduites sont présentées dans le tableau 10.

Tronçons	Longueur (m)	Pente (m/m)	Dc (mm)
B6-B7	29,85	0,064	250
B7-B1	25,47	0,030	250
D6-B3	29,63	0,047	250
B3-B2	22,43	0,009	250
B2-B1	19,36	0,009	250
F1-B1	27,26	0,008	250
B1-B8	42,28	0,007	250
F2-B8	26,23	0,008	250
C2-B8	29,03	0,003	250
B8-A6	40	0,007	250
F3-A6	27,63	0,003	250
F4-A6	28,5	0,003	250
A6-B10	31,24	0,007	250
B10-C1	30,62	0,007	250
F5-A9	25,02	0,050	250
A9-A8	18,12	0,050	250
A8-A7	28,15	0,015	250
A7-A5	28,25	0,015	250
A5-A4	25,86	0,003	250
A4-A3	30,15	0,003	250
A3-A2	21,73	0,003	250
A2-A1	38,94	0,003	250
C8-C9	33,1	0,012	250
C9-C10	25,18	0,008	250
C10-A1	23,38	0,020	250
A1-C1	40,16	0,015	250
C6-C5	31,99	0,020	250
C5-C4	21,41	0,025	250
C4-C1	25,98	0,008	250
C1-C3	29,81	0,018	250
C3-HFC10	45,76	0,018	250
HFC11-HFC10	44,8	0,005	250
HFC10-HFC9	35,2	0,005	250
HFC9-HFC8	40	0,005	250
HFC8-HFC7	40	0,005	250
HFC7-HFC6	40	0,005	250
HFC6-HFC5	40	0,005	250
HFC5-HFC4	39,4	0,005	250

Tableau 10 caractéristiques des conduites

4.4.2 Les regards

Les regards sont en maçonnerie et les tampons en fonte.

Nous avons au total 107 regards et autant de tampons. Il est précisé dans le tableau 4.8 les caractéristiques des regards, c'est-à-dire entre autres les cotes tampon et les profondeurs jusqu'au radier. La distance moyenne entre deux regards est de 30 m.

Les caractéristiques des regards sont présentées dans le tableau 11.

Schema Type de regard de visite en agglos de 20x20x40

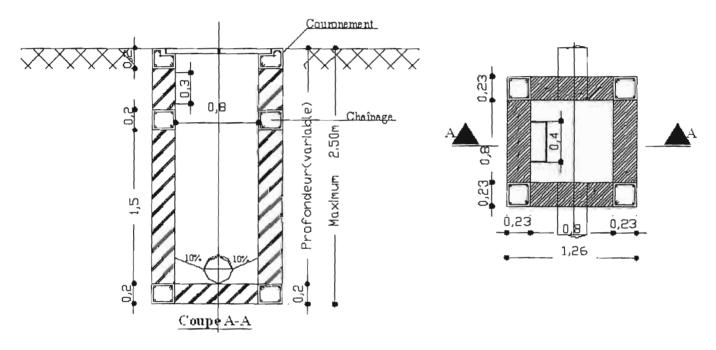


Figure 12 Schéma type regard de visite.

Regards	Altitude Tampon (m)	Prof fil d'eau départ (m)	Prof jusqu'au radier (m)	Altitude fond radier (m)
G7	5,17	2,0252	2,0252	3,1448
F8	5,28	2,06803	2,06803	3,21197
E7	5,353	2,03603	2,03603	3,31697
F7	5,32	1,89203	1,89203	3,42797
E4	5,338	1,80503	1,80503	3,53297
F6	5	1,35603	1,35603	3,64397
E1	4,975	1,22603	1,22603	3,74897
HFC3	4,95	1,13953	1,13953	3,81047
HFC4	5,17	1,20853	1,20853	3,96147
HFC5	5,1	0,94153	0,94153	4,15847
HFC6	6,57	2,21153	2,21153	4,35847
HFC7	7,1	2,54153	2,54153	4,55847
HFC8	7,44	2,68153	2,68153	4,75847
HFC9	6,97	2,01153	2,01153	4,95847
HFC10	7,24	2,10553	2,10553	5,13447
HFC11	6,74	1,38153	1,38153	5,35847
F9.	5,05	1,13453	1,13453	3,91547
F10	6,43	1,29233	1,29233	5,13767
G1	7,12	1,32273	1,32273	5,79727
HFCA1	6,16	1,28623	1,28623	4,87377
C3	8,164	2,20585	2,20585	5,95815
C1	8,615	2,12027	2,12027	6,49473
A1	8,675	1,27787	1,27787	7,39713
A2	8,58	1,06605	1,06605	7,51395
A3	8,582	1,00286	1,00286	7,57914
A4	8,768	1,09841	1,09841	7,66959
A5	8,755	1,00783	1,00783	7,74717
A7	9,194	1,02308	1,02308	8,17092
A8	9,723	1,12983	1,12983	8,59317
A9	10,629	1,12983	1,12983	9,49917
F5	12,16	1,40983	1,40983	10,75017
B10	8,418	1,70866	1,70866	6,70934
A6	8,455	1,52698	1,52698	6,92802
B9	8,499	1,3908	1,3908	7,1082
B8	8,457	1,2508	1,2508	7,2062
B1	8,857	1,35484	1,35484	7,50216
B7	9,614	1,34774	1,34774	8,26626
В6	11,527	1,35034	1,35034	10,17666

Tableau 11 les caractéristiques des regards

4.4.3 Les stations de relèvement

Les débits d'eaux usées à la sortie du réseau sont connus. La cote du fil d'eau au regard le plus en amont du réseau (G7) est de 3.14 mNGS. Avec une pente constante de 3‰, la profondeur du fil d'eau au bout de 700 m de G7 serait donnée par :

$$Z_{700} = 3.14 - 0.003*700$$

 $Z_{700} = 1.04 \text{ mNGS}.$

Nous préconisons la création d'une première station de relèvement à 700 m du regard G7.

Une deuxième station de relèvement sera créer du côté de Fann, ce qui nous permet de relever suffisamment les eaux avant le rejet à la mer.

Dans ce rapport, il ne sera pas question de dimensionner la station de relèvement. En effet, bien que destinée à relever les eaux provenant de notre zone d'étude, des eaux provenant d'autres quartiers pourraient éventuellement y être reçues. Ce qui modifie considérablement le volume des effluents et donc des coûts d'exploitation.

4.4.4 Volume des terres à enlever (déblais)

Nous évaluons le volume des terres déplacées en considérant les profondeurs amont et aval d'un tronçon donné respectivement d1 et d2. La section longitudinale est donnée par :

$$S = \frac{\left(d1 + d2\right) * L}{2}$$

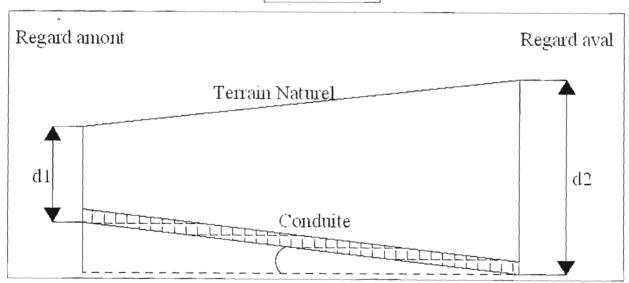


Figure 13 Section transversale entre deux regards

L'allure du terrain naturel se justifie par le fait qu'on place des regards au niveau des changements de pente, c'est-à-dire qu'on a une pente constante entre deux regards consécutifs.

La largeur de tranchée doit être en tout point suffisante pour qu'il soit facile d'y placer les tuyaux et les raccords, d'y effectuer convenablement les remblais autour des canalisations et d'y exécuter la pose des éléments spéciaux et leurs assemblages. La largeur entre blindage ou étaiement est au moins égale au diamètre extérieur avec des sur largeurs de 0.30m de part et d'autre.

La largeur des fouilles est alors :

K = d + 2*0.30 avec d diamètre de la conduite (d = 250 mm).

K = 0.25 + 2*0.30 = 0.85 m

Le volume des déblais est donné par $V = \sum Si * K$, soit $V = 4664,6604 \text{ m}^3$

En tenant compte du foisonnement (27%), le volume réel des déblais est donné par :

$$V_T = V * 1.27$$
, soit $V_T = 5924,1187 \text{ m}^3$

Les résultats sont présentés dans le tableau 12.

Tuanaana	Profondeur fil	d'eau (m)	Long (m)	Section longitidunale	Déblais
Tronçons	Amont	Aval	Long (III)	(m2)	(m3)
F8-G7	2,07	2,03	22,39	45,82370985	38,950153
E7-F8	2,04	2,07	35	71,82105	61,047893
F7-E7	1,89	2,04	37	72,66911	61,768744
E4-F7	1,81	1,89	35	64,69855	54,993768
F6-E4	1,36	1,81	37	58,47961	49,707669
E1-F6	1,23	1,36	35	45,18605	38,408143
HFC3-E1	1,14	1,23	12,3	14,548194	12,365965
HFC4-HFC3	1,21	1,14	30,2	35,455706	30,13735
HFC5-HFC4	0,94	1,21	39,4	42,356182	36,002755
HFC6-HFC5	2,21	0,94	40	63,0612	53,60202
HFC7-HFC6	2,54	2,21	40	95,0612	80,80202
HFC8-HFC7	2,68	2,54	40	104,4612	88,79202
HFC9-HFC8	2,01	2,68	40	93,8612	79,78202
HFC10-HFC9	2,11	2,01	35,2	72,460256	61,591218
HFC11-HFC10	1,38	2,11	44,8	78,110144	66,393622
F9-HFC3	1,13	1,14	35	39,79605	33,826643
F10-F9	1,29	1,13	34,92	42,3729756	36,017029
G1-F10	1,32	1,29	32,98	43,1223394	36,653988
HFCA1-HFC4	1,29	1,21	30,41	37,9328258	32,242902
C3-HFC10	2,21	2,11	45,76	98,6443744	83,847718
C1-C3	2,12	2,21	29,81	64,4808186	54,808696
A1-C1	1,28	1,82	40,16	62,2106512	52,879054
A2-A1	1,07	1,28	38,94	45,6361224	38,790704
A3-A2	1,00	1,07	21,73	22,47870715	19,106901
A4-A3	1,10	1,00	30,15	31,67664525	26,925148
A5-A4	1,01	1,10	25,86	27,2336832	23,148631
A7-A5	1,02	1,01	28,25	28,68660375	24,383613
A8-A7	1,13	1,02	28,15	30,30220825	25,756877
A9-A8	1,13	1,13	18,12	20,4725196	17,401642
F5-A9	1,41	1,13	25,02	31,7711466	27,005475
B10-C1	1,71	2,12	30,62	58,6167846	49,824267
A6-B10	1,53	1,71	31,24	50,5406968	42,959592
B9-A6	1,39	1,53	25,74	37,5518286	31,919054
B8-B9	1,25	1,39	14	18,4912	15,71752
B1-B8	1,35	1,25	42,28	55,0832296	46,820745
B7-B1	1,35	1,35	25,47	34,4173563	29,254753
B6-B7	1,35	1,35	29,85	40,268844	34,228517
F1-B1	1,37	1,35	27,26	37,136298	31,565353
B2-B1	1,42	1,35	19,36	26,8468992	22,819864
B3-B2	1,36	1,42	22,43	31,12532595	26,456527

Tableau 12 Volume des déblais.

CONCLUSION ET RECOMMANDATIONS

Dans ce rapport il a été question de faire une étude permettant d'identifier les problèmes qui entravent le fonctionnement normal du réseau, d'établir les causes possibles et de proposer des solutions. Pour ce faire, après avoir visité le site, les phases suivantes ont été envisagées :

- Levés topographiques et mesure des profondeurs de pose des conduites.
- Analyse des résultats
- Conception et dimensionnement du nouveau réseau

Les cotes du terrain naturel sont directement obtenues par nivellement. Cependant certains regards sont remplis d'eaux usées jusqu'au niveau du tampon, ce qui fait qu'on a pas pu mesurer les profondeurs de fil d'eau de certaines conduites.

Après analyse des résultats, il a été établi qu'en dehors des problèmes liés aux empiètements et dépôts dans le réseau, les pentes faibles de certains tronçons expliquent aussi les insuffisances notées dans le réseau.

Avec les données topographiques nous avons eu à générer le modèle numérique du terrain avec le logiciel Covadis pour ensuite produire un nouveau système satisfaisant les propriétés hydrauliques d'écoulement en réseau. Une pente minimale de 3‰ et une vitesse minimale de 0.60 m/s ont été respectées dans tout le réseau Les conditions d'autocurage sont ainsi satisfaites.

Des contraintes ont été notées durant l'étude. La zone d'étude est marquée par des occupations irrégulières, ce qui n'a pas facilité la tâche lors du tracé du nouveau réseau. Notons aussi que pour des contraintes liées à la topographie du terrain, la démolition d'une partie du mur de l'usine Carnaud était la seule alternative pour résoudre, entre autres, les problèmes liés à ,l'empiètement de maisons sur le réseau.

La collecte de données sur la population n'a pas été fructueuse du fait de la complexité des limites du site.

Après proposition d'un nouveau tracé, les profondeurs de pose de certaines conduites du réseau existant étaient insuffisantes pour maintenir une pente minimale de 3‰ des tronçons nouvellement créer.

Ce projet permettra à l'ONAS de disposer d'un nouveau système qui, une fois réalisé, va contribuer à améliorer les conditions de vie des populations.

Pour une exploitation optimale du nouveau système, nous recommandons :

- > De respecter, lors de la réalisation, les dispositions constructives pour s'assurer des conditions d'autocurage dans tout le système.
- De veillez à ce que les raccordements à l'égout soient munis d'un regard de visite accessible et placé à un endroit offrant toutes les garanties de contrôle de la qualité et si possible de la quantité des eaux réellement déversées.
- > De poser les égouts de manière à éviter les fuites et à permettre un contrôle et un entretien aisé.
- > De construire une station d'épuration pour s'assurer du traitement des eaux usées avant leur rejet dans le milieu naturel.
- De veillez à l'entretien des ouvrages à travers des visites et un curage périodique.
- De sensibiliser les populations sur les conséquences d'introduction dans les regards de matières incompatibles avec les effluents susceptibles d'être entraînées dans le réseau.

REFERENCES BIBLIOGRAPHIQUES

- [1] LABONTE, R., PATRY, G. Distribution et collecte des eaux en milieu urbain, 2^{ème} Edition, EPM 1983, 349p.
- [2] MARC SATIN, BECHIR SELMI. Guide technique de l'assainissement, 2^{ème} Edition, Paris 1999, 680p.
- [3] KARL R. IMHOFF. Manuel de l'assainissement urbain, 5^{ème} Edition, DUNOD, Paris 1970, 452p
- [4] NDOYE Seyni. Notes de Cours d'hydraulique urbaine, Ecole Supérieure Polytechnique Thiès, 2006.
- [5] O.N.A.S. Rapport d'avant projet sommaire : Etude et contrôle des travaux de restructuration du système de pompage des Parcelles Assainies, Novembre 2005.
- [6] CAMARA, O., DIABY, M. Projet de fin d'études: Etude diagnostique et mise en place d'un système d'informations géographiques pour le réseau d'assainissement de la ville de Louga, 2004, 95p.
- [7] Ba Daouda, Seck D Cheikh. Projet de fin d'études : Alimentation et Evacuation des Eaux de la ZAC de Nguinth –Thiès, juillet 2005, 70p.
- [8] DIOUF Omar, DIOUF M Pape. Projet de fin d'études : Conception et dimensionnement d'un réseau d'alimentation en eau potable et d'un système d'évacuation des eaux usées de la nouvelle ville de DIAMNIADIO, juillet 2005, 62p.
- [9] http/www.web.gci.ulaval.ca cours/gci10214 / HU.pdf)

Points	Réf	Dist (m)	Repère	Alt Rep (m)	Lect AR (m)	Haut APP (m)	Lect AV (m)	Alt Point (mNGS)
C7	HFD5	23,00	HFD5	8,74	1,658	10,398	1,618	8,780
C8	HF38	22,00	HF38	10,11	1,045	11,155	1,468	9,687
C9	C8	33,00	HF38	10,11	1,045	11,155	1,842	9,313
C10	C9	25,00	С9	9,313	1,222	10,535	1,411	9,124
A1	C10	29,80	С9	9,313	1,222	10,535	1,860	8,675
D1	A10	32,70	A10	12,629	2,000	14,629	1,758	12,871
D2	D1	45,10	A10	12,629	2,000	14,629	1,460	13,169
D3	D2	17,00	D2	13,169	0,871	14,040	1,000	13,040
D4	D3	29,60	D2_	13,169	0,871	14,040	2,355	11,685
D5	B5	43,60	B5	11,947	1,320	13,267	2,070	11,197
D6	D5	16,20	B5	11,947	1,320	13,267	2,650	10,617
D7	D5	40,30	B5	11,947	1,320	13,267	3,130	10,137
D8	D7	80,60	D7	10,137	0,341	10,478	3,100	7,378
D9_	D8	47,40	D8	7,378	1,641	9,019	1,660	7,359
D10	D9	4,16	D8	7,378	1,641	9,019	1,620	7,399
El	HFC3	12,30	HFC3	4,95	1,600	6,550	1,575	4,975
E2	E1	24,00	HFC3	4,95	1,600	6,550	1,528	5,022
E3	E2	24,00	HFC3	4,95	1,600	6,550	1,567	4,983
E4	E3	24,00	E3	4,983	1,740	6,723	1,385	5,338
E5	E4	24,00	E3	4,983	1,740	6,723	1,415	5,308
E6.	E5	24,00	E3	4,983	1,740	6,723	1,390	5,333
E7	E6_	24,00	E3	4,983	1,740	6,723	1,370	5,353
E8	E7	24,00	E7	5,353	1,325	6,678	1,306	5,372
E9	E8	24,00	E7	5,353	1,325	6,678	1,510	5,168
E10	E9	24,00	E7	5,353	1,325	6,678	1,510	5,168

Tableau 1 Détermination des Cotes du terrain naturel

	TAMPON	REGARDS	A	RRIVEE	1	ARRIVEE 2			DEP 1
N° regard	Altitude (mNGS)	Prof jusqu'au radier (m)	Prof fil d'eau (m)	N° du regard amont	Dist du regard amont (m)	Prof fil d'eau (m)	N° du regard amont	Dist du regard amont (m)	Prof fil d'eau (m)
HFC8	7,44	3,62	3,59	HFC9	40				3,62
HFC9	6,97	2,94	2,9	HFC10	35,2				2,94
HFCA1									
HFD1	8,31	2,03	2,03	HFD2	45				2,03
HFD2	7,78	1,13	1,13	HFD3	20,7				1,13
HFD3	8,73	1,82	1,82	HFD4	25,7			-	1,82
HFD4	8,85	1,8	1,59	HFD5	26,2				1,8
HFD5	8,74	0,96							0,96
HFE1	* 8,83	1,63	1,2	HFE2	21,6	1,26	HFEA1	16,2	1,53
HFE2	8,84	1,25	1,25	HFE3	15,5				1,25
HFE3	9,12	1,2							1,2
HFEA1	8,84	1,09	1,07	HFEA2	22,4				1,09
HFEA2	9,3	1,22	1,18	HFEA3	25,6				1,22
HFEA3	9,44	1,16	1,16	HFEA4	26				1,16
HFEA4	9,62	1,07							1,07
HFF1	9,92	1,46							1,46
HFG1	9,62	1,28	1,28	HFG2	24				1,28
HFG2	9,7	1,2	1,2	HFG3	21				1,2
HFG3	9,81	1,18							1,18
HFH1	8,87	0,98	0,98	HFH2	21				0,98
HFH2	8,81	0,84	0,84	HFH3	35,3				0,84
HFH3	8,95	0,79	0,79	HFH4	12,3				0,79
HFH4	9,09	0,73	0,73	HFH5	25,6				0,73
HFH5	9,24	0,8	0,8	HFH6	25				0,8
HFH6				HFH7	12,8				
HFH7	9,45	0,69	0,69	HFH8	24,95				0,69
HFH8	9,84	0,98	0,98	HFH9	32,5				0,98
HFH9	11,66	1,37			,-				1,37
HFI1	9,88	1,3	1,3	HFI2	25				1,3
HFI2	10,28	1,4	1,34	HFI3	19,45				1,4
HFI3	10,84	1,73	1,71	HFI4	22,3				1,73
HFI4	11,13	1,74							1,74
HFJ1				HFJ2	24				

Tableau 3 profondeurs radier des regards et fil d'eau des conduites.

Tronçons	Profondeur fil d'eau (m)		Altitude (mNGS)		Long (m)	Pente	Pente
	Amont	Aval	Amont	Aval		(m/m)	(‰)
HFH2-HFH1	0,84	0,98	7,97	7,89	21	0,00381	3,810
HFH3-HFH2	0,79	0,84	8,16	7,97	35,3	0,00538	5,382
HFH4-HFH3	0,73	0,79	8,36	8,16	12,3	0,01626	16,260
HFH5-HFH4	0,8	0,73	8,44	8,36	25,6	0,00313	3,125
HFH8-HFH7	0,98	0,69	8,86	8,76	24,95	0,00401	4,008
HFH9-HFH8	1,37	0,98	10,29	8,86	32,5	0,04400	44,000
HFI2-HFI1	1,4	1,3	8,88	8,58	25	0,01200	12,000
HFI3-HFI2	1,73	1,34	9,11	8,94	19,45	0,00874	8,740
HFI4-HFI3	1,74	1,71	9,39	9,13	22,3	0,01166	11,659
B6-B7	1,26	1,23	10,267	8,384	29,8	0,06319	63,188
A9-A8	1,925	1,43	8,704	8,293	18,00	0,02283	22,833
A8-A7	1,37	1,02	8,353	8,174	28,30	0,00633	6,325
A7-A5	1,05	0,95	8,144	7,805	26,2	0,01294	12,939
A5-A4	1,01	1,18	7,745	7,588	25,40	0,00618	6,181

Tableau 4 Evaluation des pentes des conduites du réseau existant.

Points	X (m)	Y (m)	Z (mNGS)
HFH1	749.8106	1260.7145	8.87
HFH2	728.9256	1266.4565	8.81
HFH3	709.2834	1271.9126	8.95
HFH4	680.9826	1280.0645	9.09
HFH5	652.4436	1288.5125	9.24
HFH7	613.2606	1300.0635	9.45
HFH8	585.3656	1308.7555	9.84
HFH9	553.2866	1318.3515	11.66
HFI1	674.5286	1217.8725	9.88
HFI2	667.7296	1200.115	10.28
HFI3	659.0126	1173.7685	10.84
HFI4	643.4106	1181.7425	11.13
A1	759.7946	1291.841	8.675
A2	722.2213	1302.0663	8.58
A3	701.335	1308.0748	8.582
A4	672.1778	1315.7409	8.768
A5	647.2934	1322.7895	8.755
A6	711.6556	1346.7476	8.455
A7	620.0743	1330.3545	9.194
A8	592.8194	1337.4099	9.723
A9	575.3995	1342.4138	10.629
A10	543.8127	1350.9093	12.629
B1	632.4984	1369.2203	8.857
B2	638.0141	1387.7773	9.095
B3	645.4394	1408.9407	9.235
B4	554.0421	1373.3842	12.329
B5	568.5626	1388.9177	11.947
B6	579.5174	1385.1098	11.527
* B7	608.1894	1376.8208	9.614
B8	672.9662	1356.9908	8.457
B9	686.7268	1353.167	8.499
B10	741.6608	1338.0439	8.418
C1	771.2916	1330.3207	8.615
C2	679.868	1385.1922	8.553
C3	776.4956	1359.6771	8.164
C4	791.7723	1314.3436	8.828
C5	806.7643	1299.0626	9.36
C6	829.756	1276.821	9.345
C7	833.7381	1235.1343	8.78
C8	771.9221	1230.205	9.687
C9	792.6026	1256.0458	9.313

Points	X (m)	Y (m)	Z (mNGS)
1 01110	/ (11)	. (,	
C10	775.4212	1274.4535	9.124
D1	534.9626	1324.6132	12.871
D2	529.7186	1284.4541	13.169
D3	545.9519	1278.5771	13.04
D4	573.995	1271.6387	11.685
D5	598.9829	1420.7856	11.197
D6	616.8041	1416.5709	10.617
D7	629.1435	1445.6147	10.137
D8	687.5304	1497.6335	7.378
D9	722.334	1465.3294	7.359
D10	725.8376	1462.0054	7.399
E1	1003.7078	1214.266	4.975
E2	991.9758	1193.3257	5.022
E3	980.2452	1172.3878	4.983
E4	968.5146	1151.45	5.338
E5	956.784	1130.5122	5.308
E6	945.0533	1109.5744	5.333
E7	933.3227	1088.6365	5.353
E8	921.5921	1067.6987	5.372
E9	909.8615	1046.7609	5.169
E10	898.1309	1025.8231	5.166

Tableau 5 Coordonnées des points connus sur le terrain

Tronçons	Surface partielle desservie(m²)	Surface cumulative (m²)
F10-F9	219,2703	2448,4899
F9-HFC3	171,9587	2620,4486
HFC3-E1	0	28319,2825
E1-F6	186,1617	28505,4442
F6-E4	266,2384	28771,6826
E4-F7	398,0969	29169,7795
F7-E7	0	29169,7795
E7-F8	0	29169,7795
F8-G7	966,6361	30136,4156
HFH9-HFH8	1456,6705	1456,6705
HFH8-HFH7	764,0024	2220,6729
HFH7-HFH6	245,6312	2466,3041
HFH6-HFH5	762,6618	3228,9659
HFH5-HFH4	830,8077	4059,7736
HFH4-HFH3	845,6236	4905,3972
HFH3-HFH2	571,8817	5477,2789
HFH2-HFH1	440,8652	5918,1441
HFH1-HF39	776,4214	6694,5655
D3-D4	754,7342	754,7342
D4-HF43	437,4447	1192,1789
HF45-HF44	853,3343	853,3343
HF44-HF43	686,3455	1539,6798
HF43-HF42	999,3072	3731,1659
HFJ1-HF42	1013,3725	1013,3725
HF42-HF41	1126,567	5871,1054
HFI4-HFI3	351,5681	351,5681
HFI3-HFI2	530,2648	881,8329
HFI2-HFI1	677,5153	1559,3482
HFI1-HF41	0	1559,3482
HF41-HF40	1017,4466	8447,9002
HFG3-HFG2	645,0862	645,0862
HFG2-HFG1	625,8768	1270,963
HFG1-HF40	381,0621	1652,0251
HF40-HF39	446,0947	10546,02
HF39-HF38	226,8287	17467,4142
HFF1-HF38	1782,1082	1782,1082
HF38-HF37	908,53	20158,0524
HF37-HF36	883,1343	21041,1867
C7-HF36	1546,9414	1546,9414
HF36-HF35	235,8822	22824,0103
G2-G3	1050,3408	1050,3408

Tronçons	Surface partielle desservie (m²)	Surface cumulative (m²)
G3-HF35	0	1050,3408
HFEA4-HFEA3	469,1275	469,1275
HFEA3-HFEA2	330,6232	799,7507
HFEA2-HFEA1	606,3231	1406,0738
HFEA1-HFE1	0	1406,0738
HFE3-HFE2	905,9388	905,9388
HFE2-HFE1	521,0511	1426,9899
HFE1-HF35	350,4398	3183,5035
HF35-HF34	697,2506	27755,1052
HFD5-HFD4	1311,1832	1311,1832
HFD4-HFD3	965,7815	2276,9647
HFD3-HFD2	1076,4381	3353,4028
HFD2-HFD1	585,4501	3938,8529
HFD1-HF34	0	3938,8529
G4-HF33	838,9535	838,9535
HF33-HF34	571,5518	1410,5053
HF32-HF33	0	1410,5053
HF34-G5	347,785	33452,2484
HF31-HFB1	1112,128	1112,128
HFB1-G5	473,0046	1585,1326
G5-G6	299,1967	35336,5777
G6-HFA2	312,2942	35648,8719
HFA2-HF30	731,1245	36379,9964
HF30-HFA1	0	36379,9964
HFA1-G7	0	36379,9964
G7-E10	0	66516,412

Tableau 6 Délimitation de la zone en bassins et sous bassins

		Rej	ets moyens (m3/s		
Tronçons	Surf cumul	Habitations	Ecole	CCIS	Débits moyen (m3/s)
F10-F9	2448,4899	0,000661			0,00066135
F9-HFC3	2620,4486	0,000708	_		0,00070779
HFC3-E1	28319,2825	0,007649	0,0000194	0,000158	0,00782632
E1-F6	28505,4442	0,007699	0,0000194	0,000158	0,00787660
F6-E4	28771,6826	0,007771	0,0000194	0,000158	0,00794851
E4-F7	29169,7795	0,007879	0,0000194	0,000158	0,00805604
F7-E7	29169,7795	0,007879	0,0000194	0,000158	0,00805604
E7-F8	29169,7795	0,007879	0,0000194	0,000158	0,00805604
F8-G7	30136,4156	0,008140	0,0000194	0,000158	0,00831713
HFH9-HFH8	1456,6705	0,000393	0,000015	0,000100	0,00039345
HFH8-HFH7	2220,6729	0,000600			0,00059981
HFH7-HFH6	2466,3041	0,000666			0,00066616
HFH6-HFH5	3228,9659	0,000872			0,00087216
HFH5-HFH4	4059,7736	0,001097			0,00109656
HFH4-HFH3	4905,3972	0,001325			0,00132497
HFH3-HFH2	5477,2789	0,001479			0,00147944
HFH2-HFH1	5918,1441	0,001599			0,00159852
HFH1-HF39	6694,5655	0,001808			0,00180823
D3-D4	754,7342	0,000204			0,00020386
D4-HF43	1192,1789	0,000322			0,00032201
HF45-HF44	853,3343	0,000230			0,00023049
HF44-HF43	1539,6798	0,000416			0,00041587
HF43-HF42	3731,1659	0,001008			0,00100780
HFJ1-HF42	1013,3725	0,000274			0,00027372
HF42-HF41	5871,1054	0,001586			0,00158581
HFI4-HFI3	351,5681	0,000095			0,00009496
HFI3-HFI2	881,8329	0,000238			0,00023819
HFI2-HFI1	1559,3482	0,000421			0,00042119
HFI1-HF41	1559,3482	0,000421			0,00042119
HF41-HF40	8447,9002	0,002282			0,00228181
HFG3-HFG2	645,0862	0,000174			0,00017424
HFG2-HFG1	1270,963	0,000343			0,00034329
HFG1-HF40	1652,0251	0,000446			0,00044622
HF40-HF39	10546,02	0,002849			0,00284852
HF39-HF38	17467,4142	0,004718			0,00471802
HFF1-HF38	1782,1082	0,000481			0,00048135
HF38-HF37	20158,0524	0,005445			0,00544477
HF37-HF36	21041,1867	0,005683			0,00568331
C7-HF36	1546,9414	0,000418			0,00041784
HF36-HF35	22824,0103	0,006165			0,00616486
G2-G3	1050,3408	0,000284			0,00028370

		Rej	s)		
Tronçons	Surf cumul	Habitations	Ecole	CCIS	Débit moyen (m3/s)
G3-HF35	1050,3408	0,000284			0,00028370
HFEA4-HFEA3	469,1275	0,000127			0,00012671
HFEA3-HFEA2	799,7507	0,000216			0,00021602
HFEA2-HFEA1	1406,0738	0,000380			0,00037979
HFEA1-HFE1	1406,0738	0,000380			0,00037979
HFE3-HFE2	905,9388	0,000245			0,00024470
HFE2-HFE1	1426,9899	0,000385			0,00038544
HFE1-HF35	3183,5035	0,000860			0,00085988
HF35-HF34	27755,1052	0,007497			0,00749677
HFD5-HFD4	1311,1832	0,000354			0,00035416
HFD4-HFD3	2276,9647	0,000615			0,00061502
HFD3-HFD2	3353,4028	0,000906			0,00090577
HFD2-HFD1	3938,8529	0,001064			0,00106390
HFD1-HF34	3938,8529	0,001064			0,00106390
G4-HF33	838,9535	0,000227			0,00022660
HF33-HF34	1410,5053	0,000381			0,00038098
HF32-HF33	1410,5053	0,000381			0,00038098
HF34-G5	33452,2484	0,009036			0,00903559
HF31-HFB1	1112,128	0,000300			0,00030039
HFB1-G5	1585,1326	0,000428			0,00042815
G5-G6	35336,5777	0,009545			0,00954456
G6-HFA2	35648,8719	0,009629			0,00962891
HFA2-HF30	36379,9964	0,009826			0,00982639
HF30-HFA1	36379,9964	0,009826			0,00982639
HFA1-G7	36379,9964	0,009826			0,00982639
G7-E10	66516,412	0,017966	0,0000194	0,000158	0,01814352

Tableau 7 Estimation des rejets moyens.

Tronçons	Débit moyen (m3/s)	FP	Captage (m3/s)	Qmax (m3/s)
F10-F9	0,00066135	4,00	0,00006613	0,00271152
F9-HFC3	0,00070779	4,00	0,00007078	0,00290196
HFC3-E1	0,00782632	2,39	0,00078263	0,01951599
E1-F6	0,00787660	2,39	0,00078766	0,01961888
F6-E4	0,00794851	2,39	0,00079485	0,01976589
E4-F7	0,00805604	2,38	0,00080560	0,01998545
F7-E7	0,00805604	2,38	0,00080560	0,01998545
E7-F8	0,00805604	2,38	0,00080560	0,01998545
· F8-G7	0,00831713	2,37	0,00083171	0,02051727
HFH9-HFH8	0,00039345	4,00	0,00003935	0,00161316
HFH8-HFH7	0,00059981	4,00	0,00005998	0,00245923
HFH7-HFH6	0,00066616	4,00	0,00006662	0,00273125
HFH6-HFH5	0,00087216	4,00	0,00008722	0,00357584
HFH5-HFH4	0,00109656	3,89	0,00010966	0,00437242
HFH4-HFH3	0,00132497	3,67	0,00013250	0,00499763
HFH3-HFH2	0,00147944	3,56	0,00014794	0,00540790
HFH2-HFH1	0,00159852	3,48	0,00015985	0,00571843
HFH1-HF39	0,00180823	3,36	0,00018082	0,00625493
D3-D4	0,00020386	4,00	0,00002039	0,00083581
D4-HF43	0,00032201	4,00	0,00003220	0,00132025
HF45-HF44	0,00023049	4,00	0,00002305	0,00094501
HF44-HF43	0,00041587	4,00	0,00004159	0,00170508
HF43-HF42	0,00100780	3,99	0,00010078	0,00412222
HFJ1-HF42	0,00027372	4,00	0,00002737	0,00112224
HF42-HF41	0,00158581	3,49	0,00015858	0,00568552
HFI4-HFI3	0,00009496	4,00	0,00000950	0,00038934
HFI3-HFI2	0,00023819	4,00	0,00002382	0,00097657
HFI2-HFI1	0,00042119	4,00	0,00004212	0,00172686
HFI1-HF41	0,00042119	4,00	0,00004212	0,00172686
HF41-HF40	0,00228181	3,16	0,00022818	0,00742732
HFG3-HFG2	0,00017424	4,00	0,00001742	0,00071439
HFG2-HFG1	0,00034329	4,00	0,00003433	0,00140750
HFG1-HF40	0,00044622	4,00	0,00004462	0,00182950
HF40-HF39	0,00284852	2,98	0,00028485	0,00877703
HF39-HF38	0,00471802	2,65	0,00047180	0,01297908
HFF1-HF38	0,00048135	4,00	0,00004814	0,00197355
HF38-HF37	0,00544477	2,57	0,00054448	0,01454515
HF37-HF36	0,00568331	2,55	0,00056833	0,01505322
C7-HF36	0,00041784	4,00	0,00004178	0,00171312
HF36-HF35	0,00616486	2,51	0,00061649	0,01607106
G2-G3	0,00028370	4,00	0,00002837	0,00116318

Tronçons	Débit moyen (m3/s)	FP	Captage (m3/s)	Qmax (m3/s)
G3-HF35	0,00028370	4,00	0,00002837	0,00116318
HFEA4-HFEA3	0,00012671	4,00	0,00001267	0,00051952
HFEA3-HFEA2	0,00021602	4,00	0,00002160	0,00088567
HFEA2-HFEA1	0,00037979	4,00	0,00003798	0,00155712
HFEA1-HFE1	0,00037979	4,00	0,00003798	0,00155712
HFE3-HFE2	0,00024470	4,00	0,00002447	0,00100326
HFE2-HFE1	0,00038544	4,00	0,00003854	0,00158029
HFE1-HF35	0,00085988	4,00	0,00008599	0,00352550
HF35-HF34	0,00749677	2,41	0,00074968	0,01883989
HFD5-HFD4	0,00035416	4,00	0,00003542	0,00145204
HFD4-HFD3	0,00061502	4,00	0,00006150	0,00252157
HFD3-HFD2	0,00090577	4,00	0,00009058	0,00371365
HFD2-HFD1	0,00106390	3,92	0,00010639	0,00428088
HFD1-HF34	0,00106390	3,92	0,00010639	0,00428088
G4-HF33	0,00022660	4,00	0,00002266	0,00092908
HF33-HF34	0,00038098	4,00	0,00003810	0,00156203
HF32-HF33	0,00038098	4,00	0,00003810	0,00156203
HF34-G5	0,00903559	2,33	0,00090356	0,02197176
HF31-HFB1	0,00030039	4,00	0,00003004	0,00123160
HFB1-G5	0,00042815	4,00	0,00004282	0,00175542
G5-G6	0,00954456	2,31	0,00095446	0,02299486
G6-HFA2	0,00962891	2,31	0,00096289	0,02316387
HFA2-HF30	0,00982639	2,30	0,00098264	0,02355899
HF30-HFA1	0,00982639	2,30	0,00098264	0,02355899
HFA1-G7	0,00982639	2,30	0,00098264	0,02355899
G7-E10	0,01814352	2,09	0,00181435	0,03967843

Tableau 4.4 Débit maximal

Tronçons	Altitude Tampon (m)		Profondeur (m)	Profondeur fil d'eau		Altitude fil d'eau (m)		Pente
Tronçons	Amont	Aval	Amont	Aval	Amont	Aval	(m)	(m/m)
D6-B3	10,617	9,235	1,35	1,36	9,27	7,88	29,63	0,047
C2-B8	8,553	8,457	1,26	1,25	7,29	7,21	29,03	0,003
F2-B8	8,66	8,457	1,24	1,25	7,42	7,21	26,23	0,008
F4-A6	8,07	8,455	1,06	1,53	7,01	6,93	28,5	0,003
F3-A6	8,54	8,455	1,53	1,53	7,01	6,93	27,63	0,003
C4-C1	8,828	8,615	2,13	2,12	6,70	6,49	25,98	0,008
C5-C4	9,36	8,828	2,12	2,13	7,24	6,70	21,41	0,025
C6-C5	9,345	9,36	1,47	2,12	7,88	7,24	31,99	0,020
C10-A1	9,124	8,675	1,26	1,28	7,86	7,40	23,38	0,020
C9-C10	9,313	9,124	1,25	1,26	8,07	7,86	25,18	0,008
C8-C9	9,687	9,313	1,22	1,25	8,46	8,07	33,1	0,012
HFA1-G7	6,96	5,17	2,79	2,03	4,17	3,14	25,71	0,040
HFA2-HFA1	8,37	6,96	2,66	2,79	5,71	4,17	61,55	0,025
G6-HFA2	7,95	8,37	2,17	2,66	5,78	5,71	22,51	0,003
G5-G6	7,64	7,95	1,79	2,17	5,85	5,78	22,59	0,003
HF34-G5	8,82	7,64	2,42	1,79	6,40	5,85	36,7	0,015
HF35-HF34	9,78	8,82	2,89	2,42	6,89	6,40	48,98	0,010
HF36-HF35	10,21	9,78	3,12	2,89	7,09	6,89	19,76	0,010
HF37-HF36	9,9	10,21	2,74	3,12	7,16	7,09	23,86	0,003
HF38-HF37	10,11	9,9	2,87	2,74	7,24	7,16	29,22	0,003
HF39-Hr 38	9,77	10,11	2,46	2,87	7,31	7,24	20,81	0,003
HF40-HF39	9,4	9,77	2,02	2,46	7,38	7,31	23,23	0,003
HF41-HF40	10,1	9,4	2,53	2,02	7,57	7,38	38,33	0,005
HF42-HF41	10,18	10,1	2,49	2,53	7,69	7,57	41,59	0,003
HF43-HF42	10,4	10,18	2,54	2,49	7,86	7,69	40,97	0,004
D4-HF43	11,685	10,4	2,49	2,54	9,19	7,86		0,045
D3-D4	13,04	11,685	2,55	2,49	10,49	9,19	28,89	0,045
HFH1-HF39	8,87	9,77	1,43	2,46	7,44	7,31	42,94	0,003
HFH2-HFH1	8,81	8,87	1,29	1,43	7,52	7,44	21,66	0,004
HFH3-HFH2	8,95	8,81	1,35	1,29	7,60	7,52	20,39	0,004
HFH4-HFH3	9,09	8,95	1,37	1,35	7,72	7,60	29,45	0,004
HFH5-HFH4	9,24	9,09	1,40	1,37	7,84	7,72	29,76	0,004
HFH6-HFH5	9,39	9,24	1,30	1,40	8,09	7,84	27,39	0,009
HFH7-HFH6	9,45	9,39	1,24	1,30	8,21	8,09	13,46	0,009
HFH8-HFH7	9,84	9,45	1,37	1,24	8,47	8,21	29,22	0,009
HFH9-HFH8	11,66	9,84	1,35	1,37	10,31	8,47	33,48	0,055
HF44-HF43	10,98	10,4	2,28	2,54	8,70	7,86	28,09	0,030
HF45-HF44	11,6	10,98	2,18	2,28	9,42	8,70	24,03	0,030
HFJ1-HF42	10,62	10,18	2,47	2,49	8,15	7,69	25,48	0,018
HFI1-HF41	9,88	10,1	2,11	2,53	7,77	7,57	20,58	0,010
HFI2-HFI1	10,28	9,88	2,13	2,11	8,15	7,77	19,01	0,020

	Altitude Tampon		Profondeur fil d'eau		Altitude fil d'eau				
Tronçons	(m)	(m)		(m)		Long(m)	Pente(m/m)	
	Amont	Aval	Amont	Aval	Amont	Aval		rente(III/III)	
HFI3-HFI2	10,84	10,28	2,13	2,13	8,71	8,15	27,75	0,020	
HFI4-HFI3	11,13	10,84	2,12	2,13	9,01	8,71	17,52	0,017	
HFG1-HF40	9,62	9,4	2,07	2,02	7,55	7,38	29,6	0,006	
HFG2-HFG1	9,7	9,62	2,02	2,07	7,68	7,55	20,73	0,006	
HFG3-HFG2	9,81	9,7	1,98	2,02	7,83	7,68	24,65	0,006	
HFF1-HF38	9,92	10,11	2,46	2,87	7,46	7,24	21,9	0,010	
C7-HF36	8,78	10,21	1,53	3,12	7,25	7,09	54,9	0,003	
G3-HF35	9,48	9,78	2,48	2,89	7,00	6,89	11,36	0,010	
G2-G3	8,75	9,48	1,51	2,48	7,24	7,00	23,72	0,010	
HFE1-HF35	8,83	9,78	1,82	2,89	7,01	6,89	40,2	0,003	
HFEA1-HFE1	8,84	8,83	1,80	1,82	7,04	7,01	9,98	0,003	
HFEA2-HFEA1	9,3	8,84	1,79	1,80	7,51	7,04	31,7	0,015	
HFEA3-HFEA2	9,44	9,3	1,74	1,79	7,70	7,51	27,09	0,007	
HFEA4-HFEA3	9,62	9,44	1,75	1,74	7,87	7,70	23,98	0,007	
HFE2-HFE1	8,84	8,83	1,72	1,82	7,12	7,01	22,49	0,005	
HFE3-HFE2	9,12	8,84	1,92	1,72	7,20	7,12	16,3	0,005	
HFD1-HF34	8,31	8,82	1,86	2,42	6,45	6,40	17,98	0,003	
HFD2-HFD1	7,78	8,31	1,21	1,86	6,57	6,45	38,58	0,003	
HFD3-HFD2	8,73	7,78	1,23	1,21	7,50	6,57	31,11	0,030	
HFD4-HFD3	8,85	8,73	1,27	1,23	7,58	7,50	24,83	0,003	
HFD5-HFD4	8,74	8,85	1,09	1,27	7,65	7,58	23,58	0,003	
HF33-HF34	7,63	8,82	1,14	2,42	6,49	6,40	31,99	0,003	
HF32-HF33	7,25	7,63	0,72	1,14	6,53	6,49	11,79	0,003	
HFB1-G5	7,05	7,64	1,14	1,79	5,91	5,85	22	0,003	
HF31-HFB1	6,85	7,05	0,88	1,14	5,97	5,91	19,41	0,003	

Tableau 9 Pentes des conduites

Tronçons	Qmax (m3/s)	Pente (m/m)	Q plein (m3/s)	D (mm)	Dc(mm)	Qc(m3/s)	Vr (m/s)
HFCA1-HFC4	0,001048461	0,03	0,001310576	48,642	250	0,00131058	2,0991
HFC4-HFC3	0,017960064	0,0050	0,02245008	197,502	250	0,02245008	0,857
G1-F10	0,002468698	0,0200	0,003085872	72,359	250	0,00308587	1,7139
F10-F9	0,002711524	0,0350	0,003389405	67,485	250	0,0033894	2,2673
F9-HFC3	0,002901955	0,0030	0,003627444	109,726	250	0,00362744	0,6638
HFC3-E1	0,01941965	0,0050	0,024274563	203,374	250	0,02427456	0,857
E1-F6	0,019522756	0,0030	0,024403445	224,262	250	0,02440344	0,6638
F6-E4	0,019670085	0,0030	0,024587606	224,895	250	0,02458761	0,6638
E4-F7	0,019890104	0,0030	0,02486263	225,835	250	0,02486263	0,6638
F7-E7	0,019890104	0,0030	0,02486263	225,835	250	0,02486263	0,6638
E7-F8	0,019890104	0,0030	0,02486263	225,835	250	0,02486263	0,6638
F8-G7	0,020423001	0,0030	0,025528751	228,085	250	0,02552875	0,6638
HFH9-HFH8	0,001613156	0,0550	0,002016445	51,030	250	0,00201645	2,8422
HFH8-HFH7	0,002459233	0,0090	0,003074041	83,925	250	0,00307404	1,1497
HFH7-HFH6	0,002731252	0,0090	0,003414065	87,293	250	0,00341406	1,1497
HFH6-HFH5	0,003575844	0,0090	0,004469805	96,574	250	0,0044698	1,1497
HFH5-HFH4	0,00437242	0,0040	0,005465525	121,240	250	0,00546552	0,7665
HFH4-HFH3	0,00499763	0,0040	0,006247038	127,471	250	0,00624704	0,7665
HFH3-HFH2	0,005407898	0,0040	0,006759873	131,299	250	0,00675987	0,7665
HFH2-HFH1	0,005718434	0,0040	0,007148043	134,077	250	0,00714804	0,7665
HFH1-HF39	0,006254929	0,0030	0,007818661	146,347	250	0,00781866	0,6638
D3-D4	0,000835813	0,0450	0,001044766	41,407	250	0,00104477	2,5709
D4-HF43	0,001320251	0,0450	0,001650314	49,151	250	0,00165031	2,5709
HF45-HF44	0,000945005	0,0300	0,001181257	46,783	250	0,00118126	2,0991
HF44-HF43	0,001705083	0,0300	0,002131354	58,372	250	0,00213135	2,0991
HF43-HF42	0,004122221	0,0040	0,005152776	118,591	250	0,00515278	0,7665
HFJ1-HF42	0,001122236	0,0180	0,001402795	54,914	250	0,0014028	1,626
HF42-HF41	0,005685519	0,0030	0,007106899	141,202	250	0,0071069	0,6638
HFI4-HFI3	0,000389336	0,0170	0,00048667	37,319	250	0,00048667	1,5801
HFI3-HFI2	0,000976566	0,0200	0,001220707	51,104	250	0,00122071	1,7139
HFI2-HFI1	0,001726864	0,0200	0,00215858	63,284	250	0,00215858	1,7139
HFI1-HF41	0,001726864	0,0100	0,00215858	72,067	250	0,00215858	1,2119
HF41-HF40	0,007427318	0,0050	0,009284148	141,830	250	0,00928415	0,857
HFG3-HFG2	0,000714386	0,0060	0,000892982	56,962	250	0,00089298	0,9387
HFG2-HFG1	0,001407499	0,0060	0,001759373	73,456	250	0,00175937	0,9387
HFG1-HF40	0,001829497	0,0060	0,002286871	81,046	250	0,00228687	0,9387
HF40-HF39	0,00877703	0,0030	0,010971288	166,172	250	0,01097129	0,6638
HF39-HF38	0,012979085	0,0030	0,016223856	192,428	250	0,01622386	0,6638

Tronçons	Qmax (m3/s)	Pente (m/m)	Q plein (m3/s)	D (mm)	Dc(mm)	Qc(m3/s)	Vr (m/s)
HFF1-HF38	0,001973555	0,0100	0,002466943	75,767	250	0,00246694	1,2119
HF38-HF37	0,014545147	0,0030	0,018181434	200,827	250	0,01818143	0,6638
HF37-HF36	0,015053223	0,0030	0,018816528	203,429	250	0,01881653	0,6638
C7-HF36	0,001713125	0,0030	0,002141406	90,048	250	0,00214141	0,6638
HF36-HF35	0,016071059	0,0100	0,020088824	166,352	250	0,02008882	1,2119
G2-G3	0,001163176	0,0100	0,00145397	62,141	250	0,00145397	1,2119
G3-HF35	0,001163176	0,0100	0,00145397	62,141	250	0,00145397	1,2119
HFEA4-HFEA3	0,000519524	0,0070	0,000649406	49,109	250	0,00064941	1,014
HFEA3-HFEA2	0,000885665	0,0070	0,001107082	59,984	250	0,00110708	1,014
HFEA2-HFEA1	0,001557124	0,0150	0,001946405	64,249	250	0,00194641	1,4843
HFEA1-HFE1	0,001557124	0,0030	0,001946405	86,881	250	0,00194641	0,6638
HFE3-HFE2	0,001003261	0,0050	0,001254076	66,948	250	0,00125408	0,857
HFE2-HFE1	0,001580287	0,0050	0,001975359	79,384	250	0,00197536	0,857
HFE1-HF35	0,003525498	0,0030	0,004406872	118,035	250	0,00440687	0,6638
HF35-HF34	0,018839887	0,0100	0,023549859	176,570	250	0,02354986	1,2119
HFD5-HFD4	0,00145204	0,0030	0,00181505	84,634	250	0,00181505	0,6638
HFD4-HFD3	0,002521572	0,0030	0,003151965	104,095	250	0,00315197	0,6638
HFD3-HFD2	0,003713649	0,0300	0,004642061	78,159	250	0,00464206	2,0991
HFD2-HFD1	0,004280879	0,0030	0,005351099	126,948	250	0,0053511	0,6638
HFD1-HF34	0,004280879	0,0030	0,005351099	126,948	250	0,0053511	0,6638
HF33-HF34	0,001562032	0,0030	0,001952539	86,983	250	0,00195254	0,6638
HF32-HF33	0,001562032	0,003	0,001952539	86,983	250	0,00195254	0,6638
HF34-G5	0,02197176	0,0150	0,0274647	173,358	250	0,0274647	1,4843
HF31-HFB1	0,001231601	0,0030	0,001539501	79,566	250	0,0015395	0,6638
HFB1-G5	0,001755419	0,0030	0,002194273	90,875	250	0,00219427	0,6638
G5-G6	0,022994855	0,0030	0,028743569	238,459	250	0,02874357	0,6638
G6-HFA2	0,023163873	0,0030	0,028954841	239,115	250	0,02895484	0,6638
HFA2-HFA1	0,023558987	0,0250	0,029448734	161,699	250	0,02944873	1,9162
HFA1-G7	0,023558987	0,0400	0,029448734	148,059	250	0,02944873	2,4238
G7-E10	0,039388912	0,003	0,04923614	291,788	300	0,04923614	0,7496

Tableau 10 Dimensionnement du nouveau réseau

Tronçons	Longueur (m)	Pente (m/m)	Dc (mm)
HFCA1-HFC4	30,41	0,030	250
HFC4-HFC3	30,2	0,005	250
G1-F10	32,98	0,020	250
F10-F9	34,92	0,035	250
F9-HFC3	35	0,003	250
HFC3-E1	12,3	0,005	250
E1-F6	35	0,003	250
F6-E4	37	0,003	250
E4-F7	35	0,003	250
F7-E7	37	0,003	250
E7-F8	35	0,003	250
F8-G7	22,39	0,003	250
HFH9-HFH8	33,48	0,055	250
HFH8-HFH7	29,22	0,009	250
HFH7-HFH6	13,46	0,009	250
HFH6-HFH5	27,39	0,009	250
HFH5-HFH4	29,76	0,004	250
HFH4-HFH3	29,45	0,004	250
HFH3-HFH2	20,39	0,004	250
HFH2-HFH1	21,66	0,004	250
HFH1-HF39	42,94	0,003	250
D3-D4	28,89	0,045	250
D4-HF43	29,63	0,045	250
HF45-HF44	24,03	0,030	250
HF44-HF43	28,09	0,030	250
HF43-HF42	40,97	0,004	250
HFJ1-HF42	25,48	0,018	250
HF42-HF41	41,59	0,003	250
HFI4-HFI3	17,52	0,017	250
HFI3-HFI2	27,75	0,020	250
HFI2-HFI1	19,01	0,020	250
HFI1-HF41	20,58	0,010	250
HF41-HF40	38,33	0,005	250
HFG3-HFG2	24,65	0,006	250
HFG2-HFG1	20,73	0,006	250
HFG1-HF40	29,6	0,006	250
HF40-HF39	23,23	0,003	250
HF39-HF38	20,81	0,003	250

Tronçons	Longueur (m)	Pente (m/m)	Dc (mm)			
HFF1-HF38	21,9	0,010	250			
HF38-HF37	29,22	0,003	250			
HF37-HF36	23,86	0,003	250			
C7-HF36	54,9	0,003	250			
HF36-HF35	19,76	0,010	250			
G2-G3	23,72	0,010	250			
G3-HF35	11,36	0,010	250			
HFEA4-HFEA3	23,98	0,007	250			
HFEA3-HFEA2	27,09	0,007	250			
HFEA2-HFEA1	31,7	0,015	250			
HFEA1-HFE1	9,98	0,003	250			
HFE3-HFE2	16,3	0,005	250			
HFE2-HFE1	22,49	0,005	250			
HFE1-HF35	40,2	0,003	250			
HF35-HF34	48,98	0,010	250			
HFD5-HFD4	23,58	0,003	250			
HFD4-HFD3	24,83	0,003	250			
HFD3-HFD2	31,11	0,030	250			
HFD2-HFD1	38,58	0,003	250			
HFD1-HF34	17,98	0,003	250			
HF33-HF34	31,99	0,003	250			
HF32-HF33	11,79	0,003	250			
HF34-G5	36,7	0,015	250			
HF31-HFB1	19,41	0,003	250			
HFB1-G5	22	0,003	250			
G5-G6	22,59	0,003	250			
G6-HFA2	22,51	0,003	250			
HFA2-HFA1	61,55	0,025	250			
HFA1-G7	25,71	0,040	250			
G7-E10	14,61	0,003	300			
Linéaire total (mL)		3078,14				

Tableau 11 caractéristiques des conduites

Regards	Altitude Tampon (m)	Prof fil d'eau départ (m)	Prof jusqu'au radier (m)	Altitude fond radier (m)
F1	9,09	1,36976	1,36976	7,72024
B2	9,095	1,4186	1,4186	7,6764
B3	9,235	1,35673	1,35673	7,87827
Dfa	10,617	1,34612	1,34612	9,27088
C2	8,553	1,25971	1,25971	7,29329
F2	8,66	1,24396	1,24396	7,41604
F4	8,07	1,05648	1,05648	7,01352
F3	8,54	1,52909	1,52909	7,01091
C4	8,828	2,12543	2,12543	6,70257
C5	9,36	2,12218	2,12218	7,23782
C6	9,345	1,46738	1,46738	7,87762
C10	9,124	1,25927	1,25927	7,86473
C9	9,313	1,24683	1,24683	8,06617
C8	9,687	1,22363	1,22363	8,46337
HFA1	6,96	2,7868	2,7868	4,1732
HFA2	8,37	2,65805	2,65805	5,71195
G6	7,95	2,17052	2,17052	5,77948
G5	7,64	1,79275	1,79275	5,84725
HF34	8,82	2,42225	2,42225	6,39775
HF35	9,78	2,89245	2,89245	6,88755
HF36	10,21	3,12485	3,12485	7,08515
HF37	9,9	2,74327	2,74327	7,15673
HF38	10,11	2,86561	2,86561	7,24439
HF39	9,77	2,46318	2,46318	7,30682
HF40	9,4	2,02349	2,02349	7,37651
HF41	10,1	2,53184	2,53184	7,56816
HF42	10,18	2,48707	2,48707	7,69293
HF43	10,4	2,54319	2,54319	7,85681
D4	11,685	2,49484	2,49484	9,19016
D3	13,04	2,54979	2,54979	10,49021
HFH1	8,87	1,43436	1,43436	7,43564
HFH2	8,81	1,28772	1,28772	7,52228
HFH3	8,95	1,34616	1,34616	7,60384
HFH4	9,09	1,36836	1,36836	7,72164
HFH5	9,24	1,39932	1,39932	7,84068
HFH6	9,39	1,30281	1,30281	8,08719
HFH7	9,45	1,24167	1,24167	8,20833
HFH8	9,84	1,36869	1,36869	8,47131
HFH9	11,66	1,34729	1,34729	10,31271

Regards	Altitude Tampon (m)	Prof fil d'eau départ (m)	Prof jusqu'au radier (m)	Altitude fond radier (m)
HF44	10,98	2,28049	2,28049	8,69951
HF45	11,6	2,17959	2,17959	9,42041
HFJ1	10,62	2,46843	2,46843	8,15157
HFI1	9,88	2,10604	2,10604	7,77396
HFI2	10,28	2,12584	2,12584	8,15416
HFI3	10,84	2,13084	2,13084	8,70916
HFI4	11,13	2,123	2,123	9,007
HFG1	9,62	2,06589	2,06589	7,55411
HFG2	9,7	2,02151	2,02151	7,67849
HFG3	9,81	1,98361	1,98361	7,82639
HFF1	9,92	2,45661	2,45661	7,46339
C7	8,78	1,53015	1,53015	7,24985
G3	9,48	2,47885	2,47885	7,00115
G2	8,75	1,51165	1,51165	7,23835
HFE1	8,83	1,82185	1,82185	7,00815
HFEA1	8,84	1,80191	1,80191	7,03809
HFEA2	9,3	1,78641	1,78641	7,51359
HFEA3	9,44	1,73678	1,73678	7,70322
HFEA4	9,62	1,74892	1,74892	7,87108
HFE2	8,84	1,7194	1,7194	7,1206
HFE3	9,12	1,9179	1,9179	7,2021
HFD1	8,31	1,85831	1,85831	6,45169
HFD2	7,78	1,21257	1,21257	6,56743
HFD3	8,73	1,22927	1,22927	7,50073
HFD4	8,85	1,27478	1,27478	7,57522
HFD5	8,74	1,09404	1,09404	7,64596
HF33	7,63	1,13628	1,13628	6,49372
HF32	7,25	0,72091	0,72091	6,52909
HFB1	7,05	1,13675	1,13675	5,91325
HF31	6,85	0,87852	0,87852	5,97148

Tableau 12 les caractéristiques des regards

	Profondeur	fil d'eau	~ /)	Section longitidunale	Déblais
Tronçons	Amont	Aval	Long (m)	(m2)	(m3)
D6-B3	1,35	1,36	29,63	40,04272275	34,036314
C2-B8	1,26	1,25	29,03	36,44005265	30,974045
F2-B8	1,24	1,25	26,23	32,7187774	27,810961
F4-A6	1,06	1,53	28,5	36,814305	31,292159
F3-A6	1,53	1,53	27,63	42,21960705	35,886666
C4-C1	2,13	2,12	25,98	55,151643	46,878897
C5-C4	2,12	2,13	21,41	45,47066505	38,650065
C6-C5	1,47	2,12	31,99	57,4150122	48,80276
C10-A1	1,26	1,28	23,38	29,6591666	25,210292
C9-C10	1,25	1,26	25,18	31,551799	26,819029
C8-C9	1,22	1,25	33,1	40,886113	34,753196
HFA1-G7	2,79	2,03	25,71	61,85826	52,579521
HFA2-HFA1	2,66	2,79	61,55	167,5652588	142,43047
G6-HFA2	2,17	2,66	22,51	54,34555535	46,193722
G5-G6	1,79	2,17	22,59	44,76513465	38,050364
HF34-G5	2,42	1,79	36,7	77,34525	65,743463
HF35-HF34	2,89	2,42	48,98	130,157003	110,63345
HFบ6-HF35	3,12	2,89	19,76	59,450924	50,533285
HF37-HF36	2,74	3,12	23,86	70,0066716	59,505671
HF38-HF37	2,87	2,74	29,22	81,9457368	69,653876
HF39-HF38	2,46	2,87	20,81	55,44605995	47,129151
HF40-HF39	2,02	2,46	23,23	52,11267205	44,295771
HF41-HF40	2,53	2,02	38,33	87,30289945	74,207465
HF42-HF41	2,49	2,53	41,59	104,3682335	88,712998
HF43-HF42	2,54	2,49	40,97	103,0448761	87,588145
D4-HF43	2,49	2,54	29,63	74,63841445	63,442652
D3-D4	2,55	2,49	28,89	72,86968035	61,939228
HFH1-HF39	1,43	2,46	42,94	83,6801838	71,128156
HFH2-HFH1	1,29	1,43	21,66	29,4801264	25,058107
HFH3-HFH2	1,35	1,29	20,39	26,8524066	22,824546
HFH4-HFH3	1,37	1,35	29,45	39,971307	33,975611
HFH5-HFH4	1,40	1,37	29,76	41,1830784	35,005617
HFH6-HFH5	1,30	1,40	27,39	37,00567035	31,45482
HFH7-HFH6	1,24	1,30	13,46	17,1243504	14,555698
HFH8-HFH7	1,37	1,24	29,22	38,1373596	32,416756
HFH9-HFH8	1,35	1,37	33,48	45,4655052	38,645679
HF44-HF43	2,28	2,54	28,09	67,7485856	57,586298
HF45-HF44	2,18	2,28	24,03	53,5878612	45,549682
HFJ1-HF42	2,47	2,49	25,48	63,13307	53,66311
HFI1-HF41	2,11	2,53	20,58	47,7237852	40,565217
HFI2-HFI1	2,13	2,11	19,01	40,2240194	34,190416

Tronçons	Profondeur	fil d'eau	Long(m)	Section longitidunale	Déblais
Tronçons	Amont	Aval	Long (m)	(m2)	(m3)
HFI3-HFI2	2,13	2,13	27,75	59,061435	50,20222
HFI4-HFI3	2,12	2,13	17,52	37,2636384	31,674093
HFG1-HF40	2,07	2,02	29,6	60,522824	51,4444
HFG2-HFG1	2,02	2,07	20,73	42,365901	36,011016
HFG3-HFG2	1,98	2,02	24,65	49,363104	41,958638
HFF1-HF38	2,46	2,87	21,9	58,278309	49,536563
C7-HF36	1,53	3,12	54,9	127,77975	108,61279
G3-HF35	2,48	2,89	11,36	30,508984	25,932636
G2-G3	1,51	2,48	23,72	47,32733	40,228231
HFE1-HF35	1,82	2,89	40,2	94,75743	80,543816
HFEA1-HFE1	1,80	1,82	9,98	18,0825624	15,370178
HFEA2-HFEA1	1,79	1,80	31,7	56,874872	48,343641
HFEA3-HFEA2	1,74	1,79	27,09	47,72160855	40,563367
HFEA4-HFEA3	1,75	1,74	23,98	41,793543	35,524512
HFE2-HFE1	1,72	1,82	22,49	39,82135625	33,848153
HFE3-HFE2	1,92	1,72	16,3	29,643995	25,197396
HFD1-HF34	1,86	2,42	17,98	38,4822344	32,709899
HFD2-HFD1	1,21	1,86	38,58	59,2372752	50,351684
HFD3-HFD2	1,23	1,21	31,11	37,9828212	32,285398
HFD4-HFD3	1,27	1,23	24,83	31,08778075	26,424614
HFD5-HFD4	1,09	1,27	23,58	27,9283878	23,73913
HF33-HF34	1,14	2,42	31,99	56,91868735	48,380884
HF32-HF33	0,72	1,14	11,79	10,94813505	9,3059148
HFB1-G5	1,14	1,79	22	32,2245	27,390825
HF31-HFB1	0,88	1,14	19,41	19,55819535	16,624466
	V	olume des d	éblais		4664,6604
Volum	e réel (en tena	ant compte	du foisonne	ment (27%))	5924,1187

Tableau 13 Volume déblais.

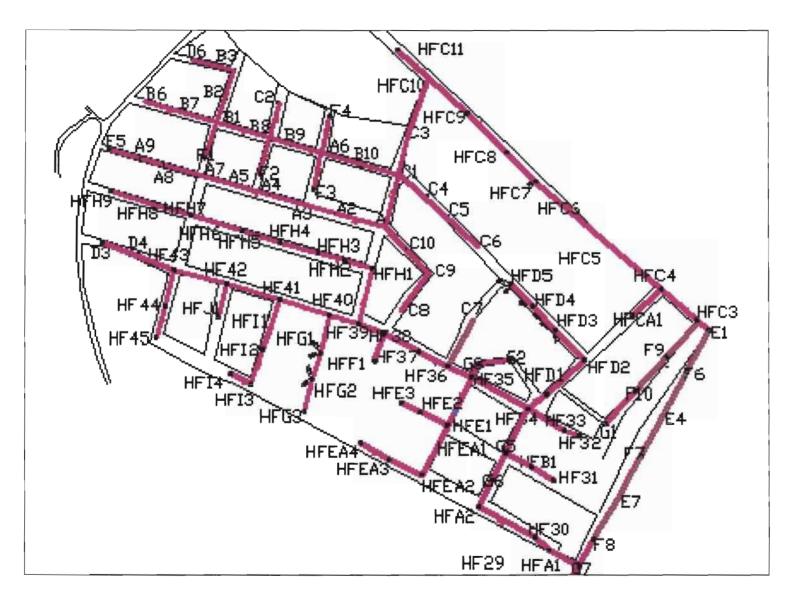


Figure 8 Tracé du nouveau réseau

Présentation de quelques profils en long

Profil en long n°F8-G7]		
Echelle horizontale :500 Echelle verticale : 50 Plan de comparaison :3			
Numéros de profils en travers	1		2 3
Altitudes T.N.	528	517	517
Altitudes projet	ਹ ਲ		315
Ecants T.N projet			
Distances partielles T.N.		20.00	2.66
Distances cumulées T.N.	0.00		22.39
Distances partielles projet			
Distances cumulées projet			
Pentes et rampes		33tm	
Alignements droits et courbes	0.00	L - 88.39	22.39

Profil en long n°E7-F8 Echelle horizontale :500 Echelle verticale : 50 Plan de comparalson :3					
Numéros de profils en travers	1		2		3
Altitudes T.N.	5.35		5.37		5.28
Altitudes projet	3.32				3.21
Ecarts T.N projet					
Distances partielles T.N.		5000	4.00	11.00	
Distances cumulées T.N.	000		24.00		33.00
Distances partielles projet					
Distances cumulées projet					
Pentes et rampes		~	39tm		
Alignements droits et courbes	0.00	L -	35.00		35.00

Profil en long n°F7-E7 Echelle horizontale :500 Echelle verticale : 50 Plan de comparalson :3]					
Numéros de profils en travers	ı			2		3
Altitudes T.N.	5,36		S.39	5.34		5.35
Altitudes projet	9,43					3.32
Ecarts T.N projet						
Distances partielles T.N.		20.00			17	
Distances cumulées T.N.	000			8 8		37.01
Distances partielles projet						
Distances cumulées projet						
Pentes et rampes			-3	Han		
Alignements droits et courbes	0.0		L = 2	97.00		37.01

Profil en long n°E4-F7					
Echelle horizontale :500 Echelle verticale : 50 Plan de comparaison :3					
Numéros de profils en travers	1		5		3
Altitudes T.N.	5,34		E 2		5.32
AltItudes projet	82				3.43
Ecarts T.N projet					
Distances partielles T.N.		2000	4.00	11.00	
Distances cumulées T.N.	0.00		24,00		35.00
Distances partielles projet					
Distances cumulées projet					
Pentes et rampes		3to			
Alignements droits et courbes	9-	L = 33	00.		35,00

Profil en long n°F6-E4 Echelle horizontale :500 Echelle verticale : 50			T			
Plan de comparaison :3						
Numéros de profils en travers	1			2		3
Altitudes T.N.	5.00		4.98	5.09		5.34
Altitudes projet	9.64					3.53
Ecarts T.N. – projet						
Distances partielles T.N.		13.00	7.0	0	17.00	
Distances cumulées T.N.	000		13.m	8.8		37.01
Distances partielles projet						
Distances cumulées projet						
Pentes et rampes			***	39tm		
Alignements droits et courbes	0.00		L	37.00		37,03

Profil en long n°E1-F6 Echelle horizontale :500 Echelle verticale : 50						
Plan de comparaison :2				<u> </u>		
Numéros de profils en travers	,					
Altitudes T.N.	96.4	<u> </u>		5.06		
Altitudes projet	375	<u></u>				364
Ecarts T.N projet						
Distances partielles T.N.		20.00		4.00	11.00	
Distances cumulées T.N.	800			8 8		3000
Distances partielles projet						
Distances cumulées projet						
Pentes et rampes			3,4			
Alignements droits et courbes	0,00		L = 95	DD_		35,00

Profil en long n°HFC3-E1 Echelle horizontale :500 Echelle verticale : 50 Plan de comparaison :2		
Numéros de profils en travers	1	2
Altitudes T.N.	4.95	498
Altitudes projet	38	B,73
Ecarts T.N projet		
Distances partielles T.N.	12	20
Distances cumulées T.N.	000	12.30
Distances partielles projet		
Distances cumulées projet		
Pentes et rampes	,,	3)to
Allgnements drolts et courbes	g L =	12.30 R N

Profil en long n*HFC4-HFC3 Echelle horizontale :500 Echelle verticale : 50 Plan de comparaison :2				
Numéros de profils en travers	t		2	3
Altitudes T.N.	5.17		79.0	Ä
Altitudes projet	396			361
Ecarts T.N projet				
Distances partielles T.N.		20.00	10.02	
Distances cumulées T.N.	800		ER .	
Distances partielles projet				
Distances cumulées projet				
Pentes et rampes		59	۸.	
Alignements droits et courbes	0.0	L = 3	04.02	E

Profil en long n°HFC5-HFC4] [
Echelle horizontale :500 Echelle verticale : 50 Plan de comparalson :3				
Numéros de profils en travers	1	ē		3
Altitudes T.N.	5.10		5	5.17
Altitudes projet	4.16			3.36
Ecarts T.N projet				
Distances partielles T.N.		20.00	19.40	
Distances cumulées T.N.	0.00	C		39.4
Distances partielles projet				
Distances cumulées projet				_
Pentes et rampes			59to	
Alignements droits et courbes	8	L	= 39.4	გ გ

Profil en long n°HFC6-HFC5 Echelle horizontale :500 Echelle verticale : 50 Plan de comparaison :3				
Numéros de profils en travers	ī	_	5	9
Altitudes T.N.	4.57		58.35	
Altitudes projet	8.			416
Ecarts T.N projet				
Distances partielles T.N.		20.00	BO.00	
Distances cumulées T.N.	88		- 8 9	4000
Distances partielles projet				
Distances cumulées projet				
Pentes et rampes			541	
Alignements droits et courbes	8		L = 40	4 th do