UNIVERSITE CHEIKH ANTA DIOP

5m.0538

ECOLE SUPERIEURE POLYTECHNIQUE CENTRE DE THIES

DEPARTEMENT GENIE MECANIQUE PROJET DE FIN D'ETUDES

THEME: AUDIT DU RESEAU ELECTRIQUE DE LA S.A.R (Société Africaine de Raffinage)

Présenté par :

Ibrahima THIAM

Encadreur interne: Mr Gaskel GNING

Encadreur externe: Mr Alioune Mbaye Palla CAMARA

Année académique : 2008/2009

Dédicaces

A,

Mon père Momar THIAM

Ma mère Adama KA

Et à tous mes frères et sœurs

REMERCIEMENTS

Tout d'abord, rendons grâce ALHAMDOULILAH au bon dieu de m'avoir permis de finir ce document en bonne santé.

Je tiens à adresser mes sincères remerciements à toutes les personnes qui m'ont aidé à la réalisation de ce projet de fin d'études.

J'exprime toute ma reconnaissance plus particulièrement à :

- Mr Gaskel GNING, professeur à l'ESP pour son soutien et son encadrement
- Mr Alioune Mbaye Palla CAMARA, Chef de service Electricité, Instrumentation et Système pour son soutien, son encadrement et sa disponibilité
- Mr Sory BADJI, Chef du service Mécanique et Chaudronnerie de m'avoir mis en relation avec mon encadreur externe et de m'avoir encadré à mon stage maitrise
- Mr Bassirou DIENG, technicien qui m'a beaucoup aidé dans mon travail à l'intérieur de la SAR. Je n'oublie pas aussi ces deux supérieurs à savoir Mr DIENG et Mr MANE
- Mr Amadou Tidiane LY technicien et à tout le personnel de la section mécanique

Sommaire

Dans la dynamique de renforcer sa sécurité pour ses installations électriques, la SAR (Société Africaine de Raffinage), qui fait un arrêt métal tous les quatre ans portant à la révision générale de l'entreprise, s'est proposée de faire un audit pour l'ensemble de ses unités.

Ce présent projet vise à contribuer, de manière pratique notre formation de ces trois dernières années pour mettre en œuvre la connaissance théorique qu'on a pu accumuler durant ce temps alloué à notre formation.

La présente étude effectuée à la S.A.R, n'est qu'une partie du sujet vue que le temps nous était compté. Mais n'ayant moins pour commencer, un cahier de charge nous a été fourni, pour suivre ses directives un état des lieux sera fait pour la collecte d'information des différents éléments sur place.

Ensuite une étude portant sur les canalisations à savoir le respect des normes de total, leur mode de pose, les contraintes thermique et dynamique qu'il doivent répondre pour éviter des risques d'accident vue que c'est l'élément principal qui constitue le réseau électrique.

Et enfin l'étude des différents régimes de neutre et la proposition de régime qui convient le mieux pour cette entreprise.

Table des matières

Liste des figures	i
Liste des tableaux	ii
Annexes	iv
LINTRODUCTION	1
CHAPITRE 1: LA S.A.R	2
II. PRESENTATION DE LA S.A.R.	3
1) Historique	3
2) Sa vocation	4
3) Les différentes Directions de la SAR	5
III PRESENTATION DU RESEAU ELECTRIQUE	7
IV.ETAT DES LIEUX	9
CHAPITRE 2 : ETUDE ET VERIFICATION DES CANALISATIONS	14
V.LES CANALISATIONS	15
A.CANALISATIONS ELECTRIQUES UTILISABLES (SPECIFICATIONS DE TOTAL)	15
1) Dispositions générales	15
2) Les canalisations souterraines	15
3) Canalisations aériennes	16
4) Section des conducteurs	17
B.DETERMINATION DES SECTIONS DES CONDUCTEURS EN BASSE TENSION	18
1) Principe de la méthode	18
2) Détermination du courant d'emploi.	20
3) Choix du dispositif de protection par déduction de In	25
4) Calcul des courants de court-circuit par la méthode des impédances	28
5) Courants admissibles dans les canalisations	32
6) Vérification des chutes de tension	41

7) Logigramme pour la détermination de la section minimale d'une canalisation BT	46
C. Détermination des sections de conducteurs en moyenne tension (suivant la norme NF C13-205)	47
1) Principe de la méthode	47
2) Détermination du courant maximal d'emploi	48
3) Courant admissible dans les canalisations	48
4) Contraintes thermiques des conducteurs en cas de court-circuit et détermination de la section S ₂	55
5) Courants de courte durée admissible dans les écrans de câble à isolation synthétique extrudée (détermination de S ₃)	58
6) Vérification des chutes de tension	60
7) Logigramme pour la détermination pratique de la section minimale d'un câble moyenne tension	61
VI.COMPARAISON ENTRE L'ETUDE THEORIQUE ET LES VALEURS RELEVEES	62
A. Basse tension	62
1) Vérification des calibres et des pouvoirs de coupure des fusibles de protections	62
2) Vérification de la section des conducteurs	64
B. Moyenne tension	65
CHAPITRE 3 : ETUDE DES REGIMES DE NEUTRE	66
VII Etude des régimes de neutre	67
1)Introduction	67
2) Les différents régimes de neutre	68
3) Régimes de neutre et schémas des liaisons à la terre utilisés en basse tension	70
a)Neutre isolé ou impédant (schéma IT)	70
b) Neutre mis directement à la terre (schéma TT)	71
c)Mise au neutre (schéma TN)	72
4) Comparaison des différents régimes de neutre basse tension	72
a)Schéma TT	72
b) Schéma TN	72
c)Le schéma TN-C	73

Projet de fin d'études

d) Le schéma TN-S	73
e)Le schéma IT	73
5) Performances des régimes du neutre	74
6) Choix et recommandations d'emploi	7 6
7) Régimes du neutre utilisés en haute tension	77
a)Principes et schémas utilisés en haute tension	77
b) Schémas recommandés dans les installations industrielles ou tertiaires	79
8) Inter action entre haute tension et basse tension	83
CHAPITRE 4 : CONCLUSION ET RECOMMADATIONS	86
VIII. Conclusion et recommandations	87
Bibliographie	88
ANNEXES	89

Liste des figures

igure III-1 : organigramme de la SAR
igure III-1: SCHEMA DU RESEAU ELECTRIQUE 9
igure V-1 : Logigramme du choix de la section des canalisations et du dispositif de protection 20
igure V-2 : courant du circuit nécessaire à la détermination du calibre de la protection fusible ou disjoncteur) (selon NF C15-100)
igure V-3: distance entre câble(a)
igure V-4 : logigramme pour la détermination de la section d'une canalisation en basse tension 47
igure V-5 : court-circuit dans l'âme
igure V-6: logigramme de la détermination de la section minimale 'un câble en moyenne tension
igure VII-1 : neutre isolé ou impédant (schéma IT) en basse tension
figure VII-2 : neutre mis directement à la terre (schéma TT) en basse
igure VII-3 : principe de réalisation des mises à la terre dans une installation haute tension 83
rigure VII-4 : exemple d'élévation du potentiel des masses BT pour un défaut sur la partie haute ension du poste

Liste des tableaux

Tableau IV-1 : état des lieux	10
Tableau V-1: facteur de simultanéité pour bâtiment administratif	26
Tableau V-2 : facteur de simultanéité pour armoires de distribution industrielle	26
Tableau V-3 : détermination du courant d'emploi	27
Tableau V-4 : choix du calibre de fusible adéquat	30
Tableau V-5 : détermination des résistances et réactances de chaque circuit moteur	28
Tableau V-6 : calcul des courants de court-circuit	34
Tableau V-7 : mode de pose pour la lettre de sélection D	36
Tableau V-8 : facteurs de corrections pour les différentes températures du sol différentes de 20°C (canalisations enterrées)	37
Tableau V-9: facteur de correction pour les canalisations enterrées en fonction de la résistivité thermique du sol	38
Tableau V-10: Facteurs de correction pour groupement de plusieurs câbles posés directement de sol, câbles mono conducteurs et multiconducteurs disposés horizontalement ou verticalement	
Tableau V-11: courants admissibles (en ampère) par les canalisations dans les conditions stand d'installation (f_0 à f_{10} =1) pour la lettre de section D (canalisation enterrée)	
Tableau V-12 : détermination du courant I'z et de la section des canalisations	39
Tableau V-13: chutes de tension admissibles dans les réseaux basse tension	45
Tableau V-14: chute de tension de chaque départ moteur	46
Tableau V-15: valeur du coefficient k conformément à la norme NF C15-100	47
Tableau V-16: calcul de la section minimale pour la contrainte thermique	48
Tableau V-17: mode de pose en moyenne tension	
	52
Tableau V-18: facteur de correction pour des températures du sol différentes de 20°C (câble enterré)	
• • •	53

Projet de fin d'études

inférieur où égal à 6/6 (7,2kV)	•
Tableau V-22 : détermination de la section \$1	
Tableau V-23: valeurs du coefficient k	
Tableau V-24: détermination de la section S ₂	62
Tableau V-25: conditions de température retenues pour le calcul	63
Tableau V-26 : câbles tripolaires à ceinture à isolant PVC de tension assignée 6/6 (7,2kV) cour court-circuit admissible dans l'écran (A)	
Tableau VI-1 : tableau de comparaison entre les valeurs calculées et les valeurs prélevées à l'u	isine. 62
Tableau VI-2 : comparaison entre les différentes sections	68
Tableau VII-1 : modes de raccordement du point neutre	73
Tableau VII-2 : choix du régime de neutre	81
Tableau VII-3:définition des régimes du neutre en haute tension	83
Tableau VII-4a : durée maximale de maintien de la tension de contact présumée dans secs (UL = 50V)	
Tableau VII-4b : durée maximale de maintien de la tension de contact présumée dans les locau humide à (UL = 50V)	
Tableau VII-5 : interaction entre haute et basse tension	84

Annexes

Annexe1 : Lexique	a
Annexe2: Procédure de calcul de 1cc	b
Annexe3 : Norme de calcul de Icc	С
Annexe4 : Mode de pose en basse tension.	1
Annexe5 : Mode de pose en moyenne tension	q
Annexe6 : Valeur des courants de surintensités admissibles dans les écrans de câblest	,
Annexe7 : Fusiblev	/
Annexe8 : Valeurs des coefficients A et B pour les câbles isolés au papier imprégné	y
Annexe8 : Surtension.	y

LINTRODUCTION

Cette mission d'audit consiste à faire un état des lieux des éléments de protections existants sur les différents départs moteurs aux niveaux des différents postes électriques de la raffinerie. D'après les schémas fournis pour la partie puissance à basse tension, le départ de chaque moteur est équipé de contacteur dont la protection est assurée par fusible et relais thermique. Concernant les moteurs en moyenne tension et les transformateurs, chaque départ moteur est équipé d'un disjoncteur et de relais de protection de marque CEE. Durant cette mission d'audit, il nous sera normal de suivre les directives fournies par le cahier de charge à savoir la vérification des types de protections par départ moteur et les réglages de ces protections afin de s'assurer que pour chaque composant du réseau ces éléments sont bien calibrés pour la sécurité du matériel et du personnel. Elle intègre les calculs de vérification des courants de court-circuit pour la détermination des calibres et des pouvoirs de coupure.

La vérification de la section des conducteurs est aussi l'une des parties essentielles de cet audit, elle permet d'évaluer la bonne section pouvant supporter le courant maximal d'emploi dans le câble en régime permanant et la chute de tension à ne pas dépasser pour éviter les risques d'incendies.

Une vérification du régime des neutres sera faite, suivie d'une étude et des propositions pour une compatibilité des régimes de neutre pour la distribution HT et BT dans les unités. Notons que cette distribution du régime en HT et BT dans les unités sont en TT avec isolement par impédance et celui de MATFORCE les neutres des alternateurs des groupes sont tous liés à la masse et celle-ci à la terre.

Pour des soucis d'efficacité et de contrainte de temps, les harmoniques et d'autres imperfection du réseau ne pourront pas faire l'objet d'une étude et c'est dans cet lancé que notre cahier de charge nous oblige à ne prendre en compte que les moteurs de puissance supérieure à 30kW.

CHAPITRE 1: LA S.A.R

II. PRESENTATION DE LA S.A.R

La Société Africaine de Raffinage (SAR) est une entreprise sénégalaise implantée à Mbao, prés de Dakar. Crée en 1961 à l'initiative du gouvernement sénégalais et de la Société Africaine de Pétrole (SAP), avec le concours de grandes sociétés pétrolières. Seule raffinerie du pays, c'est aujourd'hui, de par son chiffre d'affaires (764 147 000\$ en 2005) la première industrie du pays.

1) Historique

<u>1961</u>: Création de la Société Africaine de Raffinage sur l'initiative du Gouvernement sénégalais et de la Société Africaine de Pétrole (SAP)

1962 : En Juin, début des travaux de construction de la S.A.R.

1963: Fin des travaux en Novembre et démarrage du premier traitement le 31 Octobre.

Les installations comprenaient une distillation atmosphérique, un reformeur et un catalytique pour une capacité totale de traitement de 600 000 tonnes.

1964 : Inauguration de la S.A.R. par son Excellence Léopold Sédar Senghor le 27 janvier.

1975 : Augmentation de la capacité qui passe de 600 000 à 750 000 tonnes.

: Remodelage de la distillation atmosphérique. La capacité passe à 900 000 tonnes.

1983 : Extension de la raffinerie

- la construction d'une distillation sous vide
- l'augmentation de la capacité du dessaleur
- la construction d'une unité de Mérox pour le traitement du kérosène.
- l'augmentation de la capacité du reformeur
- l'extension de la centrale électrique par adjonction de 2 groupes électrogènes de 1600 KW.
 Cette extension porte la capacité de traitement à 1 200 000 tonnes.

<u>1987</u>: Amélioration de la production de butane par l'installation d'une unit de récupération avec conduite numérique TDC 2000.

1996-1997: Extension du réseau incendie

- construction d'une nouvelle pomperiez
- construction d'un réservoir d'eau de 12 000 m3
- installation d'une bouche d'incendie de diamètre 20"

Mise en place d'une logistique butane : cigare de 2 000m³ pour stockage du butane, réalisation d'un sea-line et d'un pipe-line de 24 pouces de diamètre pour réception de butaniers de 5 000 tonnes.

Construction et équipement d'un PC sécurisé avec système de commande des pompes à distance.

1998-2002 : Gros investissements axés sur l'amélioration de l'outil de production et la prise en compte du volet environnemental Barrage antipollution et écrémeur pour la lutte contre la pollution marine par les hydrocarbures).

 $\underline{2003}$: Installation d'un bassin moderne de traitement des eaux résiduaires pour une meilleure protection de l'environnement

2004 : Certification ISO 9001 version 2000 de toute l'activité industrielle de l'entreprise

<u>2005</u>: Reconnaissance de l'entreprise niveau 6 du Système International d'Evaluation de la Sécurité (SIES).

Construction d'une salle de contrôle anti-explosion « blast proof » conforme aux normes internationales de sécurité.

2) Sa vocation

L'activité de la S.A.R depuis sa convention d'établissement consiste au raffinage du pétrole brut et à l'approvisionnement du marché local et Ouest africain en produits pétroliers. Pour cela, elle se voit obliger d'importer différents types de pétrole notamment :

- Le BONNY-LIGHT du Nigeria
- . Le MANDJI du Gabon
- Le PALACON de l'Angola

L'approvisionnement de la société en pétrole brut et en fuel s'effectue par des tankers d'une capacité de 110.000 à 130.000 tonnes. Le pétrole brut est déchargé dans la baie de Mbao à travers un sea-line de 5,6km de long. Une fois le déchargement effectué, le pétrole brut est stocké dans un parc de 7 bacs d'une capacité de contenance de 25.000m³; et les produits finis sont stockés dans 25 bacs d'une capacité variant entre 1.000 et 4.500m³.

Après transformation des produits de base les produits finis obtenus sont les suivants :

- Le Gaz Butane
- L'Essence Légère
- Le Kérosène
- Le Gas-oil
- Le Fuel -oïl
- Le Pétrole lampant
- Le Diesel-oïl

La séparation de l'essence en divers produits finis se fait dans le distillateur qui est un instrument de séparation, c'est à dire que le brut se stabilise en fonction de sa masse. Le reforming catalytique permet de transformer le Nafta qui est un produit intermédiaire en reformât qui, mélangé à de l'essence légère, devient de l'essence super ou ordinaire.

3) Les différentes Directions de la SAR

La SAR comprend cinq directions subdivisées en services et sections. (Voir organigramme)

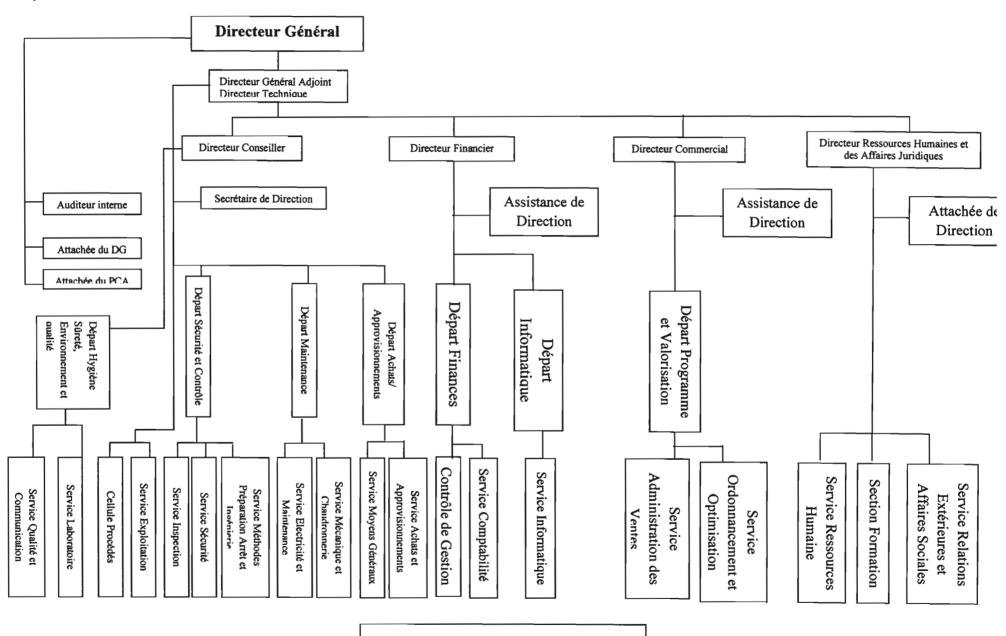


Figure II-1: organigramme de la SAR

Ibrahima THIAM

III.PRESENTATION DU RESEAU ELECTRIQUE

Le réseau électrique de la SAR est alimenté par MATFORCE depuis octobre 2005 qui dispose en son sein quatre groupes de 1 MW chacun. Deux groupes, à savoir MAT1 et MAT2 sont couplés sur le réseau basse tension, qui fournissent sur un jeu de barre une tension de 400V qui est le tableau normal de la tranche 06 à la tranche 23 et les deux autres MAT3 et MAT4 couplés avec chacun un transformateur 400/6600V permettent d'alimenter le jeu de barres moyenne tension en 6600V. Ce jeu de barres HT dessert un certain nombre de moteurs sur lequel on a couplé encore deux autres transformateurs abaisseurs pour avoir une fois encore à la sortie une tension de 400V pour alimenter le tableau secours qui va de la tranche 00 à la tranche 05.Il faut noter aussi que cette partie qui alimente le secours avec un autre système de dérivation est branchée sur le tableau normal basse tension de ce fait en cas d'arrêt de MAT1 et/ou MAT2 c'est la cellule haute qui assure la compensation de la demande en électricité des moteurs basse tension et ce système étant réversible en cas d'arrêt de MAT3 et/ou MAT4 c'est la basse tension qui assure ce relais.

Une armoire inverseur est installée pour en cas de défaillance du réseau ou bien des groupes de MATFORCE cette dernière puisse basculer une partie du réseau à savoir le bâtiment administratif vers le réseau de la SENELEC.

Notons aussi que la SAR dispose des auxiliaires de poste électrique (redresseur et alimentation auxiliaire), des démarreurs (statoriques et étoiles triangles) et des équipements de sécurité d'un poste.

Chaque colonne (tranche) dessert un certain nombre de départ moteur basse tension.

(Voir figure III-1)

IV.ETAT DES LIEUX

Dans le cadre de notre mission pour l'audit du réseau électrique de la S.A.R, par des soucis de contrainte de temps et d'efficacité le cahier de charge dont nous nous soumettons pour cette étude nous contraint de tenir en compte que les moteurs dont leur puissance est supérieure ou égale à 30 kW. De ce fait l'état qu'on a pu faire concernant ces moteurs, a été récapitulé au niveau du tableau IV-1 nous renseignant sur la puissance du moteur, le courant assigné, les organes de la protection de chaque moteur, la longueur du câble qui l'alimente et enfin de la section du conducteur. (Voir tableau IV-1)

Tableau IV-1 : état des lieux

Libelles des Etiquetes	Repére	PUSSACE (kw)	INTENSITE EN(A)	Taille HP.C	HP.C	TYPE(AM	ISCLATEUR	CONFICIELR	THERMOLE	TCPOUR	TYPE DE CABLE	LONGUEUR (m)	SECTION ET NATURE DU CABLE
POMPE RESIDU ATMOSPHERIQUE	G102A	37	70	22X38	80	АМ	Int3X125		RT 75	100/1A	U1000RGPFV	125	3x25mm² CUIVRE
POMPE RESIDU ATMOSPHERIQUE SECOURS	G102B	37	70	22X58	F3X80	АМ			RT 63	100/1A	U1000RGPFV	125	3X25mm² CUIVRE
PDMPE D'EAU DE CHAUDIERE	G341A	37	70	14X51	80	АМ	IT 125 GB2CD06	LC1F150 LX4FF220 LA9W90M	LR2D1 305 (0,63/1)	S12-100	U1000RGPFV	70	3X25mm² CUIVRE
POMPE D'EAU DE CHAUDIERE SECOURS	G341B	37	70	14X51	80	AM	IT 125 GB2CD06	LC1F150 LX4FF220 LA9Z90M	LR2D1305 (0,63-1A)	512-100	U1000RGPFV	65	3X25mm ² CUIVRE
POMPE DE TRAITEMENT DES EAUX	G401	37	70	14X51	80	АМ	IT 125 GB2CD06	LP1D 8 010 TD LA9Z90M LA1 DN22	RT70		U1000RGPFV	300	3X50mm² CUIVRE
POMPE KEROZENE	G806	37	70	22×58	F3X100	АМ	Int3X160	LCI-D50-3M D50	RT 70	100/1A	U1000RGPFV	65	3X25mm² CUIVRE
REFLUX C101	G107A	40	73	14X51	F3X80	АМ	Int3X125	LC1 F115M5 +LA1 DN11 RB122B220V	RT 63	100/1A	U1000RGPFV	120	3X35 mm² CUIVRE
CHARGE C105	G107B	40	73	14X51	F3X80	AM	Int3X125		RT 63	100/1A	U1000RGPFV	120	3X35 mm² CUIVRE
POMPE DE TRANSFERT	G402	40	73	14X51	F3X20	АМ	Int3X35	C3X225 A	RT 200	200/1A	U1000RGPFV	305	3X50mm² CUIVRE
TRANSFERT PRODUITS BLANCS	G502	41	42,5	14X51	90	АМ	IT 125-3P GB2CD06	LC1 D1210M7 +LA1 DN11 RB122B 220V	LR2D1 308 (0,63/1)	\$12-100	U1000RGPFV	220	3X50mm² CUIVRE
POMPE CHARGE REFORMING	G202NA	45	85	22X58	100	АМ	5IRCO 200A	CNIGC 133M 125A	LRI-D09-305 (0,63/1A) 0,85	2TC 100/1A	U1000RGPFV	125	3X35 mm² cuivre

Audit du réseau de la SAR

POMPE CHARGE REFORMING	G202B	45	85	22X58	100	АМ	SIRCO 200A	CNIGC 133M 125A	LRI-D09-305 (0,63/1A) 0,85	2TC 100/1A	U1000RGPFV	125	3X35 mm² culvre
EXPEDITION BUTANE/PROPANE	G505A	45	83,3	14X51	100	АМ	Int3X125	LC1 F115M5 +LA1 ON 11 RB1 22B 22OV	RT 79	100/1	U1000RGPFV	230	3X35 mm² culvre
POMPE DE GAZ BUTANE	G505B	79	79	14X51	F3X100	АМ	Int3X125	LC1 F225M5 +LA1 DN 11 +LA2 DT2 RB1 22B 220V	RT 80	100/1A	U1000RGPFV	230	3X35 mm² culvre
SOUTIRAGE GO/SV	G143A	55	104	22X58	F3X125	АМ	Int3X315	LC1F150M5 +LA1DN11 RB1 22B 220V	RT 101	160/1A	U1000RGPFV	195	3X50mm² culvre
SOUTIRAGE GO/SV	G143B	55	104	т1	F 3X125	АМ	int 3X125	LC1F1 50M5 +LAI DN11 RB1 22B220V	RT 94	125/14	U1000RGPFV	195	3X50mm² culvre
POMPE RESIDU SOUS VIDE	G146A	50	90	22X58	F3X125	AM	Int 3X125	CNIGC 133M 125A	RT 100X0,8	2TC 10C/1A	U1000RGPFV	205	3X50mm² culvre
POMPE RESIDU SOUS VIDE SECOURS	G146B	50	90	22X58	F 3X100	АМ	SIRCO 200A	CNIGC 133M 125A	LRI-D09-305 (0,63/1A) 0,9	2TC 100/1A	U1000RGPFV	205	3X50 mm² cuivre
AIR INSTRUMENT	K301	55	96	T1	F 3X125	АМ	IT 315-3P GB2CD06	LC1F1 50M5 +LA1 DN11 RB1 22B 220V	LR2D1 305 (0,63/1) RT160X0,63	160/1A	U1000RGPFV	107	3X35 mm² culvre
COMPRESSEUR D'AIR	K302	55	106	14X51	F 3X125	AM	П 125 GB2CD06	LP1D8010TD LA9Z90M LA1DN22	LR2D3361 (55/70)	100/1A	U1000RGPFV	105	3X35 mm² cuivre
TOUR HAMON	1301	55	105	Т1	F3X125	АМ	Int 3X315	LC1F1 50M5 +LAI DN11 RB1 22B220V	RT 100X0,63	160/1A	U1000RGPFV	50	3X95mm CUIVRE

Audit du réseau de la SAR

EXPEDITION ESSENCE	G504A	60	52	14X51	F 3 X125	AM	Int3X125	LC1 F250	RT 101	160/1A	U1000RGPFV	225	3X95mm² CUIVRE
EXPEDITION ESSENCE	G5048	60	52	14X51	F3X125	АМ	Int3X125	LC1 F250	RT 101	160/1A	U1000RGPFV	225	3X95mm² CUIVRE
EXPEDITION ESSENCE	G504C	55	102	14X51	F3X125	AM	Int 3X315	LC1F1 50M5 +LA1 DN11 RB1 22B 220V	RT 101	160/1A	U1000RGPFV	225	3X95mm² CUIVRE
POMPE CHARGE PRETRAIT	G201A	55	104	14X51	F3X125	АМ	Int 3X125	LC1 F225M5 +LA1 DN11 +LA1 DT1 RB1 22B 220V	RT S5	125/1A	U1000RGPFV	125	3X50mm² CUIVRE
CHARGE HDT	G201B	75	138	14X51	160	АМ	IT 315-3P GBR2CD06	LC1 F225M5 +LA1 DN11 +LA1 DT1 RB1 22B 22OV	LR2D1 305 (0,63/1)	\$12-200	U1000RGPFV	125	3X50mm² CUIVRE
POMPE EXPEDITION GASOIL	G503A	78,7	79	14X51	F3X200	АМ	Int3X315	LC1 F225M5 +LA1 DN 11 +LA2 DT2 RB1 22B 220V	RT 140	200/1A	U1000RGPFV	220	3X95mm² CUIVRE
POMPE EXPEDITION GASOIL	G503B	78,7	79	14X51	F3X160	АМ	Int3X315	LC1 F225M5 +LA1 DN 11 +LA2 DT2 RB1 22B 220V	RT 140	200/1A	U1000RGPFV	220	3X95mm² CUIVRE
pompe pour recirculation eau de refroidissement des moteurs thermiques	G305B	85	153	14X51	200	АМ	IT 315-3P GB2CD07	LC1 F225M5 +LA1 DN11 +LA2DT2 +RB122B 220V	RT 1	200/1A	U1000RGPFV	325	3X240mm² CUIVRE
pompe pour recirculation eau de refroidissement des moteurs thermiques	G305C	85	153	14X51	200	АМ	IT 315-3P GB2CD07	LC1 F225M5 +LA1 DN11 +LA2DT2 +RB122B 220V	RT 140	200/1A	U1000RGPFV	325	3X95mm²

Audit du réseau de la SAR

REPRISE BRUT D 120	G120A	132	245	14X51	315	AM	IT 500-3P GB2CD07	LC1 F330M7 +LA1 DN11 +LA2DT RB1 22B	RT 202	320/1A	U1000RGPFV	135	3X240m CUIVR
REPRISE BRUT D120	G120B	132	245	14X51	315	AM	IT 500-3P GB2CD07	LC1F330M7 +LA1 DN11 +LA2DT2 RB1 22B 22OV	RT 202	320/1A	U1000RGPFV	135	3X240m CUIVR
POMPE BRUT FROID	GM101A	175	18,7				U1000RGPFV	260	3X16mi CUIVR				
POMPE BRUT FROID SECOURS	G101B	175	19			Pro	U1000RGPFV	250	16mm² -				
EXPEDITION FO	G503C	220	23,6			FIO	U1000RGPFV	250	3X16mi CUIVR				
pompe d'expedition fuel vers SENELEC S D E	G404	220	23,6				U1000RGPFV ···	250	3X16mi CÜIVR				
tranfert du fuel vers SDE et SENELEC	G501B	93	195	315			Int3X500		RT 252	400§1Q	U1000RGPFV	220	X240mm²

CHAPITRE 2 : ETUDE ET VERIFICATION DES CANALISATIONS

V.LES CANALISATIONS

<u>Définition</u>: Ensemble constituée par un ou plusieurs conducteurs électriques et les éléments assurant leur fixation et, le cas échéant, leur protection mécanique.

A.CANALISATIONS ELECTRIQUES UTILISABLES (SPECIFICATIONS DE TOTAL)

1) Dispositions générales

Les canalisations électriques doivent être établies pour remplir leur service pendant au moins 30ans, sans entretient et sans risque d'inflammation de l'atmosphère explosible du lieu d'installation.

Elles doivent en particulier :

- être protégées contre les chocs mécaniques susceptibles de les endommager,
- supporter sans dégradation les influences du milieu d'installation (intempéries,
 rayonnements solaires, températures ambiantes, contacts avec les hydrocarbures),
- ne pas propager la flamme (en minimum classe 2 de la norme NF C32-070) et ne pas constituer une voie de communication pour l'atmosphère explosible entre deux zones à risques distincts.

Autant que possible elles doivent être installées hors zone classée en étant enterrées dans le sol et ne sortir de celui-ci qu'au plus prés du matériel raccorder.

Les canalisations aériennes doivent être limitées aux passages obligatoires sur des structures aériennes et aux liaisons de faible longueur nécessaires aux raccordements des matériels électriques

2) Les canalisations souterraines

Les câbles utilisés en souterrain doivent disposer :

- D'une gaine étanche résistant à l'eau et aux hydrocarbures de toutes natures, normalement constituée de plomb, sauf dérogation écrite de TOTAL,
- D'une armure de deux feuilles épais protégés contre l'oxydation et assurant la protection mécanique,

Ibrahima THIAM 15 2008/2009

 D'une gaine extérieure de protection en PVC ou matériau équivalent, résistant aux hydrocarbures aliphatiques.

Parmi les câbles répondant aux dispositions précédentes seuls ceux listés ci-après doivent être utilisés :

- câbles BT et TBT de puissance et de commande : câbles type U1000 RGPFV (NF C 32-111).
- câbles HT de puissance $U \le 5.5kV$: câbles 6/6 kV ou 6/10 kV (NF C 33-220)
- câbles de télétransmission et de téléphonie : câbles conformes à une norme reconnue de câbles industriels

Ces câbles sont définis dans la spécification de TOTAL H715. Câbles électriques, de puissance, de contrôle, de télétransmission, de téléphonie et de terre, ils doivent être posés conformément à la spécification de TOTAL H715.

3) Canalisations aériennes

Les installations fixes aériennes doivent normalement être constituées de câbles armés ayant les mêmes caractéristiques que les câbles souterrains, à l'exception de la gaine de plomb qui peut être remplacé par une gaine étanche en PVC ou matériau équivalent.

En particulier, les câbles BT et TBT de puissance et de commande qui cheminent exclusivement en aérienne doivent être de type U1000 RVFV (NF C 32-322) avec gaine extérieure résistant aux hydrocarbures aliphatiques.

Pour des raisons de tenue aux chocs et de tenue au sectionnement d'isolement, les câbles non armés doivent être évité. Ils ne peuvent être utilisés que lorsque les câbles armés sont inadaptés.

En particulier, les câbles souples utilisables pour le raccordement des moteurs et des matériaux soumis à des vibrations ou à des déplacements, doivent comporter une gaine extérieure renforcée de polychloroprène ou matériau équivalent, résistante aux intempéries aux huiles minérales et à des chocs mécaniques moyens. Les câbles suivants sont utilisables :

- câbles BT et TBT de puissance et de commande : câbles type H07 RN-F

Ibrahima THIAM 16 2008/2009

 câbles HT de puissance U ≤ 5,5kV : câbles 6/6 kV de chantier avec écran de conducteur souple et double gaine de protection extérieure.

Les câbles aériens, devant assurer leur fonction en cas d'une explosion temporaire au feu, doivent être de la catégorie C1+CR1définie dans la norme NF C 32-070 ou protégés par un dispositif équivalent.

En zone de type 1, les câbles doivent être protégés contre les chocs mécaniques sur leurs parcours.

En zone de type 2, les câbles doivent être protégés contre les chocs mécaniques aux endroits où ce risque existe aussi bien en exploitation normale que lors des travaux d'entretien.

Les câbles sont définis dans la spécification TOTAL H715. La pose des câbles aériens doit s'effectuer sous fourreaux ou sur chemins de câbles en acier galvanisé conformément à la spécification TOTAL H708.

4) Section des conducteurs

La section des conducteurs doit être déterminée pour satisfaire aux prescriptions des chutes de tension et courants admissibles, en prenant en compte les protections contre les surcharges et les surintensités, ainsi que les conditions d'installation.

En zone de type 1, la température maximale d'un conducteur suite à un court-circuit doit être limitée à la valeur compatible avec les caractéristiques du matériel et en tout cas ne doit pas dépasser 200°C.

Les canalisations situées en zone classée doivent avoir leur courant admissible réduit de 15%, conformément à ce qui est indique dans la norme NF C15-100. Cette disposition s'applique notamment aux canalisations aériennes. Elle ne s'applique pas aux parties enterrées des câbles qui, en conséquence, doivent faire l'objet d'une détermination particulière du courant admissible. La section retenue pour un câble doit satisfaire les conditions propres à chacun des cheminements.

En raison de leurs spécificités respectives, les conducteurs basse tension et moyenne tension sont traités dans des paragraphes différents.

B.DETERMINATION DES SECTIONS DES CONDUCTEURS EN BASSE TENSION

1) Principe de la méthode

En conformité avec les recommandations de la norme NF C15-100, le choix de la section des canalisations et du dispositif de protection doit satisfaire plusieurs conditions nécessaires à la sécurité de l'installation.

La canalisation doit :

- > Véhiculer le courant maximal d'emploi et ses pointes transitoires normales
- > Ne pas générer de chute de tensions supérieures aux valeurs admissibles.

Le dispositif de protection doit :

- > Protéger la canalisation contre toutes les surintensités jusqu'au courant de court-circuit
- Assurer la protection des personnes contre les contacts indirects.

Le logigramme de la figure V-1 résume le principe de la méthode qui peut être décrite par les étapes suivantes :

1ére étape :

- Connaissant la puissance d'utilisation, on détermine le courant maximal d'emploi *Ib* et on en déduit le courant assigné *In* du dispositif de protection.
- On calcule le courant de court-circuit maximal *Icc* à l'origine du circuit et on en déduit le pouvoir de coupure du dispositif de protection.

2iéme étape :

- Selon les conditions d'installation (mode de pose, température ambiante,...), on détermine le facteur global de correction **f**.
- en fonction de In et de f, on choisit la section adéquate du conducteur.

Ibrahima THIAM 18 2008/2009

3iéme étape :

- vérification de la chute de tension maximale
- vérification de la tenue des conducteurs à la contrainte thermique en cas de court-circuit
- pour les schémas TN et IT, vérification de la longueur maximale relative à la protection des personnes contre les contacts indirects.

La section du conducteur satisfaisant toutes ces conditions est alors retenue.

NOTA: une section économique supérieure à la section déterminée ci-avant pourra éventuellement être retenue.

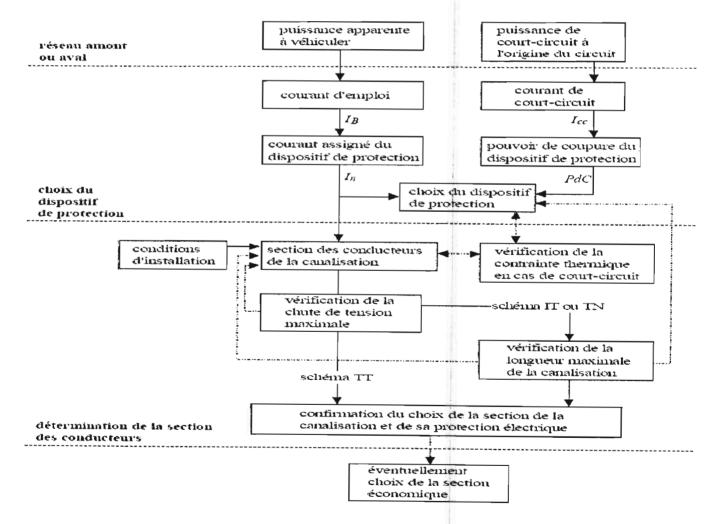


Figure V-1 : Logigramme du choix de la section des canalisations et du dispositif de protection

2) Détermination du courant d'emploi

Le courant d'emploi (Ib) est défini selon la nature de l'installation alimentée par la canalisation.

Dans le cas de l'installation individuelle d'un appareil, le courant Ib sera égal au courant assigné de l'appareil alimenté. Par contre, si la canalisation alimente plusieurs appareils, le courant Ib sera égal à la somme des courants absorbés, en tenant compte des facteurs d'utilisation et de simultanéité de l'installation.

Dans le cas de démarrages de moteurs ou de régimes cycliques de charge (poste de soudure par point), il faut tenir compte des appels de courants lorsque leur effet thermique se cumule.

Certaines installations sont sujettes à des extensions dans le temps. Le courant correspondant à cette extension sera ajouté à l'existant.

En courant continu:

$$I = \frac{P}{U} \left(\frac{puissance \ absorbée \ (en \ W)}{tension \ de \ service \ (en \ V)} \right)$$

En courant alternatif:

$$I = \frac{S}{U}$$
 en monophasé et $I = \frac{S}{U\sqrt{3}}$ en triphasé.

S: puissance absorbée (VA)

U : la tension entre les deux conducteurs pour une alimentation monophasée

: tension entre phase pour une alimentation triphasée

Lorsque des courants harmoniques de valeur importante circulent dans le conducteur, il faut en tenir compte. Pour le choix de la section, on prendra donc

$$I_{eff} = \left(\sum_{p=1}^{\infty} I_p^2\right)^{\frac{1}{2}}$$

I1: valeur de courant à 50 Hz (ou 60 Hz)

Ip: valeur du courant harmonique de rang p

Par exemple pour un variateur de vitesse :

$$\frac{I_{eff}}{I_1} \approx 1.7$$

Lorsqu'il existe des condensateurs de compensation en aval de la canalisation, on détermine le courant d'emploi de la façon suite :

- En supposant que la compensation est en fonctionnement ; en cas de défaillance des condensateurs, la canalisation est mise hors service.
- En supposant que la compensation est hors service ; en cas défaillance des condensateurs, la section des conducteurs est suffisante, on améliore ainsi la disponibilité.

La détermination des différents facteurs pour le calcul du courant d'emploi est présenté comme suite :

Facteur tenant compte du facteur de puissance et du rendement : a

La puissance apparente d'un récepteur est :

$$S = \frac{P_{ll}}{r \times F_p} \qquad \text{en kVA}$$

Pu: puissance utile en kW

r : rendement

Fp: facteur de puissance

On définit le coefficient :

$$a = \frac{1}{r \times F_p}$$

Lorsque le conducteur est parcouru par un courant dépourvu d'harmoniques,

$$F_{p} = \cos \varphi$$

Dans notre étude on admettra cette supposition du coefficient Fp.

Facteur d'utilisation des appareils : b

Dans une installation industrielle, on suppose que les récepteurs ne seront jamais utilisés à pleine puissance. On définie alors un facteur d'utilisation (b) qui varie généralement de 0,1 à 1.

A défaut de précision, on peut prendre :

- b=0.75 pour les moteurs
- b=1 pour l'éclairage et le chauffage

• Facteur de simultanéité : c

Dans une installation industrielle, les récepteurs (d'un atelier par exemple) alimentés par une même canalisation, ne fonctionne pas simultanément dans tous les cas. Pour tenir compte de ce phénomène, qui reste lié aux conditions d'exploitation de l'installation, dans le dimensionnement des liaisons, on applique à la somme des puissances des récepteurs le facteur de simultanéité.

En l'absence d'indications précises résultant de l'expérience d'exploitation d'installation type, les valeurs des tableaux V-1 et V-2 peuvent être utilisées :

Tableau V-1: facteur de simultanéité pour bâtiment administratif

Utilisation	Facteur de simultanéité c
Eclairage	1
Chauffage et conditionnement d'air	. 1
Prises de courant	0,1 à 0,2 (pour un nombre > 20)

Tableau V-2 : facteur de simultanéité pour armoires de distribution industrielle

Nombre de circuits de courants nominaux voisins	Facteur de simultanéité	
2 et 3	0,9	
4 et 5	0,8	
5 à 9	0,7	
10 et plus	0,6	

Facteur tenant compte des prévisions d'extension : d

La valeur du facteur d doit être estimée suivant les conditions prévisibles d'évolution de l'installation il est au moins égal à 1.

A défaut de précision la valeur de 1,2 est souvent utilisée.

Facteur de conversion de puissance en intensité : e

Le facteur de conversion de puissance en intensité est :

-
$$e = 4,35$$
 en monophasé 230V

-
$$e = 1,4$$
 en triphasé $400/690V$

Le courant maximal d'emploi est donné par la formule : Ibrahima THIAM

$$I_B = P_u \times a \times b \times c \times d \times e$$

- Pu: puissance utile en kW

- Ib: courant maximal d'emploi en A

Et les coefficients de facteur pour le calcul du courant maximal d'emploi sont :

- Le facteur a= 1/(r*Fp) avec $Fp = \cos \rho$
- Le facteur d'utilisation : b = 0,75
- Pour plus de 10 circuits de courants nominaux voisins c=0,6
- Aucune extension n'est prévue : d = 1
- Pour un réseau 230/400V le facteur de conversion de puissance en intensité est :
 e = 2,5

D'où les différentes valeurs d'Ib après calculs sont données par le tableau V-3 suivant :

Tableau V-3: détermination du courant d'emploi

Libelle	courant d'emploi lb (A)	Libelle	courant d'emploi lb(A)	Libelle	courant d'emploi lb(A)
G102A/B	66,03	G202A/B	80,3	1301	98,15
G341A/B	66,03	G505A/B	80,3	G504A/B	103,42
G401	66,03	G501B	164,17	G201A	115
G806	66,03	G143A/B	98,15	G503A/B	140
G107A/B	71,38	G146A/B	98,15	G305B	151,68
G402	71,38	K301	98,15	G305C	151,68
G502	71,38	K302	98,15	G120A/B	235,55
G504C	94,8	G201B	133,84		

3) Choix du dispositif de protection par déduction de In

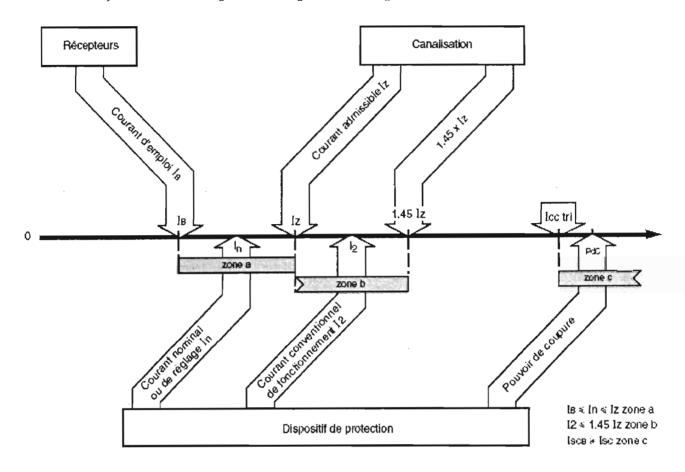


Figure V-2 : courant du circuit nécessaire à la détermination du calibre de la protection (fusible ou disjoncteur) (selon NF C15-100)

Règle générale

En conformité avec la NF C 15-100, un dispositif de protection (disjoncteur ou fusible) assure correctement sa fonction si les conditions indiquées ci-après sont satisfaites.

O Courant nominal ou de réglage

Il doit être compris entre le courant d'emploi et le courant admissible Iz de la canalisation :

Ib≤ In ≤ Iz, ce qui correspond à la zone a de la figure V-2

Courant conventionnel de déclenchement

Il doit satisfaire la relation suivante :

 $I2 \le 1,45$ Iz, ce qui correspond à la zone b de la figure V-2

- Cas des disjoncteurs
- Pour les disjoncteurs domestiques, la norme NF C61-410 spécifie :

$$I2 = 1,45 In$$

- Pour les disjoncteurs industriels, la norme NF C63-120 spécifie :

$$12 = 1,30 \text{ Ir}$$

On a donc: $I2 \le 1,45 \text{ In (ou Ir)}$

Or In ≤ Ia condition ci-avant

La condition 12 1, 45 Iz (zone b) est automatiquement respectée.

• Cas des fusibles

Les normes NF C 61-201 et ses additifs et NF C 63-210 spécifie que I2 est le courant qui assure la fusion du fusible dans le temps conventionnel (1h ou 2h); I2 est appelé courant conventionnel de fusion.

$$I_2 = k_2 \times I_n$$
 avec $k2=1,6$ à 1,9 selon les fusibles

Un commentaire à la NF C 15-100 introduit le coefficient :

$$k_3 = \frac{k_2}{1.45}$$

Ainsi la condition I2≤ 1, 45 Iz est respectée si :

$$I_n \le \frac{I_a}{k_3}$$

Pour les fusibles :

-
$$I_n \le 10 A$$
 \rightarrow $k_3 = 1,31$
- $10 A < I_n \le 25 A$ \rightarrow $k_3 = 1,21$
- $I_n > 25 A$ \rightarrow $k_3 = 1,10$

o Pouvoir de coupure

Il doit être supérieur à l'intensité de court-circuit maximal triphasé (Icc tri) en son point d'installation :

$$PdC \geq I_{cc}$$
 $_{\pi i}$, ce qui correspond à la zone ${\bf c}$ de la figure V-2

La détermination de In qui est le courant nominal du fusible doit vérifier la condition In \geq Ib.

Ainsi on choix le fusible de calibre immédiatement supérieur à **Ib**. Les résultats sont donnés par le tableau V-4 suivant :

Tableau V-4: choix du calibre de fusible adéquat

Libelle	courant d'emploi Ib	courant fusible In(A) TYPE (AM)	Libelle	courant d'emploi lb	courant fusible In(A) TYPE (AM)
G102A/B	66,03	80	G146A/B	98,15	100
G341A/B	66,03	80	К301	98,15	100
G401	66,03	80	К302	98,15	100
G806	66,03	80	1301	98,15	100
G107A/B	71,38	80	G504A/B	103,42	125
G402	71,38	80	G201A	115	125
G502	71,38	80	G503A/B	140	160
G202A/B	80,3	100	G305B	151,68	160
G505A/B	80,3	100	G305C	151,68	160
G505C	98,15	100	G120A/B	235,55	250
G143A/B	98,15	100	G501B	164,17	200
G201B	133,84	160	G504C	94,8	100

4) Calcul des courants de court-circuit par la méthode des impédances

Toute installation électrique doit être protégée contre les courts-circuits et ceci, sauf exception, chaque fois qu'il y a une discontinuité électrique, ce qui correspond le plus généralement à un changement de section des conducteurs. L'intensité du courant de court-circuit est à calculer aux différents étages de l'installation. Ceci pour pouvoir déterminer les caractéristiques du matériel qui doit supporter ou couper ce courant de défaut.

La méthode étant longue à expliquer et ce n'est pas le but de notre étude mais n'ayant moins elle sera présentée en annexe3 avec une étude détaillée par le cahier technique de Schneider Electric.

Ainsi en se limitant tout simplement à l'application des formules qui nous conduiront aux résultats du tableau V-5 suivant :

Tableau V-5 : détermination des résistances et réactances de chaque circuit moteur

Libelle	FORMULE		RESU	LTATS	OBSERVATIONS
Libelle			X(mΩ)	Ra(mΩ)	OBSERVATIONS
MAT	$Z = \frac{x}{100} \cdot \frac{U^2}{Sn}$		24		l'IMPEDQNCE EST CONFONDUE AVEC LA REACTANCE
IVIAT	R=0,1X			2,1	x=15 X=Z Sn=1MVA
TRANSFORMATEUR	Zt=1/2*(Ucc*l Zt≈Xt	J²/Sn)	1213		1/2 du fait que on a deux transformateur en parallele
elevateur	Rt=0,2Xt			242,6	U=6,6Kv SN=1600KVA
	Zt=1/2*(Ucc*l Zt≈Xt	J²/Sn)	2,785		U=400V
trANSFORMATEUR abaisseur	Rt=0,2Xt			0,557	
DISJONCTEURS BT	Xd=0,15	Xd=0,15			Pour le HT cette valeur peu etre negligee
jeux de barres BT	X=0,15mΩ/	2,1		ρ=0,036 pour AL S=20mm L=14m	
	R=ρ*(L/3S		8,4	p=0,030 pour AL 3=20mm = L=14m	
G102A/B			10		L=125m S=25mm²
	Xc=0,08*L			37,5	
G341A/B	Rc=ρ(L/S)	CABLE	5,6		- L=125m S=25mm²
·	ρ=0,0225Ωmm²/m pour cuivre			21	
G401	-		24		L=300m S=50mm²
0401				45	

Libelle	FORMULE		RESU	ILTATS	OBSERVATIONS
Libelle	FORMOLE		X(mΩ)	Ra(mΩ)	
G806			5,2		L=65m S=25mm ²
				58,5	
G107A/B			9,6		L=120m S=35mm²
				77,14	
G402			24,4		L=305m S=50mm²
				137,25	
G502			17,6	1	L=220m S=35mm²
				47,14	
G202A/B	Xc=0,08*L		10		L=125m S=35mm²
				89,28	
G505A/B	Rc=ρ(L/S)	CABLE	18,4		L=230m S=35mm²
	p=0,0223\fmin /m pour cuivre	=0,0225Ωmm²/m pour cuivre		147,85	
1301			4		L=50m S=95mm²
				3,95	
GG143A/B			15,6		L=195m S=50mm²
				87,75	
G146A/B			16,4		L=205m S=50mm ²
				92,25	
K301			8,56		L=107m S=35mm²
				68,78	
K302			8,4		L=105m S=35mm²
				67,5	

Libelle	FORMULE		RESU	LTATS	OBSERVATIONS
Libelle			_X(Ω)	Ra(Ω)	
G504A/B/C			18		L=225m S=95mm²
				53,29	
G201A/B			10		L=125m S=50mm ²
				56,25	
G503A/B			17,6		L=220m S=95mm²
0303743	V0.00*I			52,1	
G305B	Xc=0,08*L Rc=ρ(L/S)	CABLE	26		L=325m S=95mm²
	ρ =0,0225Ωmm ² /m pour cuivre	5Ωmm²		76,97	
G305C	/ / pour outro		26		L=325m S=95mm²
				76,97	
G120A/B			10,8		L=135m S=240mm²
				12,66	
G501B			17,6		L=220m S=240mm²
				20,625	
CABLE	XC=0,09*L	XC=0,09*L 4,5			L=50m S-240mm²
MAT-TGBT	-TGBT Rc=0,023*(L/			4,79	E-30111 3-240111111
Jeu de barre	X=0,15mΩ/	'm	0,9		L=6m S=14mm²
нт	R=ρ*(L/3S	R=ρ*(L/3S)		9,64	L-0111

Pour le résultat des calculs des courants de court-circuit au niveau de chaque moteur les résultats sont donnés par le tableau V-6 suivant :

Tableau V-6: calcul des courants de court-circuit

	Les moteu	rs sont alimentés par MAT1	et MAT2	Les moteu			
libelle	Impédance Zcc(mΩ)	Formule	Resultats Icc(A)	Impédance Zcc(mΩ)	Formule	Resultats Icc(A)	Icc(A) total
JEU DE BARRE	33,14		6969	22,1		10455	17424
G102A/B	64,28		3593	51,625		4473	8066
G341 A /B	49,3		4685	34,78		6639	11324
G401	79,22		2915	64,73		3568	6483
G806	48,33		4779	33,26		6942	11721
G107A/B	55,42		4167	40,814		5658	9825
G402	80,04		2885	63,13		4373	7258
G502	76,56		3016	59,7		3868	6884
G202A/B	56,54		4084	41,946	11/0/2*7>	5055	9139
G505A/B	78,59		2938	60,1		3844	6782
GG143A/B	62,25	lcc₃ = U/(V3*Zcc)	3710	62,25		4921	8631
G146A/B	63,85	1003 - 07(43 200)	3617	48,62	$ lcc_3 = U/(V3*Zcc) $	4745	8362
K301	52,79		4375	37,87		6098	10473
K302	52,39		4408	37,42		6171	10579
1301	38,36		6020	19,766		11683	17703
G504A/B/C	57,36		4026	39,3		5851	9877
G201A/B	51,27		4504	40,63		5684	10188
G503A/B	56,81		4065	38,908		5935	10000
G305B	61,19		3774	41,26		5597	9371
G305C	68,34		3379	50,71		4554	7933
G120A/B	44,87		5147	25,21		9160	14307
G501B	52,17		4426	32,36		7137	11563

5) Courants admissibles dans les canalisations

C'est le courant maximal que la canalisation peut véhiculer en permanence sans préjudice pour sa durée de vie.

Pour déterminer ce courant, il faut procéder de la façon suivante :

- ➤ A l'aide des tableaux 3-1 à 3-3 (voir annexe4), définir le mode de pose, son numéro et sa lettre de section associée
- > A partir des conditions d'installation et d'ambiance, déterminer les valeurs des facteurs de correction qui doivent être appliquées.
- > Calculer le facteur de correction global f égal au produit des facteurs de correction
- ➤ A l'aide du tableau 3-4 (voir annexe4) pour les lettres des sections B, C, E et F et du tableau V-11 pour la lettre de section D, déterminer le courant maximal I₀ admissible par la canalisation dans les conditions standards (f₀ à f₁₀)
- \triangleright Calculer le courant maximal admissible dans la canalisation en fonction de ses conditions d'installation : Ia = fI_0

Dans le cadre de notre mission d'audit à la SAR et d'après les schémas qu'on a eus à consulter les câbles sont enterrés, ce qui nous amène à considérer que leur mode de pose correspond à la lettre D voir tableau V-7 suivant :

Tableau V-7: mode de pose pour la lettre de sélection D

Exemple	Description	N°	Lettre de	F	Facteurs de correction			
			sélection	f_0	f_0 à appliquer			
& &	Câbles mono ou multi- conducteurs dans des conduits ou dans des conduits profilés enterrés	61	D	0.8	f_2	f_3	f_8	f9
	Câbles mono ou multi- conducteurs enterrés sans protection mécanique complémentaire	62	D	1	f_2	f_3	f_{10}	
	Câbles mono ou multiconducteurs enterrés avec protection mécanique complémentaire	63	D	1	f_2	f_3	f_{10}	

Les câbles sont enterrés sans protections mécanique complémentaire. Ce qui correspond sur le tableau V-7 au numéro 62 qui nous amène à appliquer les coefficients f_2 , f_3 et f_{10} pour les facteurs de correction.

- Facteur de correction pour des températures du sol différentes de $20^{\rm o}$: $f_{ m 2}$

Lorsque la température du sol est différente de 20° C, le coefficient de correction à appliquer est donné par la formule :

$$f_2 = \sqrt{\frac{\theta_p - \theta_0}{\theta_p - 20}}$$

Op : température maximale admise par l'isolant en régime permanant, °C

 θ_o : température du sol, °C

La valeur de f_2 est indiquée dans le tableau V-8 pour différentes valeurs de θp et θ_0 .

Tableau V-8 : facteurs de corrections pour les différentes températures du sol différentes de 20°C (canalisations enterrées)

Températures du sol	Isola	ation
θ ₀ (°C)	PVC θ _p = 70 °C	PR et EPR θ _p = 90 °C
10	1,10	1,07
15	1,05	1,04
25	0,95	0,96
30	0,89	0,93
35	0,84	0,89
40	0,77	0,85
45	0,71	0,80
50	0,63	0,76
55	0,55	0,71
60	0,45	0,65
65	-	0,60
70	-	0,53
75	-	0,46
80	-	0,38

 Facteurs de correction pour les canalisations enterrées, en fonction de la résistivité thermique du sol : f₃

La résistivité thermique du sol dépend de la nature et de l'humidité du terrain. Le facteur de correction à appliquer selon la résistivité du sol est donné par le tableau V-9 suivant :

Tableau V-9: facteur de correction pour les canalisations enterrées en fonction de la résistivité thermique du sol

Résistivité	Facteur de	Observations				
thermique du terrain K.m/W	correction	Humidité	é Nature o		rain	
0,40	1,25	pose immergée	marécages			
0,50	1,21	terrain très humide	sable			
0,70	1,13	terrain humide		argile		
0,85	1,05	terrain dit normal		et		
1,00	1,00	terrain sec		calcaire		
1,20	0,94					
1,50	0,86	terrain très sec			cendres	
2,00	0,76				et	
2,50	0,70				mâchefer	
3,00	0,65				7	

 Facteurs de correction pour groupement de plusieurs câbles posés directement dans le sol, câbles mono conducteurs et multiconducteurs disposés horizontalement ou verticalement (voir tableau V-10): f₁₀

Tableau V-10: Facteurs de correction pour groupement de plusieurs câbles posés directement dans le sol, câbles mono conducteurs et multiconducteurs disposés horizontalement ou verticalement

	Distance entre câbles ou groupements de 3 câbles monoconducteurs (a)							
Nombre de câbles ou de circuits	Nulle (câbles jointifs)	Un diamètre de câble	0,25 m	0,5 m	1,0 m			
2	0,76	0,79	0,84	0,88	0,92			
3	0,64	0,67	0,74	0,79	0,85			
4	0,57	0,61	0,69	0,75	0,82			
5	0,52	0,56	0,65	0,71	0,80			
6	0,49	0,53	0,60	0,69	0,78			

Les distances entre les câbles sont mesurées comme indiquées sur la figure V-3 :

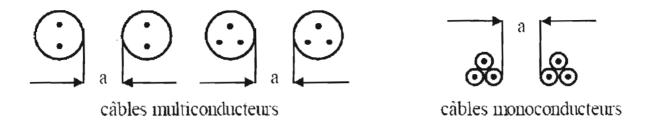


Figure V-3: distance entre câble (a)

Courants admissibles en (ampère) par les canalisations dans les conditions
 standards d'installation pour la lettre D (canalisation enterrée) (voir tableau V-11)

Le nombre de conducteur à considérer dans un circuit est celui des conducteurs effectivement parcourus par le courant. Lorsque, dans un circuit triphasé, les courants sont supposés équilibrés, il n'y a pas à tenir compte du conducteur neutre correspondant.

Lorsque la valeur du courant du conducteur neutre est proche de celle des phases, un facteur de réduction de 0,84 est à appliquer. De tels courants peuvent, par exemple, être du à la présence de courants harmoniques 3 dans les conducteurs de phase.

Tableau V-11: courants admissibles (en ampère) par les canalisations dans les conditions standards d'installation (f_0 à f_{10} =1) pour la lettre de section D (canalisation enterrée)

Lettre de sélection	Is	olant et nombre de	conducteurs cha	rgés
D	PVC 3	PVC 2	PR 3	PR 2
Section (mm²)				
Cuivre				
1,5	26	32	31	37
2,5	34	42	41	48
4	44	54	53	63
6	56	67	66	80
10	74	90	87	104
16	96	116	113	136
25	123	148	144	173
35	147	178	174	208
50	174	211	206	247
70	216	261	254	304
95	256	308	301	360
120	290	351	343	410
150	328	397	387	463
185	367	445	434	518
240	424	514	501	598
300	480	581	565	677
Section (mm²)	-			
Aluminium				
10	57	68	67	80
16	74	88	87	104
25	94	114	111	133
35	114	137	134	160
50	134	161	160	188
70	167	200	197	233
95	197	237	234	275
120	224	270	266	314
150	254	304	300	359
185	285	343	337	398
240	328	396	388	458
300	371	447	440	520

<u>NB</u>: il faut noter aussi que pour les autres cas différents du mode de pose de la SAR d'autres tableaux sont à consulter pour le choix des coefficients de correction à appliquer.

Ainsi pour le calcul de **I'z** après la détermination **Iz** qui est le courant de la canalisation qui sera protégée par le dispositif de protection à savoir les fusibles pour notre cas au niveau du départ de chaque moteur. Puis que d'après le **tableau VI-4** l'intensité assignée **In** ou de réglage du dispositif de protection, prise juste supérieure au courant d'emploi **Ib** pour chaque moteur est supérieure à 25A donc le courant **Iz** est donnée par la formule suivante :

$$I_{z} = 1.10 I_{n}$$

Et le courant équivalent I'z par la formule :

$$I_z' = \frac{I_z}{f}$$

Avec le coefficient f qui est donné par le produit des différents facteurs de corrections à appliquer et pour notre cas les facteurs de correction sont :

- Température du sol (voir tableau V-8) : $f_2 = 0,7742$
- Résistivité thermique du sol (voir tableau V-9) : $f_3 = 1,05$
- Groupement de câble (voir tableau V-10) : $f_{10} = 1$

D'où le facteur de correction global est : f = 0.81291

Pour le choix des sections en basse tension après la détermination de **I'z** le tableau V-11 nous donne la section minimale à choisir avec le courant qui sera immédiatement supérieur à **I'z**.

La suite des calculs est donnée par le tableau V-12 suivant :

Tableau V-12: détermination du courant I'z et de la section des canalisations

Libelle	courant d'emploi Ib (A)	courant fusible In(A) TYPE (AM)	courant admisssible Iz (A)	I'z (A)	choix I'z (A) Immediatement superieur	section (mm²)
G102A/B	66,03	80	88	108,25	123	25
G341A/B	66,03	80	88	108,25	123	25
G401	66,03	80	88	108,25	123	25
G806	66,03	80	88	108,25	123	25
G107A/B	71,38	80	88	108,25	123	25
G402	71,38	80	88	108,25	123	25
G502						
	71,38	80	88	108,25	123	25
G202A/B	80,3	100	110	135,32	147	35
G505A	80.2	100	110	125.22	147	35
	80,3	100	110	135,32	147	35
G505B	80,3	100	110	135,32	147	35
G143A/B	98,15	100	110	135,32	147	35

Libelle	courant d'emploi lb	courant fusible In(A) TYPE (AM)	courant admisssible Iz (A)	I'z (A)	choix I'z (A) Immediatement superieur	section (mm²)
G146A/B	98,15	100	110	135,32	147	35
K301	98,15	100	110	135,32	147	35
K302	98,15	100	110	135,32	147	35
1301	98,15	100	110	135,32	147	35
G504A/B	103,42	125	137,5	169,14	174	50
G201A	115	125	137,5	169,14	174	50
G503A/B	140	160	176	216,5	256	95
G305B	151,68	160	176	216,5	256	95
G305C	151,68	160	176	216,5	256	95
G120A/B	235,55	250	275	338,29	367	185
G501B	164,17	200	220	270,63	290	120
G504C	94,8	100	110	135,32	147	35
G201B	133,84	160	176	216,5	256	95

6) Vérification des chutes de tension

La chute de tension sur une canalisation est calculée par la formule suivante :

$$\Delta V = b \left(\rho_1 \frac{L}{S} \cos \varphi + \lambda L \sin \varphi \right) \times I_B$$

 ΔV : Chute de tenson, en volt

b: Coefficient, = 1 pour circuit triphasé

= 2 pour circuit monophasé

 ho_1 : Résistivité du conducteur en service normal, soit 1,25 fois celle à 20°C

 ho_1 = 0,0225 Ω mm²/m pour le cuivre ; ho_1 = 0,036 Ω mm²/m pour l'aluminium

L : longueur de la canalisation, en mètre

S : section des conducteurs, en $\mathrm{mm^2}$

 $\cos \varphi$: facteur de puissance ; en l'absence d'indication précise on peut prendre $\cos \rho = 0.8$ ($\sin \rho = 0.6$) données par le cahier technique de Schneider.

 $I_{B}:$ Courant maximal d'emploi, en ampère

 λ : Réactance linéique des conducteurs, en Ω/m

Les valeurs de λ en Basse tension sont :

- $0.08 \times 10^{-3} \ \Omega/m$ pour les câbles tripolaires
- $0.09 \times 10^{-3} \ \Omega/m$ pour les câbles unipolaires serrés en nappe $\odot \odot$ ou en triangle \odot
- $0.15 \times 10^{-3} \ \Omega/m$ pour les câbles unipolaires espacés $d = 8 \ r$ \odot \odot

d : distance moyenne entre conducteur

r : rayon des âmes conductrices

On définit la chute de tension relative :

$$\dfrac{\Delta \, V}{V_n}$$
 : pour les circuits triphasés ou monophasés alimentés entre phase et neutre

$$\frac{\Delta V}{U_n}$$
 : pour les circuits triphasés alimentés entre phase (dans ce cas, ΔV représente une chute de tension entre phase)

 V_n : tension simple nominale

 U_n : tension composée nominale

Conformément à la norme NF C 15-100, la chute de tension entre l'origine de l'installation et tout point d'utilisation ne doit pas être supérieure à la valeur du tableau V-13 :

Tableau V-13: chutes de tension admissibles dans les réseaux basse tension

A - Installations alimentées directe basse tension, à partir d'un rés	'		
basse tension.	eau de distribution publique a	3 %	5 %
 Installations alimentées par un poste de transformation à parti tension (l'origine de l'installation raccordement HTA) 	r d'une installation à haute	6 %	8 %

Circuits alimentant des moteurs

La chute de tension est calculée en remplaçant le courant d'emploi **Ib** par le courant de démarrage du moteur.

La norme NF C 15-100 préconise que la chute de tension, en tenant compte de tous les moteurs pouvant démarrer simultanément, soit inférieur à 15%. Une limitation à 10% est préférable.

Pour notre exemple d'étude les calculs nous ont amené aux résultats du **tableau V-14** en considérant les coefficients suivants :

- b = 1

pour circuit triphasé

- Ib = Id = 2In

avec In courant nominal du moteur

- $\cos \rho = 0.8$

 $\sin \rho = 0.6$: valeur par défaut donnée par le cahier technique

Tableau V-14: chute de tension de chaque départ moteur

Libelle	Chute de tension (%)	Libelle	Chute de tension (%)	Libelle	Chute de tension (%)
G102A/B	1,05	G202A/B	0,75	1301	0,11
G341A/B	0,58	G505A/B	1,38	G504A/B	0,5
G401	1,26	G501B	0,19	G201A	0,525
G806	0,55	G143A/B	0,82	G503A/B	0,49
G107A/B	0,72	G146A/B	0,86	G305B	0,285
G402	1,28	K301	0,64	G305C	0,72
G502	1,32	K302	0,63	G120A/B	0,12
G504C	0,016	G201B	0,55		

Conclusion partielle:

Les chutes de tension observées pour le **tableau V-14** après les calculs, sont bonnes du fait qu'en menant une comparaison avec le **tableau V-13** à la partie B pour autres usagés nos valeurs trouvées sont inférieures à 8% qui est la norme à respecter.

Vérification des contraintes thermiques des conducteurs

Lors du passage d'un courant de court-circuit dans les conducteurs d'une canalisation pendant un temps très court (jusqu'à 5 secondes), l'échauffement est considéré adiabatique ; cela signifie que l'énergie emmagasinée reste au niveau du métal de l'âme et n'est pas transmise à l'isolant. Il faut donc vérifier que la contrainte thermique de court-circuit est inférieure à la contrainte thermique admissible du conducteur :

$$t_c I_{cc}^2 \le k^2 S^2$$

 t_{C} : Temps de coupure du dispositif de protection en second

S : section des conducteurs en $\mathrm{mm^2}$

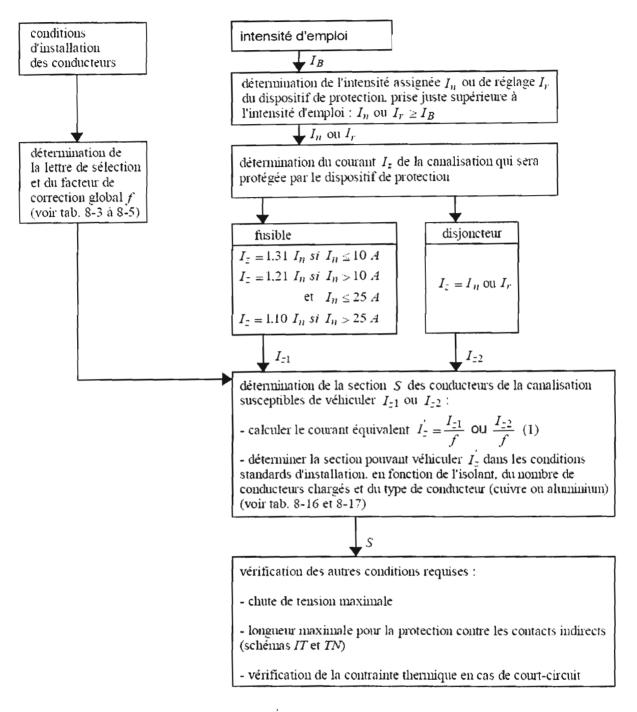
 $I_{\it CC}$: courant de court-circuit en A

La valeur de k dépend du matériau de l'âme et de la nature de l'isolant.

Tableau V-15: valeur du coefficient k conformément à la norme NF C15-100

Isolant	PVC	PR
Ame		
Cuivre	115	135
Aluminium	74	87

Si le temps de coupure est donné, la section doit satisfaire la condition :


$$S \ge \frac{I_{cc}}{k} \times \sqrt{t_c}$$

La valeur de **tc** qui est donnée est de 0,1s et celui du coefficient **k** par le tableau V-15 dont la valeur est 115 pour les cuivres, ainsi le résultat des calculs est donné par le tableau V-16 suivant :

Tableau V-16: calcul de la section minimale pour la contrainte thermique

Libelle	Icc(A)	$\frac{I_{cc}}{k} \times \sqrt{t_c}$ (mm²)
G102A/B	8066	22,17994053
G341A/B	11324	31,13881063
G401	6483	17,82699658
G806	11721	32,23048387
G107A/B	9825	27,01685044
G402	7258	19,95809675
G502	6884	18,92966905
G202A/B	9139	25,13048308
G505A/B	6782	18,64918878
GG143A/B	8631	23,73358129
G146A/B	8362	22,9938833
К301	10473	28,79872516
K302	10579	29,09020467
1301	17703	48,67982732
G504A/B/C	9877	27,15984039
G201A/B	10188	28,01503026
G503A/B	10000	27,49806661
G305B	9371	25,76843822
G305C	7933	21,81421624
G120A/B	14307	39,3414839
G501B	11563	31,79601442

7) Logigramme pour la détermination de la section minimale d'une canalisation BT

(1) I_z est un courant équivalent qui, dans les conditions standards d'installation provoque le même effet thermique que I_{z1} ou I_{z2} dans les conditions réelles d'installation

Figure V-4 : logigramme pour la détermination de la section d'une canalisation en basse tension

C. Détermination des sections de conducteurs en moyenne tension (suivant la norme NF C13-205)

1) Principe de la méthode

La méthode de détermination de la section des conducteurs en moyenne tension consiste à :

- > Déterminer le courant maximal d'emploi Ib des récepteurs à alimenter
- ➤ Déterminer la section S1 satisfaisant l'échauffement de l'âme du câble en régime de fonctionnement normal, qui peut être permanant ou discontinu. Cette étape nécessite la connaissance :
- Des conditions d'installation réelle de la canalisation, par conséquent du facteur de correction global f
- Des valeurs des courants admissibles des différents types de câble dans les conditions standards de l'installation.
- Déterminer la section S2 nécessaire à la tenue thermique du câble en cas de court-circuit triphasé
- > Déterminer la section S3 nécessaire à la tenue thermique de l'écran du câble en cas de court-circuit à la terre
- Vérifier éventuellement la chute de tension dans la canalisation pour la section S retenue. La section technique S à retenir est la valeur maximale parmi les sections S1, S2 et S3.
- > Eventuellement, calculer et choisir la section économique.

2) Détermination du courant maximal d'emploi

Le courant maximal d'emploi **Ib** est déterminé sur la base de la somme des puissances des récepteurs alimentés, en appliquant si nécessaire des coefficients d'utilisation et de simultanéité (voir A détermination du courant d'emploi)

IL faut noter qu'en moyenne tension, une canalisation alimente le plus souvent un seul récepteur (transformateur, moteur, four, chaudière), dans ce cas **Ib** est pris égal au courant assigné de l'appareil.

3) Courant admissible dans les canalisations

Règles générales

C'est le courant maximal que la canalisation peut véhiculer en permanence sans préjudice pour sa durée de vie.

Les courants admissibles dans les câbles sont donnés dans les normes ou par les constructeurs pour des canalisations standards d'installation.

Pour déterminer le courant admissible par une canalisation dans les conditions réelles d'installation, il faut procéder de la façon suivante :

- A l'aide du tableau V-17, définir le mode de pose et son numéro de colonne des tableaux associés.
- A partir des conditions d'installation et d'ambiance, déterminer les valeurs des facteurs de correction qui doivent être appliqués (voir tableau V-17 à V-20)
- Calculer le facteur de correction global f égal au produit des facteurs de correction
- A l'aide du tableau 4-6 (voir annexe8) pour les câbles isolés au papier imprégné, des tableaux V-21 et 4-1 à 4-3 (voir annexe5) pour les câbles avec isolement synthétique, déterminer le courant maximal Io admissible pour la canalisation dans les conditions standards (fo à f6 = 1)
- Calculer le courant maximal admissible par la canalisation en fonction de ses conditions d'installation : $la = fl_0$.

Ibrahima THIAM 48 2008/2009

Mode de pose

Le tableau V-17 indique, pour chaque mode de pose, la colonne des tableaux des courants admissibles à utiliser pour le choix de la section des conducteurs.

Le facteur f_0 correspond au mode de pose ; les facteurs f_1 à f_4 sont explicités ci-après (voir tableau V-18 à V-20).

Pour la mode de pose en moyenne tension à la SAR, elle correspond à la lettre S1 enterré directement (câbles armés) et les facteurs de correction à appliquer sont f_0 , f_2 , f_3 et f_4 . (Voir tableau V-17)

Tableau V-17: mode de pose en moyenne tension

Modes de pose	Exemple	Colonne	Fa	cteurs de	correct	ion
		tableaux	f_0	à	appliqu	ег
L3 Pose directe dans caniveaux ouverts ou ventilés		(3)	0,90	f_1	_	f_5
L4 Pose directe dans caniveaux fermés		(3)	0,80	f_1		fs.
L5 Pose directe dans des caniveaux remplis de sable	000	(3)	0,80	f_1	_	f_5
N Alvéoles		(3)	0,90	f_1		f ₅
P Blocs manufacturés		(3)	0,90	f_1		f ₅
S1 Enterré directement (câbles armés)	®	P D (1) (2)	1	f2	ſ3	f_4
S2 Enterré avec protection mécanique		(1) (2)	1	f_2	f_3	ſ4

P : régime permanent
D : régime discontinu

Facteurs correction pour des températures du sol différentes de 20°C

(câble enterré) :
$$f_2$$

Lorsque la température du sol est différente de 20° C, le coefficient de correction à appliquer est donné par la formule :

$$f_2 = \sqrt{\frac{\theta_p - \theta_0}{\theta_p - 20}}$$

- Θp : température maximale admise par l'isolant en régime permanant, °C
- θ_o: température du sol, °C
- La valeur de f_2 est indiquée dans le tableau V-18 pour différentes valeurs de θp et θ_0

Tableau V-18: facteur de correction pour des températures du sol différentes de 20°C (câble enterré)

	Nature de	e l'isolant
°C	PE	PR
0	1,18	1,13
5	1,14	1,10
10	1,10	1,07
15	1,05	1,04
20 .	1,00	1,00
25	0,95	0,96
30	0,89	0,93
35	0,84	0,89
40	0.77	0,85
45	0,71	0,80
50	0,63	0,76
60	0,45	0,65
65	-	0,60
70	-	0,53
75	-	0,46
80		0.38

Facteur de correction pour les résistivités thermiques du sol différentes de 1k.m/w (câble enterré): f₃

Tableau V-19: facteur de correction pour les résistivités du sol différentes de 1k.m/w (câble enterré)

Résistivité du sol (K.m/W)	Humidité	Nature du terrain		Ensemble de trois câbles unipolaires	Câbles tripolaires	
0,5	Terrain très humide				1,25	1,20
0,7	Terrain humide				1,14	1,10
0,85	Terrain dit normal		Argile		1,06	1,05
1	Terrain sec		et		1,00	1,00
1,2		Sable	Calcaire		0,93	0,95
1,5	Terrain très sec			Cendres	0,85	0,88
2				et	0,75	0,79
2.5				Mâchefer	0,68	0,72
3					0,62	0,68

Facteurs de correction pour groupement de plusieurs canalisations (câble enterré): f₄

Tableau V-20: facteurs de correction pour groupement de plusieurs canalisations (câble enterré)

Nombre de circuits	Distance entre câbles "a" (*)				
	Nulle (câbles jointifs)	Un diamètre de câble	0,125 m	0,25 m	0,5 m
2	0,75	0,80	0,85	0,90	0,90
3	0,65	0,70	0,75	0,80	0,85
4	0,60	0,60	0,70	0,75	0,80
5	0,55	0.55	0.65	0,70	0,80
6	0,50	0,55	0,60	0,70	0,80
	cábles v	mipolaires	cábles tripolaii	'es	

^(*) détermination de la distance "a" dans le cas de câbles unipolaires posés en nappe ou en trèfle et de câbles tripolaires

Câble avec isolement synthétique

La méthode détaillée de calcul des courants admissibles des câbles en régime permanant est présentée dans la publication 287 de la CEI.

Les valeurs des courants admissibles sont données dans les tableaux 4-1 à 4-3 (voir annexe5) et V-21, suivant le type de conducteur, la nature de l'isolant et la tension assignée.

La tension assignée, pour laquelle un câble est conçu, s'exprime par un ensemble de trois valeurs, en kV, sous la forme U₀/U (Um), avec :

- U₀: tension entre l'âme d'un conducteur et un potentiel de référence (écran ou terre)
- U : tension entre les âmes de deux conducteurs de phase
- Um : tension maximal qui peut apparaître entre les phases du réseau dans les conditions normales d'exploitation

L'expression de la tension assignée diffère selon que le câble est du type à champ radial ou non. Pour un câble à champ radial, U₀ est différente de U, des deux valeurs étant en général dans le rapport V3.

Par contre, du fait de sa constitution, un câble à ceinture (champ non radial) présente un niveau d'isolement équivalent entre deux phases et entre une phase et l'écran. Il en résulte que U₀ et U ont des valeurs identiques.

Pour le cadre de notre projet le tableau V-21 suivant sera utilisé pour la détermination de la section S1.

Tableau V-21: courants admissibles dans les câbles tripolaires à champ non radial de tension assigné inférieur où égal à 6/6 (7,2kV)

	Isolé PVC		Section nominale (mm²)*	Į:	solé EPR ou P	R
(1)	(2)	(3)	Cuivre	(1)	(2)	(3)
72	78	62	10	86	94	78
94	100	81	16	110	120	100
120	130	105	25	145	155	130
145	160	130	35	170	190	165
185	205	165	50	215	240	205
225	250	205	70	260	295	255
270	300	250	95	315	355	310
310	345	290	120	360	405	360
345	390	330	150	405	455	410
385	430	370	185	450	505	460
445	500	440	240	525	590	550
(1)	(2)	(3)	Aluminium	(1)	(2)	(3)
56	61	48	10	67	73	60
72	79	62	16	86	94	79
94	100	82	25	110	120	105
115	125	100	35	135	145	125
145	160	130	50	165	185	160
175	195	160	70	205	230	195
210	235	195	95	245	275	240
240	270	225	120	280	315	280
270	300	255	150	315	355	320
300	335	285	185	350	395	360
350	390	345	240	410	460	430
(*) A partir	de 50 mm², les va	aleurs sont calcu	ılés pour des câb	les à âme secto	rale	

Application numérique pour la détermination de S1

D'après B.2) en moyenne tension une canalisation alimente le plus souvent un seul récepteur dans ce cas Ib est pris égal au courant assigné de l'appareil. (Voir tableau V-22)

La pose aux canalisations enterrées sans protection mécanique correspond au mode de pose S1 (voir tableau V-17). On admet que le régime des moteurs étant permanent donc la colonne (1) sera utilisée pour le tableau V-21 des courants admissibles.

Les facteurs de correction à appliquer sont :

mode de pose (voir tableau V-17)

 $: f_0 = 1$

température ambiante (voir tableau V-18) : $f_2 = 0,77$

résistance thermique du sol (voir tableau V-19) : $f_3 = 1,05$

groupement de câble (voir tableau V-20)

 $: f_4 = 0.5$

Le facteur de correction global qui est le produit des facteurs de correction est :

f = 0.40425

D'où la détermination de S1 est donnée par le tableau V-22 suivant :

Tableau V-22 : détermination de la section S1

Libelle	courant maximal d'emploi (A) lb=In	courant de court-circuit (A)	courant admissible Iz (A)	valeur tableau VI-21 de Iz (A)	section S1 (mm²)
G101A	18,7	5851	46,25	72	10
G101B	18,7	5862	46,25	72	10
G503C	23,6	5834	58,38	72	10
G404	23,6	5924	58,38	72	10

4) Contraintes thermiques des conducteurs en cas de court-circuit et détermination de la section S₂

La contrainte thermique des conducteurs actifs doit être vérifiée pour le courant de courtcircuit maximal à l'origine du câble. Il est calculé par la méthode des impédances en tenant compte de l'ensemble des éléments du réseau (moteur, alternateur,....)

Dans une installation avec groupe de production interne, la contrainte thermique est établie sur la base du courant de court-circuit pendant la période de transitoire, celle-ci correspond approximativement au temps d'élimination du court-circuit.

Pour une durée de court-circuit inférieure à 5 seconds, l'échauffement du câble est considéré adiabatique; cela signifie que l'énergie emmagasinée reste au niveau de l'âme et n'est pas transmise à l'isolant. Les calculs thermiques sont alors simplifiés, ils sont présentés ci-dessous.

<u>Nota</u>: pour vérifier les contraintes thermiques des conducteurs de protection et des liaisons équipotentielles, il faut prendre en compte le courant de défaut à la terre.

Méthode général

Les résultats des calculs d'échauffement sont représentés par les courbes de la figure V-6.

Elles donnent les densités de courant admissible δ_0 dans différents types de câbles pour une durée de court-circuit d'une seconde, en fonction de la température du câble avant le court-circuit.

La section minimale du conducteur satisfaisant l'échauffement en cas de court-circuit, est déterminée par la formule :

$$S = \frac{I_{cc}}{\delta}$$

Icc: intensité de court-circuit maximale, en A

δ : densité de courant admissible, en A/mm²

Pour une durée de court-circuit différente de 1 seconde, on a :

$$\delta = \frac{\delta_0}{\sqrt{t}}$$

t : durée du court-circuit

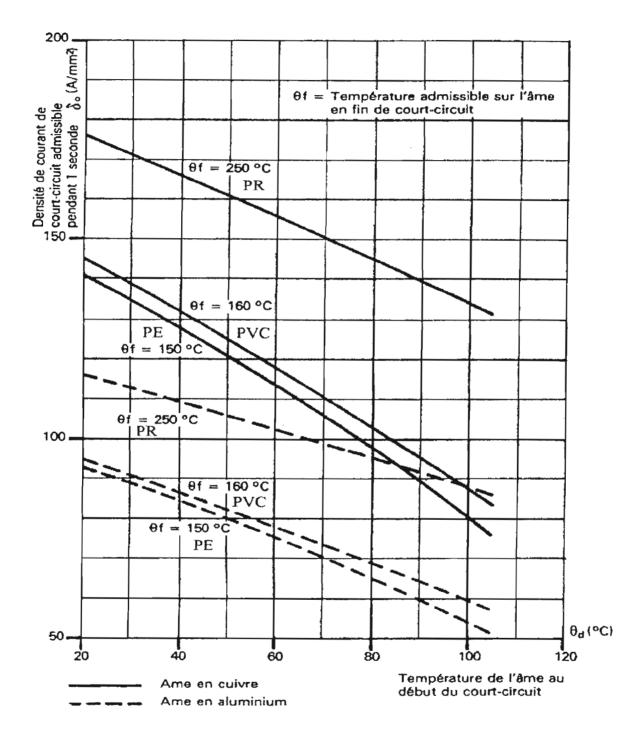


Figure V-5: court-circuit dans l'âme

Méthode simplifiée

Elle suppose que la température du câble avant le court-circuit est égale à la température admissible en régime permanant.

Dans ce cas, la section du conducteur doit satisfaire la condition suivante :

$$S \ge \frac{I_{CC}}{k} \sqrt{t}$$

Icc: courant de court-circuit maximal

t : durée du court-circuit

k : coefficient dont la valeur est donnée par le tableau V-23

Pour les conducteurs de protection, le courant à prendre en compte est le courant de défaut à la terre Id.

Tableau V-23: valeurs du coefficient k

		Isolants		
		VC PE		PR PR
Conducteurs actifs				_
- en cuivre		115		143
- en aluminium		74		94
Conducteurs de protection	а	b	а	b
- en cuivre	143	115	176	143
- en aluminium	95	75	116	94
- en acier	52	_	64	_

a conducteurs de protection non incorporés aux câbles

b conducteurs de protection incorporés aux câbles

Application numérique pour la détermination de S₂

Pour le calcul de **Icc** maximal en moyenne et haute tension, la CEI 909 applique un coefficient de 1,1. Ce coefficient 1,1 prend en compte une chute de tension de 10% sur l'installation en défaut (câble....).

K = 115 : valeur du coefficient correspondant à un conducteur en cuivre isolé en PVC (voir tableau V-23)

t = 0,1s : durée du court-circuit égale à la temporisation de la protection

D'où S2 est égale à :

Tableau V-24: détermination de la section S₂

Libelle	section minimal de S2 à retenir
G101A	16,07
G101B	16,1
G503C	16,03
G404	16,2

5) Courants de courte durée admissible dans les écrans de câble à isolation synthétique extrudée (détermination de S₃)

Dans le cas d'un court-circuit phase-écran, la contrainte thermique résultant du passage du courant de défaut **Id** pendant un temps **t**, ne doit pas dépasser la tenue thermique de l'écran du câble. **Id** est le courant de défaut à la terre.

Le calcul de la surintensité admissible dans les écrans de câbles dépend de la constitution de cet écran et du type de câble.

En l'absence d'indications, les valeurs des tableaux 4-4, 4-5 (voir annexe6) et V-26 peuvent être utilisées. Ces valeurs correspondent à un écran constitué par un ruban de cuivre de 0,1mm d'épaisseur posé rubané avec un recouvrement de 15%.

Le tableau V-25 donne, pour chaque type d'isolant, les températures en service normal et en fin de surintensités retenues pour les calculs de l'échauffement des écrans de câbles.

Tableau V-25: conditions de température retenues pour le calcul

Type d'isolant	Température sur écran en service (°C)	Température finale après surintensité (°C)		
PR	70	250		
EPR	70	250		
PE	60	150		
PVC	60	160		

O Valeurs des courants de surintensités admissibles dans les écrans de câble

Tableau V-26: câbles tripolaires à ceinture à isolant PVC de tension assignée 6/6 (7,2kV) courant de court-circuit admissible dans l'écran (A)

Section du conducteur	Durée du court-circuit			
mm²	0,5 s	1 s	2 s	
10	1 550	1 200	980	
16	1 700	1 300	1 050	
25	1 950	1 450	1 200	
35	2 050	1 550	1 250	
50	2 150	1 600	1 300	
70	2 300	1 700	1 400	
95	2 550	1 900	1 550	
120	2 750	2 100	1 650	
150	2 900	2 200	1 750	
185	3 350	2 450	2 050	
240	3 500	2 650	2 200	

Application pour la détermination de S₃

Pour des manques d'information sur le courant de défaut on prendra Id = 1000A comme l'indique le cahier technique de Schneider.

Donc à partir du tableau V-26 on prendra la valeur du courant admissible qui est immédiatement supérieure à notre valeur de défaut Id= 1000 A qu'on sait fixer.

D'où Ia =
$$1050A$$
, $S_3 = 16mm^2$

Conclusion partielle:

Parmi ces trois sections qu'on vient de déterminer à savoir S_1 , S_2 et S_3 , celle qui sera retenue est la section $S_2 = S_3 = 16 \text{mm}^2$.

6) Vérification des chutes de tension

Les chutes de tension dans les câbles moyenne tension des réseaux industrielles sont en général négligeables.

Bien que la norme C13-220 ne prévoit pas la vérification des chutes de tension et ne fixe pas des valeurs admissibles, il nous semble bon de donner la méthode de calcul pouvant être appliquée notamment pour les canalisations de longueur importante.

Pour un circuit triphasé, la chute de tension (tension simple) est calculée par la formule :

$$\Delta V = \left(\rho_1 \frac{L}{S} \cos \varphi + \lambda L \sin \varphi\right) I_B$$

 ho_1 : résistivité du conducteur en service normal, soit 1,25 fois celle à 20°C

 ρ_1 = 0,0225 Ω mm²/ m pour le cuivre ; ρ_1 = 0,036 Ω mm²/ m pour l'aluminium

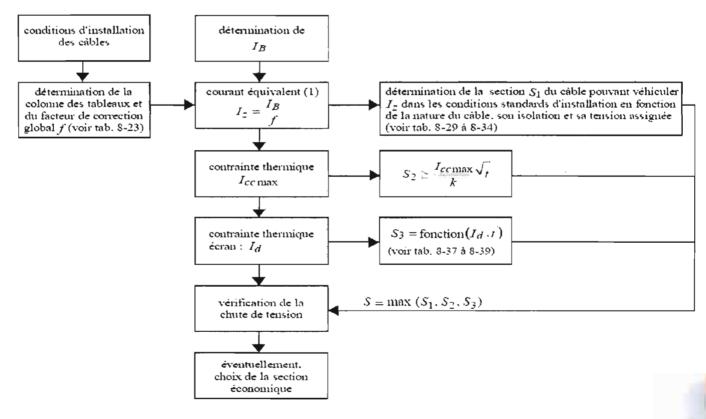
L : longueur de la canalisation, en mètre

S : section des conducteurs, en mm²

 $\cos \varphi$: facteur de puissance ; en l'absence d'indications précises, on peut prendre $\cos \rho = 0.8$ ($\sin \rho = 0.6$)

 I_{B} : courant maximal d'emploi en A

 λ : réactance linéique de la canalisation, en Ω/m


Les valeurs de λ en haute tension sont :

- $0.08 \times 10^{-3} \ \Omega \ / \ m_{\odot}$ pour les câbles tripolaires
- $0.15 \times 10^{-3} \ \Omega \ / \ m_{: pour les câbles unipolaires}$

On définit la chute de tension relative :

$$\frac{\Delta V}{V_n}$$
 avec Vn tension simple nominale

7) Logigramme pour la détermination pratique de la section minimale d'un câble moyenne tension (voir figure V-6)

 I_z est un courant équivalent qui, dans les conditions standards d'installation, provoque le même effet thermique que I_B dans les conditions réelles d'installation

Figure V-6: logigramme de la détermination de la section minimale d'un câble en moyenne tension

VI.COMPARAISON ENTRE L'ETUDE THEORIQUE ET LES VALEURS RELEVEES

A. Basse tension

- 1) Vérification des calibres et des pouvoirs de coupure des fusibles de protections
- Il faudra noter qu'il existe deux types de cartouches fusibles à savoir gG et aM (vor annexe7).
 - Type gG: conforme aux normes NF C 60-200, EN 60269-1 et CEI 60269-1 pour la protection d'installations.
 - Type aM: conforme aux normes NF C 60-200, EN 60269-1 et CEI 60269-1 agréées
 Bureau de Veritas pour la protection des moteurs.

Tableau VI-1: tableau de comparaison entre les valeurs calculées et les valeurs prélevées à l'usine

Libelle	courant d'emploi Ib	calibre fusible In(A) TYPE (AM)	calibre du fusible relevé(A)	courant de court-circuit Icc(A)	Pouvoir de coupure du fusible(kA)	Obsrvations
G102A/B	66,03	80	80	8066	80	bon
G341A/B	66,03	80	80	11324	80	bon
G401	66,03	80	80	6483	80	bon
G806	66,03	80	100	11721	80	calibre surdimensionner
G107A/B	71,38	80	80	9825	80	bon
G402	71,38	80	80	7258	80	bon
G502	71,38	80	90	6884	80	calibre surdimensionner
G202A/B	80,3	100	100	9139	120	bon
G505A/B	80,3	100	100	6782	120	bon
G143A/B	98,15	100	125	8631	120	calibre surdimensionner

Libelle	courant d'emploi lb	courant fusible In(A) TYPE (AM)	Calibre du fusible relevé (A)	courant de court-circuit lcc(kA)	Pouvoir de coupure du fusible	Observations
G146A/B	98,15	100	100	8362	120	bon
K301	98,15	100	125	10473	120	calibre surdimensionner
K302	98,15	100	125	10579	120	calibre surdimensionner
1301	98,15	100	125	17703	120	calibre surdimensionner
G504A/B	103,42	125	125	9877	120	bon
G201A	115	125	125	10188	120	bon
G503A/B	140	160	160	10000	120	bon
G305B	151,68	160	200	9371	120	calibre surdimensionner
G305C	151,68	160	200	7933	120	calibre surdimensionner
G120A/B	235,55	250	315	14307	120	calibre surdimensionner
G501B	164,17	200	315	11563	120	calibre surdimensionner
G504C	94,8	100	125	9877	120	calibre surdimensionner

2) Vérification de la section des conducteurs

Tableau VI-2 : comparaison entre les différentes sections

Libelle	section minimale pour la containte thermique(mm²)	section minimale pour le courant admissible	section relevée	Observations
G102A/B	22,17994053	25	25	bonne
G341A/B	31,13881063	25	25	bonne
G401	17,82699658	25	50	trop grande
G806	32,23048387	25	25	bonne
G107A/B	27,01685044	25	35	grande
G402	19,95809675	25	50	trop grande
G502	18,92966905	25	35	grande
G202A/B	25,13048308	35	35	bonne
G505A/B	18,64918878	35	35	bonne
G143A/B	23,73358129	35	50	grande
G146A/B	22,9938833	35	50	grande
K301	28,79872516	35	35	bonne
K302	29,09020467	35	35	bonne
I301	48,67982732	35	95	trop grande
G504A/B	27,15984039	50	95	trop grande
G201A	28,01503026	50	50	bonne
G503A/B	27,49806661	95	95	bonne
G305B	25,76843822	95	240	surdimensionnée
G305C	21,81421624	95	95	bonne
G120A/B	39,3414839	185	240	grande
G501B	31,79601442	120	240	trop grande
G504C	27,15984039	35	70	trop grande
G201B	28,0153026	95	95	bonne

B. Moyenne tension

Contrairement à la basse tension où la protection des moteurs est assurée par fusibles et relais thermique, celle de la moyenne tension est assurée par relais thermique et disjoncteur qui sont biens calibrés pour répondre à la protection des moteurs et des câbles d'arrivée en cas de surcharge et de court-circuit. Pour que l'organe de protection n'entraine pas de coupure en cas de pointes de courant de démarrage, le déclencheur sur court-circuit des disjoncteurs peut être réglé 14 fois le courant assigné.

On retient après calcul pour la section $S = 16 \, mm^2$ qui est conforme aux valeurs relevées sur les différents moteurs de la moyenne tension.

CHAPITRE 3 : ETUDE DES REGIMES DE NEUTRE

VII. Etude des régimes de neutre

1) Introduction

Dans tout système triphasé haute ou basse tension existent trois tensions simples, mesurées entre chacune des phases et un point commun appelé point neutre. En régime équilibré ces trois tensions sont déphasées de 120 ° et ont pour valeur :

$$U/\sqrt{3}$$

U: étant la tension mesurée entre phases

Physiquement, le neutre est le point commun des trois enroulements montés en étoile. Il peut être sorti ou non, distribué ou non. En moyenne tension la distribution du neutre est exceptionnelle en France; par contre, elle est très fréquente aux USA. En basse tension la distribution du neutre est utilisée dans tous les pays.

Dans une installation haute ou basse tension, le neutre peut être ou non relié à la terre. On parle de régime du neutre.

La connexion du neutre à la terre peut être réalisée directement, ou par l'intermédiaire d'une résistance ou d'une réactance. Dans le premier cas, on dit que l'on a un neutre direct à la terre et dans le second cas, que le neutre est impédant.

Lorsqu'il n'existe aucune liaison intentionnelle entre le point neutre et la terre, on dit que le neutre est isolé.

Dans un réseau, le régime de neutre joue un rôle important. Lors d'un défaut d'isolement, ou de la mise accidentelle d'une phase à la terre, les valeurs prises par les courants de défaut, les tensions de contact et les surtensions sont étroitement liées au mode de raccordement du neutre à la terre.

Un neutre direct à la terre contribue à limiter les surtensions ; par contre, il engendre des courants de défaut très important. Au contraire, un neutre isolé limite les courants de défaut à des valeurs très faibles, mais favorise l'apparition de surtensions élevées.

Dans toute installation, la continuité de service en présence d'un défaut d'isolement est également liée au régime de neutre. Un neutre isolé permet la continuité de service en basse tension et même en haute tension, sous réserve de respecter le décret sur la protection des travailleurs. Un neutre direct à la terre, ou faiblement impédant, impose au contraire un déclanchement dès l'apparition du premier défaut d'isolement.

L'importance des dommages que subissent certains équipements tels que les moteurs et les alternateurs présentant un défaut d'isolement interne, est également liée au régime de neutre.

Dans un réseau à neutre direct à la terre, une machine affectée d'un défaut d'isolement est fortement endommagée en raison de la valeur élevée des courants de défaut.

Dans un réseau à neutre isolé ou fortement impédant, les dommages sont au contraire réduits, mais il est nécessaire que les équipements aient un niveau d'isolement compatible avec le niveau des surtensions pouvant se développer dans ce type de réseau.

Le régime du neutre a également une influence importante sur la nature et le niveau des perturbations électromagnétiques générées dans une installation électrique.

Le choix du régime de neutre, tant en basse tension qu'en haute tension, dépend à la fois de la nature de l'installation et de celle du réseau. Il est également influencé par la nature des récepteurs, la recherche de la continuité de service et la limitation du niveau de perturbation imposé aux équipements sensibles.

2) Les différents régimes de neutre

Les différents modes de raccordement du point neutre à la terre sont indiqués sur le tableau VII-1.

On distingue:

- Le neutre directement mis à la terre
- Le neutre isolé, ou fortement impédant
- Le neutre mis à la terre par l'intermédiaire d'une résistance
- Le neutre mis à la terre par l'intermédiaire d'une réactance
- Le neutre mis à la terre par l'intermédiaire d'une réactance accordée (bobine de Petersen)

Tableau VII-1: modes de raccordement du point neutre

· m Neutre mis directement à la terre Ph 1 Ph 2 Ph 3 Une liaison électrique est réalisée intentionnellement entre le point neutre et la terre. Neutre isolé •-----Ph 2 Il n'existe aucune liaison électrique entre le point Ph 3 neutre et la terre, à l'exception des appareils de mesure ou de protection. Neutre fortement impédant Une impédance de valeur élevée est intercalée entre le point neutre et la terre. Neutre mis à la terre par résistance Ph 2 Une résistance est intercalée volontairement entre le point neutre et la terre Neutre mis à la terre par réactance •-----Ph 2 Pli 3 Une réactance est intercalée volontairement entre le point neutre et la terre • Neutre mis à la terre par bobine d'extinction Ph 2de Petersen Ph 3 Une réactance accordée sur les capacités du réseau est volontairement intercalée entre le point neutre et la terre de sorte qu'en présence d'un défaut à la terre, le courant dans le défaut est nul. $\bar{I}_f = \bar{I}_L + \bar{I}_C = \bar{0}$ I_f : courant de défaut I_{I} : courant dans la réactance de mise à la terre du $I_C\,$: courant dans les capacités phase-terre

3) Régimes de neutre et schémas des liaisons à la terre utilisés en basse tension

En basse tension, les régimes de neutre et les schémas de liaison à la terre sont régis par les normes CEI 364 et NF C 15-100. Trois schémas sont pris en considération. Chaque schéma est défini par deux lettres.

> La première lettre définit la situation du neutre par rapport à la terre :

T: liaison du point neutre direct à la terre.

I : point neutre, soit isolé de la terre, soit relié à la terre par une impédance de valeur élevée.

> La deuxième lettre définit le mode de raccordement des masses de l'installation électrique :

T: les masses sont interconnectées et reliées directement à la terre, indépendamment de la mise à la terre éventuelle du point neutre.

N: les masses sont reliées directement au conducteur du neutre.

a) Neutre isolé ou impédant (schéma IT)

Le neutre est isolé ou relié à la terre par une impédance de valeur élevée (première lette I).

Une impédance de 1700 Ω est fortement employée.

Les masses des récepteurs sont interconnectées soit totalement, soit par groupes. Chaque groupe interconnecté est relié à une prise de terre (deuxième lettre T). Il est possible qu'une ou plusieurs masses soient reliées séparément à la terre.

Dans la mesure du possible, il est recommandé d'interconnecter toutes les masses d'une même installation et de les reliés à la même prise de terre. Il est toutes fois admis que des masses très éloignées des unes aux autres, ou situées dans des bâtiments différents, ne le soit pas. Dans ce cas, chaque groupe de masse reliée à la même prise de terre et chaque masse reliée individuellement à la terre doit être protégés par un dispositif différentiel à courant résiduel.

Les prises de terre des masses et de neutre peuvent être ou non interconnectées ou confondues.

Il n'est pas dangereux de distribuer le neutre qui entraine une limitation des longueurs maximales des canalisations

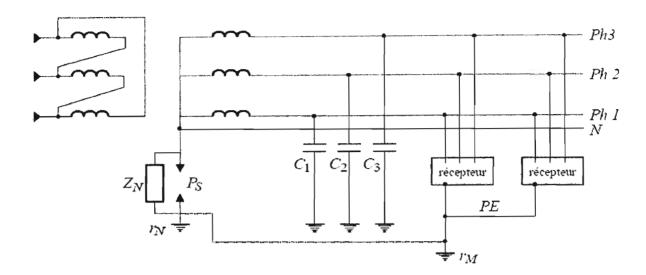


Figure VII-1: neutre isolé ou impédant (schéma IT) en basse tension

b) Neutre mis directement à la terre (schéma TT)

Le point neutre est directement relié à la terre (première lettre T).

Les masses des récepteurs sont interconnectées, soit toutes ensembles, soit par groupes, soit individuellement et sont reliées à la terre (deuxième lettre T). La protection est assurée au moyen de dispositifs différentiels résiduels. Toutes les masses protégées par le même dispositif de protection doivent être reliée à la même prise de terre.

La prise de terre du neutre et celle des masses peuvent ou non être interconnectées ou confondues. Le neutre peut être distribué ou non.

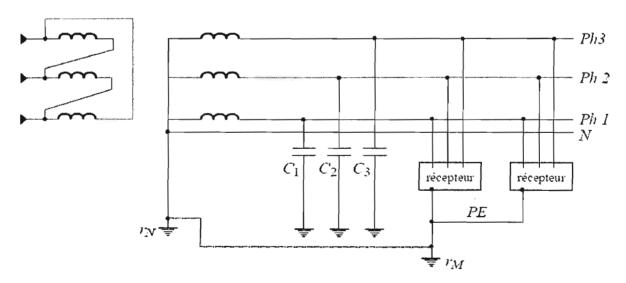


Figure VII-2: neutre mis directement à la terre (schéma TT) en basse

c)Mise au neutre (schéma TN)

Le point de neutre est relié directement à la terre (première lettre T).

Les masses des récepteurs sont reliées au conducteur neutre (deuxième lettre N).

On distingue deux schémas possibles suivant que le conducteur neutre (N) et conducteur de protection (PE) sont confondus (TNC) ou non (TNS).

4) Comparaison des différents régimes de neutre basse tension

a)Schéma TT

- C'est la solution la plus simple à mettre en œuvre. Il est utilisable pour les installations alimentées directement par le réseau de distribution publique basse tension.
- Il ne nécessite pas de surveillance particulière, seul un contrôle périodique des dispositifs différentiels peut être nécessaire.
- La protection est assurée par des dispositifs de différentiels résiduels (DDR) qui permettent en plus la prévention des risques d'incendie lorsque leur sensibilité est < 500 mA.
- Chaque défaut d'isolement entraine une coupure. Cette coupure peut être limitée au seul circuit en défaut par la mise en place d'une sélectivité approprié
- Les récepteurs ou parties d'installation, qui génèrent des courants de fuite important, doivent être équipés de DDR appropriés enfin d'éviter les déclanchements intempestifs.

b) Schéma TN

- Il est utilisable uniquement dans les installations alimentées par un transformateur HT/BT ou BT/HT privé
- Il nécessite la mise à la terre régulière du conducteur de protection
- Il impose la vérification du fonctionnement des dispositifs de protection contre les défauts entre phases pour un défaut d'isolement
- Il nécessite que toute modification ou extension soit réalisée par du personnel compétent maitrisant des règles de mise en œuvre
- Il peut entrainer, lors d'un défaut d'isolement, une détérioration importante des bobinages des machines tournantes et des matériels sensibles
- Il peut présenter, dans les locaux à risque d'incendie, un danger élevé du fait de l'importance des courants de défaut.

(c)Le schéma TN-C

- Il peut faire apparaître une économie à l'installation par la suppression d'un pôle d'un conducteur
- Il implique l'utilisation de canalisations fixes et rigides
- Il est interdit dans les locaux présentant un risque d'incendie
- Il génère, lors des défauts d'isolement, un niveau important de perturbations électromagnétiques qui peuvent endommager les équipements sensibles ou perturber leur fonctionnement
- Les courants de déséquilibre, les harmoniques 3 et multiples de 3 circulent dans le conducteur de protection PEN et peuvent être la cause de perturbations multiples.

d) Le schéma TN-S

- Il s'emploie même en présence de conducteurs souples ou de canalisation de faible section
- Il permet par la séparation du neutre et du conducteur de protection, de maintenir une bonne équipotentalité des masses et de réduire le niveau de perturbations électromagnétiques. Il est ainsi recommandé pour les locaux informatiques
- Il est obligatoire dans les locaux présentant des risques d'incendie, si l'installation est en TN

🚅)Le schéma IT

- Il est utilisable uniquement dans les installations alimentées par un transformateur HT/BT ou BT/BT privé
- C'est la solution assurant la meilleure continuité de service
- La signalisation du premier défaut d'isolement suivie de sa recherche et de son élimination, permet une prévention systématique de toute interruption d'alimentation
- Il nécessite un personnel d'entretien pour la surveillance et l'exploitation
- Il nécessite un bon niveau d'isolement du réseau
- Il nécessite que toute modification ou extension soit réalisée par du personnel compétent maitrisant ses règles de mise en œuvre
- Il implique la fragmentation du réseau si celui-ci est très étendu et l'alimentation des récepteurs à courant de fuite important par un transformateur de séparation
- Il impose la vérification du fonctionnement des dispositifs de protection contre les défauts entre phases lors d'un double défaut d'isolement.

5) Performances des régimes du neutre

Les performances des régimes de neutre s'apprécient selon les six critères suivants:

- La protection contre les chocs électriques
- La protection contre l'incendie d'origine électrique
- La continuité de l'alimentation
- La protection contre les surtensions
- La protection contre les perturbations électromagnétiques
- Les contraintes de mise en œuvre
- Protection contre les chocs électriques

Tous les régimes de neutre permettent d'assurer une égale protection contre les chocs électriques, dès lors qu'ils sont mis en œuvre et utilisés en conformité avec les normes.

- Protection contre les risques d'incendie
- Schéma TT et IT

Dans les schémas TT et IT lors d'un premier défaut d'isolement, l'intensité du courant générée par le défaut est respectivement faible ou très faible, et le risque d'incendie est plus faible qu'en schéma TN.

o Schéma TN-C

Ce schéma présente un risque d'incendie élevé. En effet, le courant de déséquilibre des charges parcourt en permanence non seulement le conducteur PEN, mais aussi les éléments qui y sont raccordés: charpentes métalliques, masses, blindages, etc....et risque de provoquer un incendie. En cas de défaut franc, l'incendie du courant généré par le défaut d'isolement est élevé et le risque est important. En cas de défaut impédant, le schéma TN-C réalisé sans dispositif différentiel est obligatoire. C'est la raison pour laquelle il est interdit dans les locaux à risque d'explosion ou d'incendie.

Continuité de l'alimentation

Le choix du schéma IT évite toutes les conséquences néfastes du défaut d'isolement:

- Le creux de tension
- Les effets perturbateurs du courant de défaut
- Les dommages aux équipements
- L'ouverture du départ en défaut

Son exploitation correcte rend le second défaut réellement improbable et permet aussi de garantir la continuité de l'alimentation.

Protection contre les surtensions

Dans tous les schémas, une protection contre les surtensions peut être nécessaire.

Protection contre les perturbations électromagnétiques

Le choix du schéma est indifférent:

- Pour toutes les perturbations de mode différentiel
- Pour toutes les perturbations de mode commun ou de mode différentiel de fréquence supérieure au MHz.

Les schémas TT, TN-S et IT peuvent, satisfaire tous les critères de comptabilité électromagnétique s'ils sont correctement mis en œuvre. On notera seulement que le schéma TN-S amène d'avantage de perturbation pendant la durée du défaut, car le courant de défaut est plus élevé.

En revanche les schémas TN-C ou TN-C-S sont déconseillés. En effet, dans ces schémas, le conducteur PEN, les masses des matériels et les blindages des câbles sont parcourus par un courant permanent lié au déséquilibre des charges et à la présence des courants harmoniques 3 et multiples de 3.

Contrainte de mise en ouvre

Le schéma TT, ainsi que le schéma TN -S réalisé avec dispositifs différentiels, sont les plus simples à mettre en œuvre.

Le schéma TN-S réalisé sans dispositifs différentiels, les schémas TN-C et IT impose la vérification du fonctionnement des dispositifs de protection contre les défauts entre phases, cela entraine en limitation des longueurs maximales des canalisations et nécessite l'intervention d'un personnel qualifié pour la réalisation des extensions et des modifications de l'installation.

6) Choix et recommandations d'emploi

Lorsque le choix du régime du neutre est possible, celui-ci s'effectue au cas par cas, à partir des contraintes liées à l'installation électrique, aux récepteurs et aux besoins de l'exploitant.

Il est souvent avantageux de ne pas faire un choix unique pour l'ensemble de l'installation.

Le schéma IT est recommandé pour les installations peu surveillées et évolutives. En effet c'est le schéma le plus simple à mettre en œuvre et à exploiter. Ce schéma est recommandé s'il y a un impératif de continuité de service.

En effet le schéma IT garantit la meilleure disponibilité de l'énergie.

En revanche, il demande:

- Le respect des règles de mise en œuvre
- La prise en compte des problèmes générés par les courants de fuite
- Un service d'entretien compétent pour la recherche et l'élimination du premier défaut d'isolement ainsi que pour les extensions et modifications de l'installation.

Le schéma TN-S est recommandé pour les installations peu évolutives.

Les courants générés par un défaut d'isolement sont importants et peuvent provoquer :

- Des perturbations passagères
- Des risques de dommage élevés
- Des incendies.

Il demande comme l'IT le respect des règles de mise en œuvre.

Si des dispositifs de différentiels de moyenne sensibles sont installés, ils apportent à ce schéma une meilleure protection contre l'incendie et une souplesse à la conception et à l'exploitation.

En termes de tenue aux surtensions et perturbations électromagnétiques, les schémas IT, TT et TN-S réalisés selon les règles de l'art sont généralement satisfaisant; le schéma TNC ou TNC-S, par contre, est déconseillé, en effet il présente des risques permanents, en particulier :

- Chute de tension le long du PEN
- Circulatoire de courant dans les éléments conducteurs, les blindages et les masses
- Champ magnétique rayonné
- Absence de protection contre les défauts d'isolement impédants

- En cas de défaut franc, l'intensité du courant est élevée d'où risque de dommages importants.

Tableau VII-2 : choix du régime de neutre

	TNC	TNS	TT	IT
Récepteurs sensibles aux courants de défaut	D	D	Р	С
Récepteurs sensibles aux perturbations électromagnétiques	D	С	Р	P
Locaux à risques d'incendie		D(1)	P(1)	C(1)
Installations avec modifications fréquentes	D	D	С	D
Installation où la continuité des circuits de terre est incertaine (chantiers)	D	P	С	D
Recherche de la continuité de service	D	D	D	С
Réseau, récepteurs avec courants de fuites importants	С	С	Р	D

(1)avec DDR de sensibilité <500mA

C : Conseillé
P : Possible
D : Déconseillé
I : Interdit

7) Régimes du neutre utilisés en haute tension

a)Principes et schémas utilisés en haute tension

Lorsque l'on considère, sans distinction, les réseaux de distributions publiques et les réseaux privés industriels ou tertiaire, on rencontre tous les principes de mise à la terre du point neutre. A savoir :

- Le neutre mis directement à la terre
- Le neutre isolé
- Le neutre mis à la terre par résistance
- Le neutre mis à la terre par réactance
- Le neutre mis à la terre par bobine d'extinction de Petersen partiellement ou totalement accordée.

Ces principes sont rappelés dans le tableau VII-3.

Sur le plan normatif, seule la norme française NF C 13-200 donne une définition précise des régimes du neutre et établit leurs règles de mise en œuvre, ils sont définis par un code à trois lettres: norme NF C 13-200-article 312.

> La première lettre précise la situation du point neutre par rapport à la terre.

On distingue:

- les installations dont le point neutre est relié directement à la terre, installations désignées par la première lettre T.
- les installations dont le point neutre est isolé ou relié à la terre par l'intermédiaire d'une impédance, installations désignées par la première lettre I.
- La deuxième lettre précise la situation des masses

On distingue:

- Les installations dont les masses sont reliées directement au point neutre mis à la terre, installations désignées par la deuxième lettre N.
- Les installations dont les masses sont reliées directement à la terre, indépendamment de la mise à la terre éventuelle du neutre, installations désignées par la deuxième lettre T.
- La troisième lettre précise les liaisons éventuelles entre les phases du poste, le point neutre et les masses de l'installation

On distingue:

- Les installations dont les masses du poste d'alimentation sont reliées à une prise de terre commune au neutre et aux masses de l'installation, installations désignées par la troisième lettre R
- Les installations dont les masses du poste d'alimentation sont reliées à une prise de terre du neutre, les masses de l'installation étant reliées à une prise de terre séparée, installations désignées par la troisième lettre N
- Les installations dont les masses du poste d'alimentation, le neutre et les masses de l'installation sont reliées à des prises de terre séparées, installations désignées par la lettre S

En pratique la norme C 13-200 n'a retenu que les six schémas représentés par le tableau VII-3.

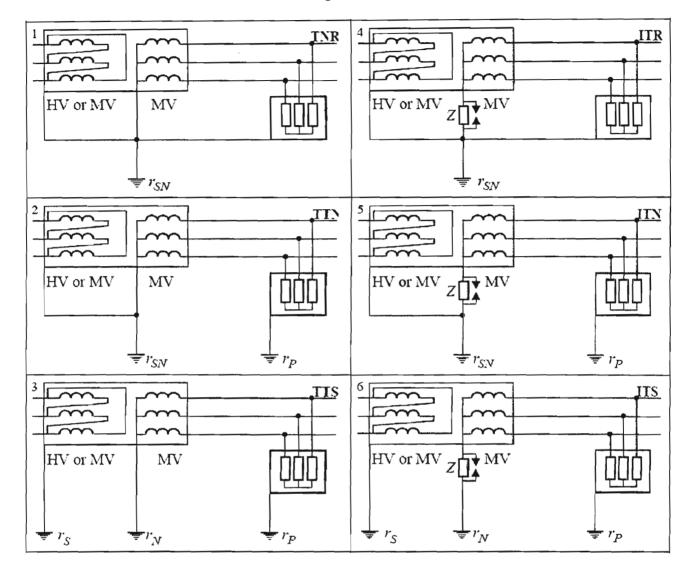


Tableau VII-3: définition des régimes du neutre en haute tension

b) Schémas recommandés dans les installations industrielles ou tertiaires

Pour les réseaux et installations privées, il est conseillé d'utiliser un neutre mis à la terre par résistance de limitation au neutre isolé lorsque la continuité de service est impérative, ce dernier permet, en effet la non capture de l'alimentation lors du premier défaut d'isolement.

Le neutre mis à la terre directement ou par une bobine accordée est déconseillé. Le neutre direct à la terre génère des courants de défauts très élevés toujours préjudiciables au récepteur et entraînant le développement de tensions de contact pouvant dépasser un millier de volts.

Le neutre mis à la terre par bobine accordée demande une mise en œuvre délicate et coûteuse; il ne peut être raisonnable envisagé que pour des réseaux très étendus pour lesquels on souhaite la non coupure de l'alimentation lors d'un premier défaut d'isolement, ce qui, dans la pratique, est relativement rare.

On peut conclure, il apparaît :

- que la mise à la terre directe du neutre conduit au développement de tension de contact très élevées qui ne peuvent pas être éliminées dans les temps compatibles avec la sécurité des personnes. (voir tableau VII-4)

Tableau VII-4a: durée maximale de maintien de la tension de contact présumée dans les locaux secs (UL = 50V)

Temps théoriques de coupure en fonction de la tension de contact présumée

Tension de contact présumée (V)	Temps de coupure maximal du dispositif de protect		
	courant alternatif	courant continu	
< 50	5	5	
50	5	5	
75	0,60	5	
90	0.45	5	
120	0.34	5	
150	0,27	1	
220	0.17	0.40	
280	0,12	0.30	
350	0,08	0,20	
500	0.04	0.10	

Tableau VII-4b: durée maximale de maintien de la tension de contact présumée dans les locaux humide à (UL = 25V)

Tension de contact présumée (V)	Temps de coupure maximal du dispositif de protection (s)		
	courant alternatif	courant continu	
25	5	5	
50	0.48	5	
75	0.30	2	
90	0,25	0,80	
110	0,18	0,50	
150	0.12	0,25	
230	0.05	0,06	
280	0.02	0,02	

- que la limitation des courants de défaut au moyen d'une impédance intercalée entre le point neutre et la terre réduit les tensions de contact à des valeurs comparables à celle que l'on rencontre dans les réseaux basse tension
- que la création d'une zone équipotentielle suivant les principes décrits figure VII-3 permet encore de réduire les valeurs des tensions de contact.

Sur la base de ces remarques, la norme C13-200 impose la règle suivante :

En cas de défaut d'isolement entre une partie active et une masse, la tension de contact en tout point de l'installation ne doit pas pouvoir être supérieure à la tension limite conventionnelle UL égale à :

- 50V en courant alternatif dans les installations intérieures et abritées
- 25V en courant alternatif dans les installations extérieures

En pratique, la protection contre les contacts indirects est assurée en réalisant des liaisons équipotentielles entre toutes les masses et tous les éléments conducteurs, y compris le sol.

Ces liaisons doivent être telle que la résistance R entre deux éléments conducteurs simultanément accessibles, ne soit pas supérieure à :

$$R \le \frac{U_C}{I_f}$$

 I_f étant le courant maximal de défaut à la terre de l'installation.

L'application de ces règles conduit à la réalisation des mises à la terre conformément aux principes exposés figure VII-3.

En complément, on retiendra que les deux seuls principes recommandés pour les installations industrielles ou tertiaire haute tension sont :

- la mise à la terre du neutre par résistance de limitation, simple à mettre en œuvre
- le neutre isolé qui autorise la poursuite de l'exploitation en présence d'un premier défaut d'isolement.

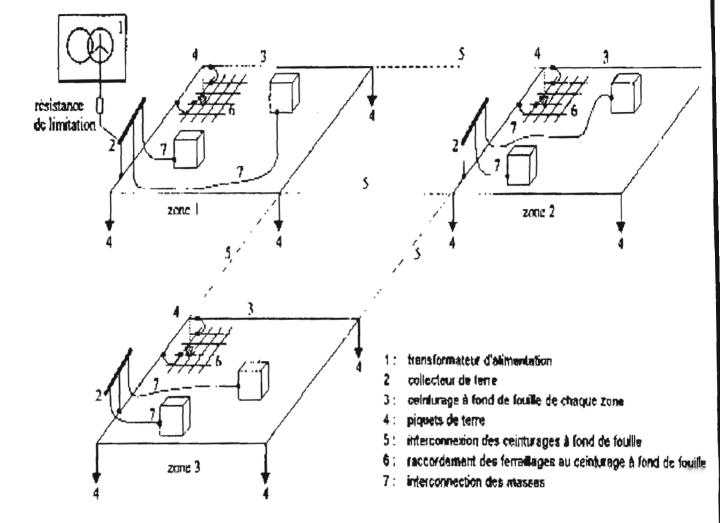


Figure VII-3: principe de réalisation des mises à la terre dans une installation haute tension

8) Inter action entre haute tension et basse tension

Tout défaut d'isolement se produisant sur la partie haute tension d'un poste de haute tensionbasse tension a des répercutions sur le réseau basse tension qu'il alimente; on assiste en particulier au développement de surtension et à des élévations du potentiel des masses qui peuvent entrainer des claquages de matériels et être dangereuses pour les personnes, si les dispositions pour limiter leurs risques ne sont pas prises à la conception de l'installation.

La description de ces phénomènes et les dispositifs à prendre pour s'en protéger, sont décrites (voir annexe 8) —surtension. Leur développement dépend de la configuration des prises de terre du neutre et des masses ainsi que du mode de liaison à la terre des masses du poste et de l'installation. Pour les études, les normes NFC 15-100 et CEI 364 ont retenu les sept schémas regroupés dans le tableau VII-6, leur comportement lors d'un défaut d'isolement sur la partie haute tension du poste est analysé (voir annexes-surtension)

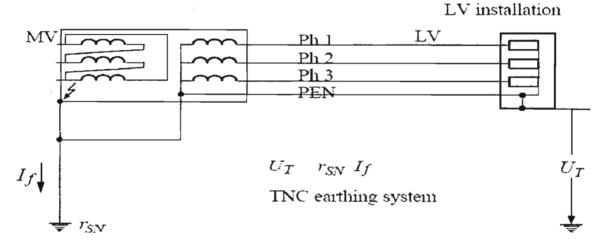
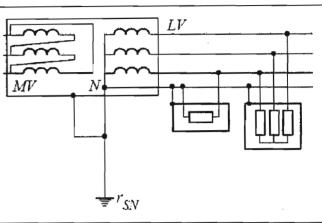
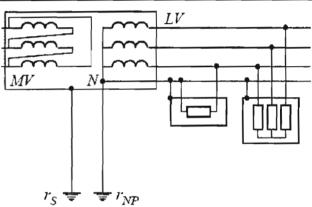
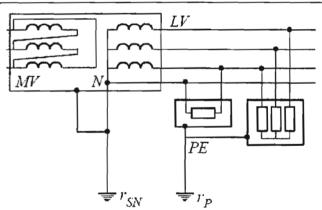



Figure VII-4 : exemple d'élévation du potentiel des masses BT pour un défaut sur la partie haute tension du poste.

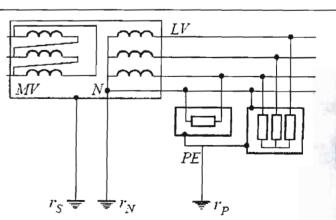
Tableau VII-5: interaction entre haute et basse tension


Schéma TNR

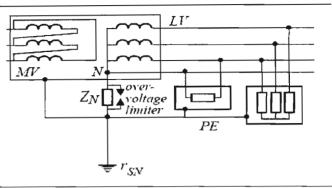
- le neutre du transformateur HT/BT est mis directement à la terre
- les masses de l'installation BT sont reliées au conducteur neutre
- les masses du poste sont reliées à la prise de terre du neutre.


Schéma TNS

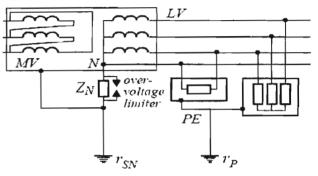
- le neutre du transformateur HT/BT est mis directement à la terre
- les masses de l'installation BT sont reliées au conducteur neutre
- les masses du poste sont reliées à une prise de terre séparée de la prise de terre du neutre.


Schéma TTN

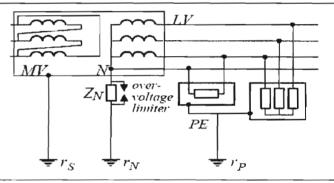
- le point neutre du transformateur HT/BT est mis directement à la terre
- les masses de l'installation BT sont interconnectées et reliées à une prise de terre séparé de celle du neutre
- les masses du poste sont reliées à la prise de terre du neutre.


Schéina TTS

- le point neutre du transformateur HT/BT est mis directement à la terre
- les masses de l'installation BT sont interconnectées et reliées à une prise de terre séparée de celle du neutre
- les masse du poste sont reliées à une prise de terre séparée de celle du neutre et celle des masses de l'installation.


Schéma *ITR*

- le neutre du transformateur HT/BT est isolé ou relié à la terre par une impédance
- les masse de l'installation BT sont interconnectées et reliées à la prise de terre du neutre
- les masses du poste sont reliées à la prise de terre du neutre.


Schéma ITN

- Le point neutre du transformateur HT/BT est isolé ou relié à la terre par une impédance
- Les masses de l'installation BT sont interconnectées et reliées à une prise de terre séparée de celle du neutre
- les masses du poste sont reliées à la prise de terre du neutre.

Schéma ITS

- le point neutre du transformateur HT/BT est isolé ou relié à la terre par une impédance
- les prises de terre du poste, du neutre et des masses de l'installation sont séparées.

Conclusion partielle:

Pour cette partie de l'étude du régime de neutre, on peut bien conclure que le régime IT correspond aux exigences de la SAR du fait qu'il assure une continuité de service lors du premier défaut, et le deuxième défaut improbable, n'entraine pas l'arrêt des installations ce qui peut poser d'énorme perte au raffinage du brut car ce dernier, lors d'un déclanchement peut prendre un à deux jours pour voir la qualité du produit revenir à son stade de fin de raffinage. Le régime IT est aussi, d'après le tableau VII-2, recommandé pour les récepteurs sensibles au courant de défaut et pour les zones à risque d'incendie qui est le cas de notre exemple de raffinerie.

CHAPITRE 4: CONCLUSION ET RECOMMADATIONS

VIII. Conclusion et recommandations

La SAR qui est une société classée comme dangereuse du fait de sa production, doit tout le temps être stricte vis-à-vis de sa sécurité et particulièrement dans ses unités de production qui peuvent être source de catastrophe.

Outre les vérifications et essais à effectuer conformément aux spécifications TOTAL, les installations électriques en zone classée doivent faire l'objet d'une vérification initiale établissant leur conformité à la réglementation et aux dispositions de la présente spécification.

Doivent notamment être vérifiés :

- L'adaptation des matériels à la zone classée à l'égard du risque d'explosion,
- L'adaptation des canalisations électriques, de leur pose et de leur protection mécanique,
- La bonne exécution et l'étanchéité des entrées de câble dans les matériels.
- Le serrage et le blocage des dispositifs de raccordement,
- Les conditions particulières relatives au mode de protection par surpression interne.

Les vérifications périodiques des installations doivent être effectuées afin de s'assurer du maintien de la sécurité à l'égard du risque d'explosion.

Toute dégradation d'un matériel ou d'une canalisation doit donner lieu à son remplacement ou à sa réparation.

Les dispositifs de raccordements doivent être resserrés à chaque arrêt pour entretien et ne présenter aucune trace de sur échauffement

Toute dérogation anormale résultant d'une mauvaise qualité de matériau doit être signalée au constructeur du matériel concerné pour réparation.

Toute modification d'un matériel doit être interdite si elle ne constitue pas une variante ayant fait l'objet d'une certification.

Bibliographie

Normes

- CEI 60909 : calcul des courants de court-circuit dans les réseaux triphasé à courant alternatif
- CEI 60781 : guide d'application pour le calcul des courants de court-circuit dans les réseaux à basse tension
- > CEI 287 (1982) : calcul des courants admissibles des câbles en régime permanent (facteur de charge 100%)
- ➤ NF C 63-210 (12.1980): coupe circuit à fusible) basse tension-règles supplémentaires pour coupe –circuit pour usages industriels
- > NF 15-100 : installations électriques à basse tension
- ➤ UTE C 13-205 (07.1994): Installations électriques à haute tension, guide pratique. Détermination des sections des sections des conducteurs et choix des dispositifs de protection
- > UTE C15-105 : Installations électriques à basse tension, guide pratique. Détermination des sections des sections des conducteurs et choix des dispositifs de protection

Cahier Technique Schneider

- Mise à la terre du neutre dans des réseaux industriels haute tension Cahier technique N° 62 François SAUTRIAU
- Les schémas des liaisons à la terre en BT (régime du neutre)
 Cahier technique N°172 Bernard LACROIX, Roland CALVAS
- > Catalogue de la distribution MT/HT
- Catalogue de la distribution BT
- > Guide de l'installation électrique, Edition France impressions conseils (07.1991)

ANNEXES

Annexe 1

Lexique

	Abréviati		k et K	constantes données (tableaux ou
	PdC	pouvoir de coupure.		abaques).
	TGBT	tableau général basse tension.	Ra	résistance équivalente du réseau amont.
	Symbole		D	
	U	angle d'enclenchement (apparition du défaut par rapport au zéro de tension).	R _L S	résistance linéique des lignes. section des conducteurs.
	С	facteur de tension.	Scc	puissance de court-circuit.
	cos φ	facteur de puissance (en l'absence d'harmoniques).	Sn	puissance apparente du transformateur.
	е	force electromotrice.	t _{min}	temps mort minimal d'établissement du
•	E	force électromotrice (valeur maximale).		court-circuit, souvent égal au temps de retard d'un disjoncteur.
	· (p - · · ·	angle de déphasage (courant par rapport à la tension).	u	tension instantanée.
	i	courant instantané.	u_{cc}	tension de court-circuit d'un transformateur, exprimée en %.
	İa	composante alternative sinusoïdale du courant instantané.	U	tension composée du réseau hors
	i _c	composante continue du courant		charge.
	·	instantané.	Un	tension nominale en charge du réseau.
	İp	valeur maximale du courant (première crête du courant de défaut).	Х	réactance en % des machines tournantes.
	I	intensité efficace maximale.	Xa	réactance équivalente du réseau amont.
	I_b	courant de court-circuit coupé	XL	réactance linéique des lignes.
	-	(CEI 909).	_	,
	Icc	intensité de court-circuit permanent	X _{subt}	réactance subtransitoire de l'alternateur.
		$(Icc_3 = triphase. Icc_2 = biphase,).$	Za	impédance équivalente du réseau
	$I_{\mathbf{k}}$	intensité de court-circuit permanent		amont.
		(CEI 909).	Zcc	impédance amont du réseau sur défaut
	I,	courant de court-circuit initial (CEI 909).		triphasé.
	Ir	courant assigné de l'alternateur.	Z_d , Z_i . Z_o	impédances directe, inverse et
	Is	intensité de service.		homopolaire d'un réseau, ou d'un
	λ	facteur dépendant de l'inductance de saturation d'un alternateur.	Z _L	element. impédance de liaison.

Annexe 2

Procédure de calcul de lcc

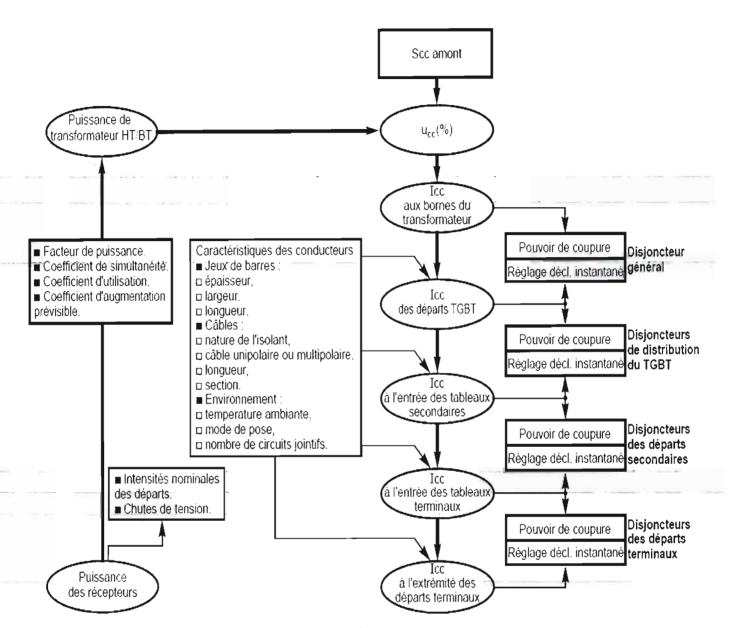


Fig. 1 : procédure de calcul d'Icc pour la conception d'une installation électrique.

1-2 LES METHODES PRESENTEES DANS CE CAHIER TECHNIQUE

Dans ce Cahier Technique deux méthodes sont particulièrement étudiées pour le calcul des courants de court-circuit dans les réseaux radiaux :

■ l'une dont l'usage est surtout réservé aux réseaux BT, il s'agit de la méthode des impédances. Elle a été retenue pour la précision qu'elle permet d'obtenir, et pour son aspect didactique puisqu'elle nécessite la prise en compte de la quasi-totalité des caractéristiques du circuit concerné.

■ l'autre, surtout utilisée en HT, est celle de la CEI 909, retenue pour sa précision et pour son aspect analytique. Plus technique elle exploite le principe des composantes symétriques.

1-3 LES HYPOTHESES DE BASE

Pour ces calculs de courants de court-circuit, des hypothèses précisant le domaine de validité des formules données sont nécessaires.

Souvent simplificatrices et accompagnées d'approximations justifiées, ces hypothèses rendent plus aisée la compréhension des phénomènes physiques et ainsi le calcul des courants de court-circuit, tout en gardant une précision acceptable et par excès.

Les hypothèses retenues dans ce document sont :

- le réseau considéré est radial et sa tension nominale va de la BT à la HT (ne dépassant pas 230 kV, limite donnée par la norme CEI 909);
- le courant de court-circuit, lors d'un courtcircuit triphasé est supposé s'établir simultanément sur les trois phases ;
- pendant la durée du court-circuit, le nombre de phases concernées n'est pas modifié : un défaut

triphase reste triphase, de même un défaut phase-terre reste phase-terre ;

- pendant toute la durée du court-circuit, les tensions qui ont provoqué la circulation du courant et l'impédance de court-circuit ne changent pas de façon significative :
- les régleurs ou changeurs de prises des transformateurs sont supposés être en position moyenne (dans le cas d'un court-circuit éloigné des alternateurs, on peut ignorer les positions réelles des changeurs de prises des transformateurs) :
- les résistances d'arc ne sont pas prises en compte ;
- toutes les capacités de ligne sont négligées ;
- les courants de charge sont négligées :
- toutes les impédances homopolaires sont prises en compte.

2 CALCUL DES Icc PAR LA METHODE DES IMPEDANCES

2.1 Icc selon les différents types de court-circuit

Court-circuit triphasé

C'est le défaut qui correspond à la réunion des trois phases. L'intensité de court-circuit Icc3 est :

$$Icc_3 = \frac{U/\sqrt{3}}{Zcc}$$

avec U (tension composée entre phases) correspondant à la tension à vide du transformateur. laquelle est supérieure de 3 à 5 % à la tension aux bornes en charge. Par exemple, dans les réseaux 390 V, la tension composée adoptée est U = 410 V, avec comme tension simple U / \(\cdot 3 = 237 \) V.

Le calcul de l'intensité de court-circuit se résume alors au calcul de l'impédance Zcc. impédance

équivalente à toutes les impédances parcourues par l'Icc du générateur jusqu'au point de défaut - de la source et des lignes - (cf. fig. 12). C'est en fait l'impédance «directe» par phase :

$$\mathsf{Zcc} = \left(\sum \mathsf{R}\right)^2 + \left(\sum \mathsf{X}\right)^2 \mathsf{avec}$$

 \sum R = somme des résistances en série.

 $\sum X$ = somme des réactances en série.

Le défaut triphasé est généralement considéré comme celui provoquant les courants de défaut les plus élevés. En effet, le courant de défaut dans le schéma équivalent d'un système polyphasé, n'est limité que par l'impédance

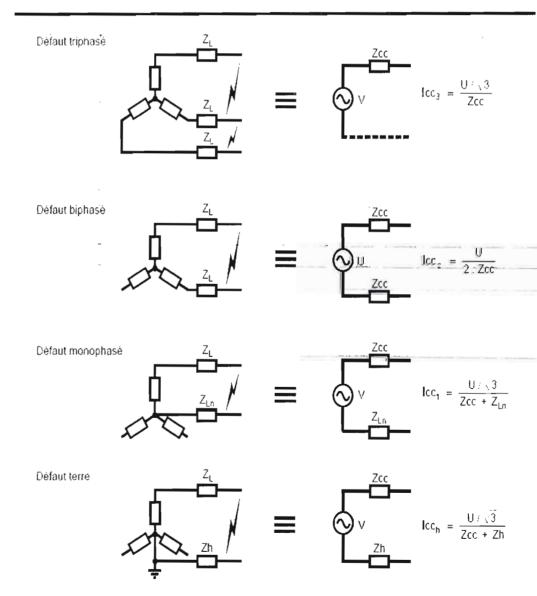


Figure 12 : les différents courants de court-circuit

4 En général $R_T << X_T$, de l'ordre de $0.2~X_T$, et l'impédance interne des transformateurs peut être assimilée à la réactance X_T . Cependant pour les petites puissances le calcul de Z_T est nécessaire car le rapport R_T / X_T est plus élevé. Cette résistance se calcule alors à partir des pertes joules (W) dans les enroulements :

$$W = 3 \cdot R_T \cdot In^2 \Rightarrow R_T = \frac{W}{3 \cdot In^2}$$

Notes:

(5)

□ lorsque n transformateurs sont en parallèle et de puissances identiques, leurs valeurs d'impédance interne ainsi que de résistance ou de réactance sont à diviser par n.

uil-convient de porter une attention particulière aux transformateurs spéclaux : par exemple les transformateurs de groupes redresseurs ont des valeurs de u_{cc} qui atteignent 10 à 12 % pour limiter le courant de court-circuit.

Avec la prise en compte de l'impédance amont au transformateur et de l'impédance interne du transformateur, le courant de court-circuit s'exprime par :

$$Icc = \frac{U}{\sqrt{3(Za + Z_T)}}$$

En première approximation, Za et Z_T sont assimilées à leurs réactances respectives. L'impédance de court-circuit Zcc est alors égale à leur somme algébrique.

L'impédance du réseau amont peut être négligée, dans ce cas, la nouvelle valeur du courant est :

$$I'cc = \frac{U}{\sqrt{3} \cdot Z_T}$$

L'erreur relative est :

$$\frac{\Delta lcc}{lcc} = \frac{l^{\prime}cc - lcc}{lcc} = \frac{Za}{Z_{T}} = \frac{U^{2} / Scc}{u_{cc} \cdot U^{2} - Sn}$$

soit:

$$\frac{\Delta Icc}{Icc} = \frac{100}{u_{cc}} = \frac{Sn}{Scc}$$

La figure 14 indique le niveau d'erreur par excès dans le calcul de l'Icc, qu'apporte le fait de négliger l'impédance amont. Cette figure montre bien qu'il est possible de négliger cette impédance du réseau amont pour les réseaux dont la puissance de court-circuit Scc est importante par rapport à la puissance Sn du transformateur : ainsi, avec Scc / Sn = 300, l'erreur est d'environ 5 %.

■ Impédance des liaisons

L'impédance des liaisons Z_L dépend de leur résistance et réactance linéiques, et de leur longueur.

 \Box la résistance linéique R_L des lignes aériennes, des câbles et des jeux de barres se calcule avec l'équation :

$$R_L = \frac{\rho}{S}$$
 avec

S = section du conducteur :

ho = sa résistivité, mais dont la valeur à adopter n'est pas la même selon le courant de court-circuit calculé, maximum ou minimum,

(6) Le tableau de la figure 15 donne ces valeurs pour chacun des cas.

Dans la réalité, en BT et pour les conducteurs de section inférieure à 150 mm², seule la résistance est prise en compte ($R_L < 0.15 \text{ m}\Omega$ / m avec S > 150 mm²).

□ la réactance linéique des lignes aériennes, des cábles et des jeux de barres se calcule par :

$$X_L = L \cdot \omega = \left[15.7 + 144.44 \log\left(\frac{d}{r}\right)\right]$$

exprimée en $m\Omega$ / km pour un système de câbles monophasé ou triphasé en triangle, avec en mm :

r = rayon des âmes conductrices :

d = distance moyenne entre les conducteurs.

NB : ici, Log = logarithme décimal.

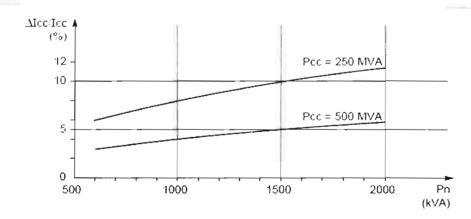


Figure 14: erreur induite dans le calcul du courant de court-circuit lorsque l'impédance Za du réseau amont est négligée

Pour les lignes aériennes, la réactance croît légèrement avec l'espacement des conducteurs (selon Log $\left(\frac{d}{t}\right)$), donc avec la tension d'utilisation :

(7) les valeurs moyennes suivantes sont à retenir :

 $X = 0.3 \Omega / km$ (lignes BT ou MT).

 $X = 0.4 \Omega / km$ (lignes MT ou HT).

Pour les cábles, selon leur mode de pose, le tableau de la figure 16 récapitule différentes valeurs de réactance en BT.

Les valeurs moyennes à retenir sont :

- 0.08 m Ω / m pour un câble triphasé (), cette moyenne un peu plus élevée en HT est comprise entre 0.1 et 0.15 m Ω / m ;
- ig(8 ig) 0.09 m Ω /.m pour les câbles unipolaires

serrés (en nappe 🕠 ou en triangle 🙌) :

9 - 0.15 m Ω / m par défaut pour les jeux de

barres () et les câbles unipolaires espacés

(• • •); pour les JdB à phases «sandwichées» (genre Canalis -Telemecanique) cette réactance est notablement plus faible.

Notes :

- ☐ l'impédance des liaisons courtes entre le point de distribution et le transformateur HT/BT peut être négligée en admettant une erreur par excès sur le courant de court-circuit : erreur d'autant plus forte que la puissance du transformateur est élevée :
- □ la capacité des câbles par rapport à la terre (mode commun). 10 à 20 fois plus élevée que celle des lignes, doit être prise en considération pour les défauts à la terre. A titre indicatif, la capacité d'un câble triphasé HT de 120 mm² de section est de l'ordre de 1 μF / km; mais le courant capacitif reste faible de l'ordre de 5 A / km sous 20 kV;
- la résistance ou la réactance des liaisons peuvent être négligées.
 Si l'une des grandeurs R_L ou X_L est faible devant l'autre elle peut être négligée, l'erreur sur l'impédance Z_E étant alors très faible : exemple.

Rėgle	Résistitivité (^)	Valeur de $(\Omega\mathrm{mm^2/m})$	e la résistitivité n)	Conducteurs concernés	
		Cuivre	Aluminium		
Courant de court-circuit maximal	$\rho_1 = 1.25 \ \rho_{20}$	0,0225	0,036	PH-N	
Courant de court-circuit minimal	$\rho_1 = 1.5 \rho_{20}$	0,027	0,043	PH-N	
Courant de défaut dans les schémas TN et lT	$\rho_1 = 1.25 \rho_{20}$	0,0225	0,036	PH-N (**) PE-PEN	
Chute de tension	$\rho_1 = 1.25 \rho_{20}$	0,0225	0,036	PH-N (**)	
Courant de surintensité pour la vérification des contraintes thermiques des conducteurs	$p_1 = 1.5 p_{20}$	0,027	0,043	Phase-Neutre PEN-PE si incorpore dans un même câble multi-conducteurs	
	$\rho_1 = 1.25 \rho_{20}$	0,0225	0,036	PE séparé	

^(*) ρ₂₀ résistitivité des conducteurs à 20 °C. 0,018 Ωmm²/m pour le cuivre et 0,029 Ωmm²/m pour l'aluminium. (**) N la section du conducteur neutre est inférieure à celle des conducteurs de phase.

Figure 15: valeur de la résistivité r des conducteurs à prendre en considération selon le courant de court-circuit calculé, maximum ou minimum (cf. UTEC15-105)

Mode de pose	Jeux de barres	Câble triphasé	Câbles unipolaires espacés	Câbles unipolaires serrés en tnangle	3 câbles en nappe serrée		pe espacée de «d» d = 4r
Schéma			$\odot\odot\odot$	<u>\$</u>	000		,r
Réactance liné (que valeurs moyenne (en mΩ/m)	0.15	0.08	0.15	0,085	0,095	0.145	0.19
Réactance linéïque valeurs extrêmes (en mΩ/m)	0.12-0.18	0.06-0,1	0,1-0.2	0,08-0.09	0,09-0,1	0.14-0.15	0.18-0.20

Figure 16 : valeur de la réactance des câbles selon le mode pose

avec un rapport 3 entre R_L et X_L, l'erreur sur Z_L est de 5.1 %.

L'exploitation des courbes de R. et de X_L telles celles de la figure 17 permet de déduire les sections des câbles pour lesquelles l'impédance peut être assimilée à la résistance ou à la réactance.

Exemples:

□ 1er cas : câble triphasé, à 20 °C, dont les conducteurs sont en cuivre.

Leur réactance est égale à 0.08 m Ω / m. Les courbes de R_L et de X_L (cf. fig. 17) montrent que l'impédance Z_L admet deux asymptotes : la droite R_L pour les faibles sections, et la droite $X_L = 0.08 \text{ m}\Omega$ / m pour les grandes sections. Pour de telles sections il est donc possible de considérer que la courbe de l'impédance Z_L se confond avec ses asymptotes. L'impédance du câble en question est alors assimilée, avec une erreur inférieure à 5.1 %, à : une résistance pour les sections inférieures à

- une réactance pour les sections supérieures à 660 mm².

□ 2^{ème} cas : câble triphasé, à 20 °C, mais dont les conducteurs sont en aluminium. Comme précèdemment, la courbe de l'impédance Z_L se confond avec ses asymptotes mais pour des sections respectivement

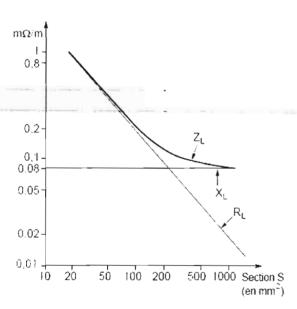


Fig. 17 : impédance Z_L d'un câble triphasé, à 20 °C, dont les conducteurs sont en cuivre.

inférieures à 120 mm² et supérieures à 1000 mm² (courbes non représentées).

Impédance des machines tournantes.

■ Alternateurs synchrones

Les impédances des machines sont généralement exprimées sous la forme d'un pourcentage telle que :

Icc / In = 100 / x (x est l'équivalent de u_{cc} des transformateurs).

Soit:

$$(10) Z = \frac{x}{100} \cdot \frac{U^2}{80}$$
 avec

Soit: $(10) Z = \frac{x}{100} \cdot \frac{U^2}{Sn}$ avec U = tension composée à vide de l'alternateur.

Sn = puissance apparente (VA) de l'alternateur.

(11) De plus, le R / X étant faible.

de l'ordre de 0.05 à 0.1 en HTA et 0.1 à 0.2 en BT; l'impédance Z est confondue avec la réactance X. Des valeurs de x sont données dans le tableau de la figure 18 pour les turboalternateurs à rotor lisse et pour les alternateurs «hydrauliques» à pôles saillants (faibles vitesses).

A la lecture de ce tableau, on peut être surpris que les réactances permanentes de court-circuit dépassent 100 % (à ce moment là Icc < In). Mais l'intensité de court-circuit est essentiellement selfique, et fait appel à toute l'énergie réactive que peut fournir l'inducteur même surexcité, alors que l'intensité nominale véhicule surtout la puissance active fournie par la turbine (cos φ de 0.8 à 1).

■ Moteurs et compensateurs synchrones Le comportement de ces machines en courtcircuit est semblable à celui des alternateurs ; (12) Ils débitent dans le réseau une intensité fonction de leur réactance en % (cf. figure 19).

■ Moteurs asynchrones

Un moteur asynchrone séparé brusquement du réseau maintient à ses bornes une tension qui s'amortit en quelques centièmes de seconde. Lorsqu'un court-circuit se produit à ces bornes, le moteur délivre alors une intensité qui s'annule encore plus rapidement avec une constante de temps d'environ:

□ 2 / 100 s pour les moteurs à simple cage jusqu'à 100 kW.

□ 3 / 100 s pour les moteurs à double cage, et ceux de plus de 100 kW.

□ 3 à 10 / 100 s pour les très gros moteurs HT (1000 kW) à rotor bobiné.

	Réactance subtransitoire	Réactance transitoire	Réactance permanente
Turbo-alternateur	10-20	15-25	150-230
Alternateurs à pôles saillants	15-25	25-35	70-120

Fig. 18 : valeurs de réactances d'alternateurs, en % Ibrahima THIAM

Le moteur asynchrone est donc, en cas de courtcircuit, un générateur auquel on attribue une impédance (seulement subtransitoire) de 20 à 25 %.

Aussi. le grand nombre de moteurs BT de faible puissance unitaire présents dans les installations industrielles est un sujet de réflexion, car il est difficile de prévoir le nombre moyen de moteurs en service qui vont débiter dans le défaut au moment d'un court-circuit. Il est donc fastidieux et inutile de calculer individuellement le courant de retour de chaque moteur tenant compte de son impédance de liaison. C'est pourquoi il est d'usage (notamment aux USA) de considérer globalement la contribution au courant de défaut de l'ensemble des moteurs asynchrones BT d'une installation.

(13) Ils sont alors comparés à une source unique, débitant sur le jeu de barres une intensité égale à Idem/In fois la somme des intensités nominales de tous les moteurs installés.

Autres impédances.

■ Condensateurs

Une batterie de condensateurs shunt située à proximité du point de défaut se décharge en augmentant ainsi l'intensité de court-circuit. Cette décharge oscillante amortie est caractérisée par une première crête de valeur élevée se superposant à la première crête de l'intensité de court-circuit, et cela bien que sa fréquence soit très supérieure à celle du réseau. Mais selon la coïncidence de l'instant initial du défaut avec l'onde de tension deux cas extrêmes peuvent être envisagés :

□ si cet instant coïncide avec un zéro de tension, le courant de décharge de court-circuit est asymétrique, avec une première crête d'amplitude maximale :

□ inversement, si cet instant coïncide avec un maximum de tension, la batterie débite une intensité se superposant à une première crête du courant de défaut de faible valeur, puisque symétrique.

Il est donc peu probable que, sauf pour des batteries très puissantes, cette superposition provoque une première crête plus importante que le courant de crête d'un défaut asymétrique. Ainsi pour le calcul du courant maximum de court-circuit. Il n'est pas nécessaire de prendre en compte les batteries de condensateurs.

Mais il faut cependant s'en préoccuper, lors du choix de la technologie des disjoncteurs. En effet, lors de l'ouverture elles réduisent considérablement la fréquence propre du circuit et ont ainsi une incidence sur la coupure.

■ Appareillage

a bobine de soufflage, relais thermiques directs...) ont une impédance qui peut être prise en compte. Cette impédance n'est à retenir, lors du calcul de l'Icc, que pour les appareils situés en amont de celui qui doit ouvrir sur le court-circuit envisagé et qui restent fermés (disjoncteurs sélectifs).

valeur de 0.15 mΩ pour la réactance est correcte. la résistance étant négligée. Pour les appareils de coupure, une distinction doit être faite selon la rapidité de leur ouverture : \Box certains appareils ouvrent très vite et ainsi réduisent fortement les courants de court-circuit. c'est le cas des disjoncteurs appelés «rapides-limiteurs», avec pour corollaire des efforts électrodynamiques et des contraintes thermiques pour la partie concernée de l'installation, très inférieurs aux maxima théoriques.

☐ d'autres, tels les disjoncteurs à déclenchement retardé, n'offrent pas cet avantage.

■ Arc de défaut

Le courant de court-circuit traverse souvent un arc, au niveau du défaut, dont la résistance est appréciable et très fluctuante : la chute de tension d'un arc de défaut varie entre 100 et 300 volts.

En HT, cette valeur est négligeable par rapport à la tension du réseau, et l'arc n'a pas d'influence réductrice sur l'intensité de court-circuit.

En BT, par contre, le courant-réel d'un défaut—avec arc est d'autant plus limité par rapport au courant calculé (défaut franc, boulonné) que la tension est plus basse.

16) Par exemple. l'arc créé lors d'un court-circuit entre conducteurs ou dans un jeu de barres peut réduire l'intensité du courant de court-circuit présumé de 20 à 50 % et parfois de plus de 50 % pour les tensions nominales inférieures à 440 V. Ce phénomène très favorable en BT, pour 90 % des défauts, ne peut cependant pas être pris en compte pour la détermination du PdC car 10 % des défauts se produisent à la

	Réactance subtransitoire	Réactance transitoire	Réactance permanente
Moteurs grandes vitesses	15	25	80
Moteurs petites vitesses	35	50	100
Compensateurs	25	40	160

Fig. 19 : réactances en % des moteurs et compensateurs synchrones.

fermeture d'un appareil sur défaut franc, sans arc.

Par contre, il doit être pris en compte dans le calcul du courant de court-circuit minimum.

■ Impédances diverses

D'autres éléments peuvent ajouter des

impédances non négligeables. C'est le cas des filtres antiharmonlques et des selfs destinées à limiter le courant de court-circuit, dont il faut bien entendu tenir compte dans le calcul, mais aussi des transformateurs de courant à primaire bobiné dont l'impédance varie selon le calibre et la construction.

2.3 Relations entre les impédances des différents étages de tension d'une installation

Impédances fonction de la tension La puissance de court-circuit Scc en un point déterminé du réseau est définie par :

$$Scc = U \cdot I \sqrt{3} = \frac{U^2}{Zcc}$$

Cette expression de la puissance de court-circuit implique par définition que Scc est invariable en un point donné du réseau, quelle que soit la tension. Et l'expression

$$Icc_3 = \frac{U}{\sqrt{3 \ Zcc}}$$
 implique que toutes les

impédances doivent être calculées en les rapportant à la tension du point de défaut. d'ou une certaine complication, source d'erreurs dans les calculs concernant des réseaux à deux ou plusieurs niveaux de tension. Ainsi, l'impédance d'une ligne HT doit être multipliée par la carre de l'inverse du rapport de transformation, pour le calcul d'un défaut côté BT du transformateur :

$$(17) Z_{BT} = Z_{HT} \left(\frac{U_{BT}}{U_{HT}} \right)^2$$

Une méthode simple permet d'eviter ces difficultés : celle dite des impédances relatives proposée par H. Rich.

Calcul des impédances relatives

Il s'agit d'une méthode de calcul permettant d'établir une relation entre les impédances des différents étages de tension d'une installation électrique.

Cette méthode repose sur la convention suivante : les impédances (en ohms) sont divisées par le carré de la tension composée (en volts) à laquelle est porté le réseau au point où elles sont en service : elles deviennent des impédances relatives.

■ Pour les lignes et les câbles, les résistances et les réactances relatives sont :

$$R_R = \frac{R}{U^2} \text{ et } X_R = \frac{X}{U^2}$$

avec R en ohm et U en volt.

■ Pour les transformateurs. l'impédance s'exprime à partir de leurs tensions de courtcircuit u_{cc} et de leurs puissances nominales Sn :

$$Z = \frac{U^2}{Sn} \times \frac{u_{cc}}{100}$$

■ Pour les machines tournantes, la formule est identique, X représente l'impédance exprimée en %

■ Pour l'ensemble, après avoir composé toutes les impedances relatives, la puissance de courtcircuit s'établit d'après :

$$Scc = \frac{1}{\sum Z_{R}} d'où l'on déduit l'intensité de$$

défaut Icc au point de tension U :

$$Icc = \frac{Scc}{3.U} = \frac{1}{3.U \cdot \Sigma Z_R}$$

 $\sum Z_{\rm R}$ représente la composition (et non pas la somme) de toutes les impédances relatives amonts.

Donc ΣZ_{R} est l'impédance relative du réseau amont vue du point de tension U.

Ainsi. Scc est la puissance de court-circuit en VA au point de tension U.

Par exemple, si l'on considere le schéma simple de la figure 20 au point A :

$$Scc = \frac{U_{\partial T}^2}{Z_T \left(\frac{U_{BT}}{U_{HT}}\right)^2 + Z_c}$$

d'où

$$Scc = \frac{1}{\frac{Z_T}{U_{HT}^2} + \frac{Z_C}{U_{RT}^2}}$$

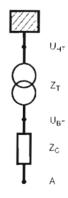


Fig. 20 : calcul de Scc au point A

Annexe 4

Mode de pose en basse tension

Exemple	Description	N°		re de	Fact	eurs de	е сопе	ction
			séle	ction	f_0	à	appliq	uer
	Câbles mono ou multiconducteurs avec ou sans armure :							
	- fixés sur un mur	11		C	1	f_1	f_4	f ₅
	- fixés à un plafond	11A	(· · · · · · · · · · · · · · · · · · ·	0.95	f_1	f_4	f_5
	- sur des chemins de câbles ou tablettes non perforés	12		C	_1_	f_1	f4-	· f5
			cât multi- conduc- teurs	mono- conduc- teurs]			
000	- sur des chemins de câbles ou tablettes perforés en parcours horizontal ou vertical	13	E	F	1	f_1	f4	f_5
000	- sur des corbeaux	14	Ε	F	1	f_1	f_4	f_5
	- sur des échelles à câbles	16	E	F	1	f_1	f_4	f_5

Tableau 3-1 : mode de pose pour les lettres de section C, E et F

d'une phase sous la tension simple du réseau. Le calcul d'Icc₃ est donc indispensable pour choisir les matériels (Intensités et contraintes électrodynamiques maximales à supporter).

Court-circuit biphasé isolé

Il correspond à un défaut entre deux phases, alimenté sous une tension composee U. L'intensité ${\rm Icc}_2$ débitée est alors inférieure à celle du défaut triphasé :

$$Icc_2 = \frac{U}{2.Zcc} = \frac{\sqrt{3}}{2}.Icc_3 = 0.86 Icc_3$$

Court-circuit monophasé isolé

Il correspond à un défaut entre une phase et le neutre, alimenté sous une tension simple

 $\vee = U / \sqrt{3}$. L'intensité Icc_1 débitée est alors :

$$Icc_1 = \frac{U/\sqrt{3}}{Zcc + Z_{Ln}}$$

Dans certains cas particuliers de défaut monophasé l'impédance homopolaire de la source est plus faible que Zcc (par exemple aux bornes d'un transformateur à couplage étoile-zig zag ou d'un alternateur en régime subtransitoire). L'intensité monophasée peut être alors plus élevée que celle du défaut triphasé.

Court-circuit à la terre (monophasé ou biphasé)

Ce type de défaut fait intervenir l'impédance homopolaire Zo.

Sauf en présence de machines tournantes où l'impédance homopolaire se trouve réduite. l'intensité loch débitée est alors inférieure à celle du défaut triphasé.

Son calcul peut être nécessaire, selon le régime du neutre (schéma de liaison à la terre), pour le choix des seuils de réglage des dispositifs de protection homopolaire (HT) ou différentielle (BT).

2.2 Détermination des diverses impédances de court-circuit

Le principe de cette méthode consiste à déterminer les courants de court-circuit à partir de l'impédance que représente le «circuit» parcouru par le courant de court-circuit. Cette impédance se calcule après avoir totalisé séparément les différentes résistances et réactances de la boucle de défaut. depuis et y compris la source d'alimentation du circuit, jusqu'au point considéré.

(Les numéros x permettent, à partir de l'exemple placé en fin de chapitre, de retrouver les explications données dans le texte.)

Impédances du réseau

■ Impédance du réseau amont Dans la plupart des calculs, on ne remonte pas au-delà du point de livraison de l'énergie. La connaissance du réseau amont se limite alors généralement aux indications fournies par le distributeur. à savoir uniquement la puissance de court-circuit Scc (en MVA).

L'impédance équivalente du réseau amont est :

$$1) Za = \frac{U^2}{Scc}$$

U est la tension composée du réseau non chargé

La résistance et la réactance amont se déduisent à partir de Ra / Za en HT par :

Ra/Za = 0.3 en 6 kV.

Ra / Za \approx 0.2 en 20 kV.

Ra / Za \approx 0.1 en 150 kV.

Or,
$$Xa = \sqrt{Za^2 - Ra^2}$$
, d'où

$$\frac{Xa}{Za} = \sqrt{1 - \left(\frac{Ra}{Za}\right)^2}$$

2 Pour 20 kV, on a donc

$$\frac{Xa}{Za} = \sqrt{1 - (0.2)^2} = 0.980$$

Xa = 0.980 Zad'où l'approximation Xa = Za

■ Impédance interne du transformateur L'impédance se calcule à partir de la tension de court-circuit u_{cc} exprimée en % :

$$3 Z_T = u_{cc} \cdot \frac{U^2}{Sn} \text{ avec}$$

U = tension composée à vide du transformateur. Sn = puissance apparente du transformateur. U . u_∞ = tension qu'il faut appliquer au primaire du transformateur pour que le secondaire soit parcouru par l'intensité nominale In, les bornes secondaires BT étant court-circuitées.

Pour les transformateurs HTA / BT de distribution publique des valeurs de u_{cc} sont fixées (cf. fig. 13) par EDF (HN52 S20) et publièes au niveau européen (HD 428.1S1). A ce sujet il faut noter que la précision de ces valeurs influe immédiatement sur le calcul de l'Icc puisque une erreur de x % sur u_{cc} induit une erreur du même ordre (x %) sur Z_T .

Puissance du transformateur HTA/BT(en kVA)	≤ 630	800	1000	1250	1600	= 2000
Tension de court-citcuit u _{cc} (en %)	4	4,5	5	5,5	6	7

Figure 13 : tension de court-circuit Ucc normalisée pour les transformateurs HTA/BT de distribution publique

Exemple	Description	N°	Lettre de	F	acteurs	s de co	rrection	1
			sélection	f_0		à app	oliquer	
	Câbles mono ou multiconducteurs dans des vides de construction	21	В	0,95	f_1	f_4	f_5	
	Câbles mono ou multiconducteurs dans des conduits dans des vides de construction	22A	<i>B</i>	0,865	f_1	f_4	fs	f_6
	Câbles mono ou multiconducteurs dans des conduits profilés dans des vides de construction	23A	В	0.865	f_1	f_4	f ₅	f_6
	Câbles mono ou multiconducteurs dans des conduits profilés noyés dans la construction	24A	В	0.865	f_1	f_4	f_5	∫f÷
<u> </u>	Câbles mono ou multiconducteurs : - dans des faux-plafonds - dans des plafonds suspendus Câbles mono ou	25	В	0,95	f_1	f_4	f_5	
	multiconducteurs dans des							
	goulottes fixées aux parois : - en parcours horizontal	31A	В	0.9	f_1	f_4	fs	
	- en parcours vertical	32A	В	0.9	f_1	f4	f_5	

Tableau 3-2: mode de pose pour la lettre de section B

Exemple	Description	N°	Lettre de	F	acteurs	de co	rection	1
			sélection	f_0		à app	lique	
@ @	Câbles mono ou multi- conducteurs dans des goulottes encastrées dans des planchers	33A	В	0.9	f_1	14	f_5	
	Câble mono ou multi- conducteurs dans des goulottes suspendues	34A	<i>B</i>	0.9	f_1	<i>f</i> 4	f ₅	
	Cábles multiconducteurs dans des caniveaux fermés, en parcours horizontal ou vertical	41	В	0.95	f_1	14	f ₅	
	Câbles mono ou multi- conducteurs dans des caniveaux ouverts ou ventilés	43	8	1	\mathcal{I}_1	£4	.f.5	

Tableau 3-2(suite) : mode de pose la lettre de section B

Exemple	Description	N°	Lettre de	F	acteurs	s de co	rrection)
			sélection	f_0		à app	oliquer	
	Câbles mono ou multi- conducteurs dans des conduits ou dans des conduits profilés enterrés	61	D	0.8	f_2	f_3	fs	f ₉
	Câbles mono ou multi- conducteurs enterres sans protection mécanique complémentaire	62	D	1	f_2	f_3	.f ₁₀	
	Câbles mono ou multiconducteurs enterrés avec protection mécanique complémentaire	63	D	1	f_2	f_3	f_{10}	

Tableau 3-3 : mode de pose pour la lettre de section D

Lettre de sélection			Isolant	et nombr	e de con	ducteurs	chargés		
В	PVC 3	PVC 2		PR 3		PR 2			
С		PVC 3		PVC 2	PR 3		PR 2		
E			PVC 3		PVC 2	PR 3		PR 2	
F		_		PVC 3		PVC 2	PR 3		PR 2
Section (mm²) Cuivre									
1.5 2.5 4 6 10 16 25 35 50 70 95 120 150 185 240 300 400 500 630	15,5 21 28 36 50 68 89 110 134 171 207 239	17.5 24 32 41 57 76 96 119 144 184 223 259 299 341 403 464	18,5 25 34 43 60 80 101 126 153 196 238 276 319 364 430 497	19.5 27 36 48 63 85 112 138 168 213 258 299 344 392 461 530	22 30 40 51 70 94 119 147 179 229 278 322 371 424 500 576 656 749 855	23 31 42 54 75 100 127 158 192 246 298 346 395 450 538 621 754 868 1005	24 33 45 58 80 107 138 169 207 268 328 382 441 506 599 693 825 946 1088	26 36 49 63 86 115 149 185 225 289 352 410 473 542 641 741	161 200 242 310 377 437 504 575 679 783 940 1083 1254
Section (mm²) Aluminium 2,5 4 6 10 16	16,5 22 28 39 53	18.5 25 32 44 59	19,5 26 . 33 . 46 . 61	21 28 36 49 66	23 31 39 54 73	24 32 42 58 77	26 35 45 62 84	28 38 49 67 91	121
25 35 50 70 95 120 150 185 240 300 400 500 630	70 86 104 133 161 186	73 90 110 140 170 197 227 259 305 351	78 96 117 150 183 212 245 280 330 381	83 103 125 160 195 226 261 298 352 406	90 112 136 174 211 245 283 323 382 440 526 610 711	97 120 146 187 227 263 304 347 409 471 600 694 808	101 126 154 198 241 280 324 371 439 508 663 770 899	108 135 164 211 257 300 346 397 470 543	121 150 184 237 289 337 389 447 530 613 740 856 996

Tableau 3-4: courants admissibles (en ampère) pour les canalisations dans les conditions standards d'installation (f_0 à $f_{10} = 10$) pour les lettres de section B, C, E et F

Annexe 5

Mode de pose en moyenne tension

Section nominale (mm²)		Isolé PVC			Isolé PE		Iso	lé EPR ou	PR
Cuivre	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
10 16 25 35 50 70 95 120 150 185 240 300 400 500 630 800	80 105 135 160 190 235 285 320 360 410 475 540 610 680 770 850	89 115 150 180 215 265 320 365 410 470 540 610 700 780 880 980	71 95 125 150 180 230 280 320 370 425 500 580 670 760 870 990	86 110 140 170 200 245 295 335 375 425 490 550 600 700 790 870 950	97 125 160 195 230 285 340 385 435 490 570 640 690 810 920 1 010 1 100	76 100 130 160 190 240 295 340 385 445 530 600 700 790 920 1 040 1 160	99 125 165 195 230 285 340 385 430 485 560 630 720 800 910 1 000 1 100	110 145 185 225 265 325 390 445 500 560 650 730 840 940 1 060 1 170 1 270	93 120 160 200 235 295 360 420 475 550 650 740 860 990 1 140 1 300 1 450
1 000 1 200 1 400 1 600	930 980 1 030 1 080	1 070 1 130 1 190 1 250	1 110 1 210 1 290 1 360	1 000 1 050 1 100	1 160 1 160 1 220 1 280	1 260 1 350 1 420 (3)	1 160 1 220 1 280 (1)	1 350 1 420 1 480 (2)	1 570 1 680 1 770 (3)
	(1)	(2)	(3)						
10 16 25 35	62 80 105 125	69 89 115 140	55 73 96 115	67 86 110 130	76 97 125 150	59 78 100 125	77 98 125 150	87 110 145 175	72 95 125 150
50	150	170	140	160	180	150	180	205	185
70 95 120 150 185 240	180 220 250 280 320 370	205 250 285 320 365 425	-175 215 250 285 330 390	230 260 290 330 385	220 265 300 335 380 445	230 265 300 345 410	220 260 300 335 380 440	250 300 345 385 440 510	230 280 325 370 425 510
300 400 500 630 800 1 000 1 200 1 400	420 480 540 620 700 780 840 890	485 550 630 720 810 900 970 1 030	455 530 610 710 820 940 1 030 1 110	435 495 560 640 720 800 860 910	500 580 650 750 840 930 1 000 1 060	470 550 640 750 860 980 1 080 1 160	500 570 640 740 830 920 990 1 050	580 660 750 860 970 1 070 1 150 1 230	580 680 790 920 1 070 1 220 1 340 1 450
1 600	940	1 080	1 180	950	1 110	1 230	1 100	1 290	1 530

Pour les câbles dont l'isolation est en polyéthylène haute densité (PEHD), les valeurs sont à multiplier par: 1,05 pour les colonnes (1) et (2) 1,06 pour la colonne (3)

Tableau 4-1 : courants admissibles dans les câbles constitués par trois câbles unipolaires de tension assignée inférieure ou égale à 6/10 (12kV)

	lsolé PE [*]		Section nominale (mm²)	l:	solé EPR ou P	R
(1)	(2)	(3)	Cuivre	(1)	(2)	(3)
110 140 170 200 250 295 335 375 425 490 550 630 700 790 870 960 1 010 1 070	125 160 195 230 280 335 385 430 490 560 640 720 810 920 1 010 1 100 1 170 1 240	105 135 165 200 250 300 350 395 455 530 610 710 810 930 1 050 1 180 1 270 1 360	16 25 35 50 70 95 120 150 185 240 300 400 500 630 800 1 000 1 200 1 400	125 165 195 230 280 335 385 430 490 560 640 720 810 910 1 010 1 110 1 180 1 240	140 185 220 260 320 385 440 495 560 650 730 830 940 1 060 1 170 1 280 1 360 1 440	130 170 200 245 305 375 425 485 560 660 750 870 1 000 1 150 1 300 1 470 1 590 1 700
1 110	1 290	1 430	1 600 Aluminium	1 290	1 500	1 790
86 110 130 155 190 230 260 290 330 385 435 495 560 640 720 800 860 920	96 125 150 180 220 260 300 335 380 445 500 570 650 740 830 930 1 000 1 060	81 105 130 155 190 235 270 305 355 420 480 560 650 750 860 990 1 090 1 170	16 25 35 50 70 95 120 150 185 240 300 400 500 630 800 1 000 1 200 1 400	98 125 150 180 220 260 300 335 380 440 500 - 570 640 740 830 930 1 000 1 060	110 140 170 205 250 300 340 385 435 510 570 660 740 850 960 1 070 1 160 1 230	99 130 160 190 235 290 330 375 430 510 590 680 790 930 1 060 1 230 1 350 1 450

Pour les câbles dont l'isolation est en polyéthylène haute densité (PEHD), les valeurs sont à multiplier par: 1.05 pour les colonnes (1) et (2) 1.06 pour la colonne (3)

Tableau 4-2 : courants admissibles dans les câbles constitués par trois câbles unipolaires de tension assignée supérieure à 6/6 (7,2) kV et inférieure ou égale 18/30 (36) kV

Section nominale (mm²)		Isolé EPR ou PR	
Cuivre	(1)	(2)	(3)
16	125	140	125
25	160	175	160
35	190	210	195
50	225	250	230
70	270	305	280
95	330	370	345
120	. 370	_ 420	395
. 150	415	465	450
185	465	525	510
240	540	610	600
Aluminium	(1)	(2)	(3)
16	96	105	95
25	· 125 ·	· 135	125
35	145	165	150
50	175	195	175
70	. 210	235	220
95	255	285	265
120	290	325	305
150	320	360	345
185	360	410	395
240	420	475	470

Tableau 4-3 : courants admissibles dans les câbles tripolaire à champ radial de tension assignée supérieure à 6/6 (7,2) kV et inférieure ou égale à 18/30 (36) kV

Annexe 6

Valeurs des courants de surintensités admissibles dans des écrans de câbles :

Tension assignée	6/1	0 (12)	kV	8,7/1	5 (17.5	i) kV	12/20 (24) kV			18/30 (36) kV		
Durée du court-circuit	0.5 s	1 s	2 s	0,5 s	1 s	2 s	0,5 s	1 s	2 s	0.5 s	1 s	2 \$
Section du conducteur mm²												
16	1 100	900	650	1 350	1 000	800	1 800	1 400	1 100			
25	1 200	950	700	1 400	1 050	800	1 800	1 400	1 100			
35	1 400	1 000	900	1 650	1 250	1 000	1 850	1 400	1 100			
50	1 600	1 150	1 000	1 750	1 350	1 050	1 950	1 450	1 150	2 500	1 950	1 5
70	1 750	1 250	1 050	1 900	1 450	1 150	2 100	1 600	1 250	2 700	2 050	16
95	1 850	1 350	1 100	2 050	1 550	1 200	2 200	1 700	1 300	2 800	2 150	17
120	1 900	1 400	1 150	2 150	1 650	1 300	2 500	1 950	1 550	3 100	2 400	19
150	2 150	1 650	1 300	2 400	1 850	1 500	2 600	2 000	1 600	3 150	2 450	19
185	2 400	1 850	1 450	2 600	2 000	1 600	2 750	2 150	1 700	3 350	2 600	2 1
240	2 700	2 050	1 650	2 800	2 150	1 700	3 100	2 400	1 950	3 600	2 750	22
300	2 800	2 150	1 750	3 150	2 450	1 950	3 300	2 550	2 050	3 800	2 950	23
400	3 050	2 350	1 800	3 450	2 650	2 150	3 650	2 800	2 250	4 200	3 300	26
500	3 400	2 550	1 950	3 800	2 950	2 350	4 100	3 200	2 550	4 550	3 550	28
630	3 750	3 000	2 300	4 250	3 300	2 650	4 450	3 450	2 800	4 950	3 850	3 1
800	4 400	3 400	2 600	4 650	3 600	2 900	4 850	3 750	3 000	5 300	4 150	33
1 000	5 100	3 900	3 050	5 200	4 050	3 250	5 350	4 200	3 350	5 850	4 550	36
1 200	5 350	4 100	3 300	5 450	4 250	3 400	5 650	4 400	3 550	6 150	4 800	3 8
1 400	5 600	4 400	3 550	5 900	4 550	3 650	6 050	4 700	3 800	6 550	5 100	4 1
1 600	6 000	4 700	3 800	6 200	4 850	3 900	6 400	5 000	4 000	6 900	5 350	43

Tableau 4-4 : câbles unipolaires ou tripolaires à champ radial à isolant PR où EPR courant de courtcircuit admissible dans l'écran (A)

Tension assignée	6/1	0 (12)	kV	8.7/1	5 (17.5	5) kV	12/	20 (24)	kV	18/30 (36) kV		
Durée du court-circuit	0.5 s	1 s	2 s	0.5 s	1 s	2 s	0,5 s	1 s	2 s	0.5 s	1 s	2 s
Section du conducteur mm²												
16	800	650	490	1 000	740	560	1 200	870	660			
25	900	700	510	1 000	750	570	1 200	870	660			
35	1 000	750	540	1 100	800	600	1 200	880	660			
50	1 100	800	580	1 150	840	640	1 250	1 000	770	1 750	1 300	990
70 .	1 300	920	700	1 350	990	760	1 450	1 100	820	1 750	1 300	1 000
· 95	1 350	1 000	750	1 450	1 050	820	1 550	1 150	880	2 050	1 550	1 200
120	1 450	1 050	800	1 500	1 150	860	1 650	1 200	930	2 150	1 650	1 230
150	1 550	1 100	840	1 600	1 200	910	1 700	1 300	1 000	2 250	1 700	1 300
185	1 650	1 150	900	1 700	1 250	970	2 000	1 500	1 200	2 350	1 800	1 400
240	1 800	1 450	1 100	2 000	1 550	1 200	2 150	1 650	1 250	2 650	2 050	1 600
300	2 000	1 550	1 200	2 150	1 650	1 300	2 300	1 750	1 350	2 800	2 150	1 700
400	2 300	1 750	1 400	2 600	2 000	1 550	2 650	2 050	1 600	3 000	2 300	1 800
500	2 550	1 900	1 500	2 900	2 200	1 750	3 050	2 350	1 850	3 400	2 600	2 050
630	2 750	2 050	1 550	3 000	2 300	1 800	3 150	2 400	1 900	3 500	2 650	2 050
800	3 000	2 250	1 700	3 300	2 500	2 000	3 450	2 600	2 100	3 700	2 800	2 200
1 000	3 300	2 400	1 800	3 500	2 700	2 100	3 650	2 800	2 200	3 950	3 000	2 400
1 200	3 550	2 550	1 900	3 700	2 850	2 200	3 850	2 950	2 300	4 200	3 200	2 550
1 400	3 650	2 750	2 000	3 900	3 000	2 350	4 050	3 100	2 450	4 350	3 350	2 650
1 600	3 750	2 850	2 100	4 000	3 100	2 400	4 150	3 200	2 500	4 500	3 400	2 700

Tableau 4-5 : câbles unipolaires ou tripolaires à champ radial à isolant PE courant de court-circuit admissible dans l'écran (A)

Annexe 7

Volland AG, CH-8153 Rümlang. Ifangstrasse 103. Tel. 044/817 97 97 Fax 044/817 97 00

Kabeltechnik mit System

Industriesicherungen аМ nach IEC Standard

Zylindersicherungen NHS, Abschaltung träge, Klasse aM, für Motorenschutz

Cartouches fusibles industrielles aM standard CEI

Fusibles cylindriques HPC, fusion retardée, classe aM, fusibles protection moteur

Kabelführungsketten Chaines guide cábles

Steckverbinder Connecteurs

s

verschraubungen/Schläuche Presso-étoupes/gaines

Sicherungen	träge	aM	Fusibles	retardés	aM			
Art. Nr.	Ā	Spannung, Schaltvermögen	Grosse	Melder	Nomen	Passende	∨E Stk	Preis Fr./Stk
10. Art.	A	Tension, pouvoir de coupure	Taile	Indicateur	Normes	Sicherungstrenner Sectionneur correspond.	UE pcs.	Prix Fr/ocs
F217171J	1	500 VAC, 120 kA	10 x 38	ohne	CE	MSC.10	10	2.00
H218714J	2	500 VAC, 120 kA	10 x 38	sans	CE	MSC.10	10	1.70
W219232J	4	500 VAC, 120 kA	10 x 38	ohne	CE	MSC.10	10	1.70
-222208J	6	500 VAC, 120 kA	10 x 38	sans	CE	MSC.10	10	1.70
Z201295J	8	500 VAC, 120 kA	10 x 38	ohne	CE	MSC.10	10	1.70
Y211552J	10	500 VAC, 120 kA	10 x 38	sans	CE	MSC.10	10	1.70
A213601J	12	500 VAC, 120 kA	10 x 38	ohne	CE	MSC.10	10	1.70
F214618J	16	500 VAC, 120 kA	10 x 38	sans	CE	MSC.10	10	1.70
X216151J	20	500 VAC, 120 kA	10 x 38	ohne	CE	MSC.10	10	1.70
G217172J	25	400 VAC, 120 kA	10 x 38	sans	CE	MSC.10	10	1.70
J218715J	32	400 VAC, 120 kA	10 x 38	ohne	CE	MSC.10	10	2.20
S215135J	6	690 VAC, 80 kA	14 x 51	sans	CE	CMS.14	10	2.70
Z216659J	10	690 VAC, 80 kA	14 x 51	ohne	CE	CMS.14	10	2.70
M217177J	12	690 VAC, 80 kA	14 x 51	sans	CE	CMS.14	10	2.70
Q217686J	16	690 VAC, 80 kA	14 x 51	ohne	CE	CMS.14	10	2.70
P218720J	20	690 VAC, 80 kA	14 x 51	sans	CE	CMS.14	10	2.70
E219769J	25	690 VAC, 80 kA	14 x 51	ohne	CE	CMS.14	10	2.70
M222214J	32	500 VAC, 120 kA	14 x 51	sans	CE	CMS.14	10	2.90
Q200758J	40	500 VAC, 120 kA	14 x 51	ohne	CE	CMS.14	10	2.90
L211035J	45	500 VAC, 120 kA	14 x 51	sans	CE	CMS.14	10	3.00
E211558J	50	400 VAC, 120 kA	14 x 51	ohne	CE	CMS.14	10	3.00
M211565J	16	690 VAC, 80 kA	22 x 58	sans	CE	CMS.22	10	5.00
S212076J	20	690 VAC, 80 kA	22 x 58	ohne	CE	CMS.22	10	5.00
J212597J	25	690 VAC, 80 kA	22 x 58	sans	CE	CMS.22	10	5.00
V213113J	32	690 VAC, 80 kA	22 x 58	ohne	CE	CMS.22	10	5.00
N213613J	40	690 VAC, 80 kA	22 x 58	sans	CE	CMS.22	10	5.00
R214122J	50	690 VAC, 80 kA	22 x 58	ohn e	CE	CMS.22	10	5.00
C215650J	63	690 VAC, 80 kA	22 x 58	sans	CE	CMS.22	10	5.60
H216667J	80	690 VAC, 80 kA	22 x 58	ohne	CE	CMS.22	10	5.60
Y217693J	100	500 VAC, 120 kA	22 x 58	sans	CE	CMS.22	10	5.80
J218209J	125	400 VAC, 120 kA	22 x 58	ohne	CE	CMS.22	10	5.80

cartouches industrielles cylindriques

cartouches industrielles cylindriques

Caractéristiques techniques (p. 703) Dimensions (p. 702)

(+)	Caractéristiques techniques (p. 702)	703
	PHILIPING (N- 144)	

Emb.	Flat	t.	Cylindri	ques type	gG
			EN 60269	s aux norme -1, CEI 6026 ection d'insta	
	Sans	Avec voyant	Calibre	Tension -	Pouvoir de coupure (A)
			8 x 32(1)		
10 10 10 10 10 10 10	123 01 123 02 123 04 123 06 123 08 123 10 123 16 123 20 ^a	124 02 124 04 124 06 124 08 124 18 124 12 124 16 124 20 ²	1 2 4 6 8 10 2 6 20	400	20 000
			2 - NFC 6 CEI 60269 Agréées B	s aux norme: 0 200 - 63 21 51, 2 et 2.1, Bureau Verita it Pouvoir de	15.
			10 x 38 H	PC	
10 10 10 10 10 10 10 10 10	133 94 133 01 133 02 133 04 133 06 133 10 133 12 133 16 133 26 133 25	134 02 134 04 134 06 134 06 134 10 134 12 134 16 134 26 134 25	0.6 1 2 4 6 8 10 12 160 25	-500)	100 000
	tildres	Agent			
	beconten	beenspern	14 x 51 H	PC	
10 10 10 10 10 10 10 10	143 02 143 04 143 06 143 16 143 16 143 20 143 25 143 32 143 40 143 50	145 04 145 06 145 10 145 16 145 20 145 25 145 32 145 40 145 50	2 4 6 10 16 20 25 32 40 50	·300	100 000
-211	Land In a		22 x 58 H	PC	
10 10 10 10 10 10 10 10 10	153 04 153 06 153 10 153 16 153 20 153 32 153 40 153 50 153 63 153 80	155 10 156 16 155 25 155 32 155 32 155 30 155 63 155 80	4 6 10 16 20 25 32 40 53 80	500	106 860
10	153.96 153.97	155.96 155.97	100 125	400	

Emb.	PA		Cylindria	ues type	aM
			EN 60269- Agréées Bi	1, CEI 602% ureau Vérit	as
			Pour protec	tion des m	noteurs
	persient	bei riperi	Collaber (A)	Tenson :	coupus (A)
L.K.	4168-84		8 x 32'11		
10	120 01 120 02 120 04		1 2	5790	20000000
19 19	120 08		6	400	20 000
10	120 08 120 10		10		
				200 - 63 21 1, 2 et 2.1. ureau Veriti	5S
11.20	100.00		10 x 38 HP	C	0
10	130 92 130 95 130 01		0.25 0,50	Ļ	
10 10	130 02		2		
10 10	130 04 130 06		4 6	500	100 000
10 10	130 06 130 10		8 10		
64	130 12		12		
10 10	130 16 130 20 4 130 25 4		16 20	400	
10	130 25		25 14 x 51 HP	400	ı
15	140 02	141 02	2	· C	ı
10	146 04 140 08	141 04	4 6		
10	140 08 140 10	141 08	10°		
10	140 12 140 16	141 12	12 16	500	100 000
10	140 20 140 25	141 20 141 25	20		
10	140 32 140 40	141 32	25 32 40		
10 10	140 45	141 45	45	400	
10	140 50	141 50	50 22 x 58 HP	400 IC	
15	150 16 150 20	151 16	16	C	1
10 10	150 25	151 25	26 25		
10	150 32 150 40	151 32 151 40	32 40	500	100 000
10	150 50 150 63	151 50 151 63	.50 63		
10	150 86	151 80 151 95	180		
10	150 98 150 97	151 97	190 125	400	
			Neutres		
pp.	123 00		8 x 32 V		
10 19	133 00 143 00 183 00		10 ± 38 14 ×51		
10	183 (00)		22 x 58		

-13 Ascente décorrinalités - 8, 5 s. 34,5 s. 423 Confernée dés normes#C 57, 203 s. subsponsition per les marcules et subsponsition per le marcules et subsponsition per le marcules et subsponsition per le marcules et subsp

cartouches industrielles à couteaux type gé

cartouches industrielles à couteaux type aM

Carectéristiques techniques (p. 703) Dimensions (p. 702) Caractéristiques techniques (p. 703) Dimensions (p. 702)

Conformes aux normes NBN C 63-269-1 et 2 NFC 60 200 et 63 210 - CEI 60269-1, 2 et 2 J- VDE 0636-21 Agréees Bureau Veritas HPC (Haut Pouvoir de Coupure) Conformes aux normes NBN C 63-269-1 et z NFC 60 200 et 63 210 - CEI 60269-1, 2 et z 1- vQE 0636-22 Agréées Bureau Verites HPC (Haut Pouveir de Coupure)

Emo.	RM	d.	A couteaux	type gG (CE	I) /gL (VDE)
			Pour protecti	on d'installation	
	Avec	Avec	Catibee (A)	Tempon V	Римски ин-сопроме (4)
	vespont	percureur	Taille 66		
10 10 10 10 10 10 10 10	163 18 163 20 163 22 163 25 163 35 163 36 163 40 163 50 163 55		25, 32, 36, 40, 50, 63, 89, 100, 125, 166	500	120 000
	10,000		Taille 0		•
336353	168 35 168 45 168 50 168 55 168 50	169 36 169 40 169 45 169 50 169 55	63 60 100 125 160 200	500	120 000
			Taille 1		
e man	173 50 173 55 173 60 173 65	174 50 174 55 174 60 174 65	125 160 200 250	500	129 000
			Taille 2		
***	178 60 178 65 178 76 178 75	179 60 179 65 179 70 179 75	200 250 315 400	200	120-006
			Taille 3		
3	181 25	181 75 181 80	500 630	500	120-500
			Taille 4	100	5. 6
		40-00		sur couteau po	our semage force
1 1		185.80 185.85 185.90 186.99	639 800 1000 1250	500	120 000

Emb	Fiot.		À couteaux	type aM	
			Pour protecti	aruetom seb va	
	Avec	Ares	Calibre	Testiskisti S., (St)	iRossent de douparer 68)
3000	160 22 160 25 160 30 160 35	peaculata	Taille 00 36 40 60 63	500	120 090
****	160 45 160 45 160 60		80 100 125	400	
			Taitle 0		
****	165 35 185 40 165 45 165 50 155 55	166 36 186 40 166 45 166 50 166 56	63 80 106 125 160	500	129 000
			Taille 1		
3 3 3 3	170 50 170 55 170 60 170 65	171 50 171 55 171 60 171 65	125 150 200 250	550	120 900
3 3 3 3	175 60 175 65 175 70 175 75	176 60 176 65 176 70 176 75	Taille 2 200 250 315 400	500	120 (00)
			Taille 3		
3	180 25 180 30	180 76 186 80	600 630	509	120 600
			Taille 4		
1		184 80	AVEC ENCORNI 6310	e sur couteau poi	ur sarrage loice
ì		184 85 184 90	800 1000	£00	0.20 000
			No. of the last of		
		-	Neutres à c		
10 1 1 1	163 168 173 178	04 04 04	Taille 00 sum Taille 0 Taille 1 Taille 2 Taille 3	noulage plastiqu	ie

Annexe 8

Canalisations	Colonnes	Cuivre		Aluminium	
		Α	В	Α	В
Cábles tripolaires	(1)	0.540	1,446	0.549	1,321
à champ	(2)	0.543	1.492	0.544	1.386
non radial	(3)	0.588	1,371	0.598	1.293
3 câbles	(1)	0.556	1.269	0.571	1.130
unipolaires	(2)	0.567	1.286	0.573	1.179
	(3)	0.587	1.196	0.605	1.064
Câbles tripolaires	(1)	0.581	- 1.215	0.594	1.089
à champ radial	(2)	0.573	1.264	0.578	1.155
	(3)	0.600	1,117	0.608	1.004

Tableau 4-6 : valeurs des coefficients A et B pour les câbles isolés au papier imprégné

Surtension

5.3.2.1. Elévation du potentiel des masses BT suite à un défaut MT dans le poste de transformation

Dans ce paragraphe, on se propose d'étudier les surtensions en BT résultant d'un défaut à la terre côté MT dans un poste MT/BT et les mesures àprendre pour la protection du matériel et des personnes, en conformité avec la CEI 364-4-442.

Les valeurs des élévations du potentiel des masses du poste et de l'installation BT dépendent des valeurs des résistances des prises de terre, des intensités du courant de défaut et du schéma de liaison àla terre.

■ mise à la terre dans les postes de transformation

Une seule prise de terre doit être réalisée dans un poste de transformation, à laquelle doivent être reliés :

- la cuve du transformateur
- les revêtements métalliques des câbles àhaute tension
- les conducteurs de terre des installations àhaute tension
- les masses des matériels àhaute tension et àbasse tension
- les éléments conducteurs.

■ symboles

Dans les paragraphes suivants, les symboles utilisés ont la signification suivante :

 I_m : partie du courant de defaut alla terre dans l'installation ahaute tension qui s'ecoule par la prise de terre des masses du poste de transformation

 $R_{p} \,$: resistance de la prise de terre des masses du poste de transformation

 V_{\parallel} : tension entre phase et neutre de l'installation abasse tension

 U^{-} : tension entre phases de l'installation à basse tension

 U_T : tension de defaut dans l'installation abasse tension, entre les masses et la terre

 U_1^{\pm} : contrainte de tens on dans les matériels abasse tension du poste de transformation

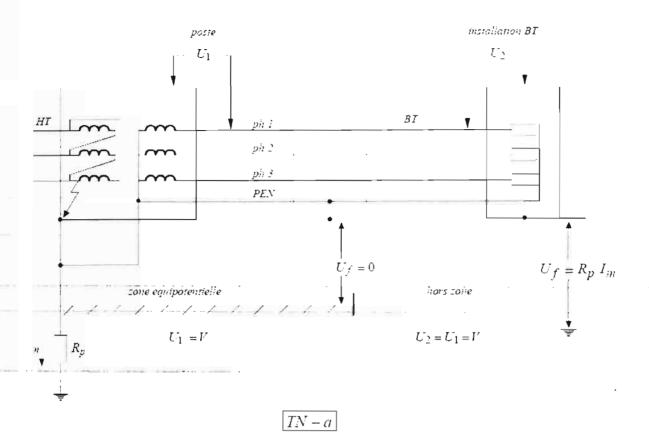
 U_{2}^{\pm} : contrainte de tension dans les matériels abasse tension de l'installation

■ schémas TN - a et TT - a (voir fig. 5-54)

Correspondence avec la norme C13 100 : $IN - a \rightarrow INR$: $II - a \rightarrow IIR$

Dans ces deux schémas, les prises de terre du poste, du neutre et des masses de l'installation sont confondues. A l'intérieur de la zone équipotentielle, les potentiels du sol et des masses s'élèvent simultanément, la tension de contact $\mathcal{C}_{\mathcal{F}}$ est alors nulle.

Par contre, en dehors de cette zone, le potentiel du sol reste égal à celui de la terre profonde, tandis que le potentiel des masses s'élève à $U_f = R_v I_m$.


Ainsi, lorsqu'il existe des masses en dehors de la zone équipotentielle et que la tension de contact $U_f = R_p \, I_m$ ne peut pas être éliminée dans le temps défini par les tableaux 2-3-a et 2-3-b. les schémas TN-a et TN-a ne sont pas acceptables vis-àvis de la protection des personnes.

Afin de palier cet inconvénient. les dispositions suivantes doivent être prises :

- schéma IN a : le neutre de l'installation BT doit être relié àune prise de terre distincte, ce qui correspond au schéma IN -b (voir fig. 5-55)
- schéma IT-a: les masses de l'installation BT doivent être reliées à une prise de terre distincte de celle du poste, ce qui correspond au schéma IT-b (voir fig. 5-56).

Les schémas IN-b et II-b permettent d'éliminer les tensions de contact dangereuses, mais font apparaître des surtensions :

- au niveau du matériel BT de l'installation pour le schéma II-b
- au niveau du matériel BT du poste pour le schéma TN-b.

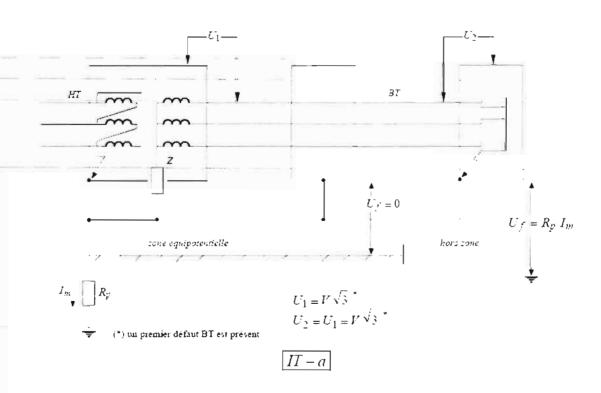


Figure 5-54 : élévation des potentiels en schémas TN-a et IT-a Ibrahima THIAM

■ schémas TN-b, TT-b et TT-c (voir fig. 5-55)

Correspondance avec la norme C13 100 : $TN-b \rightarrow \ \ \ \ \ TT-b \rightarrow \ TTS$; $IT-c \rightarrow ITS$

Dans ces trois schémas, on observe une élévation du potentiel des masses du poste $\ U_1$ telle que :

$$U_1 = R_p I_m + V$$
 pour les schémas $TN - b$ et $TT - b$

$$U_1 = R_p \ I_m + V \ . \ \sqrt{3}$$
 pour les schémas $IT - c$ avec la présence d'un premier défaut côté BT

En fonction de la valeur maximale du courant I_m , les valeurs de R_p doivent être limitées de façon à ce que U_1 reste inférieure à la tension de tenue à fréquence industrielle $U_{t\,p}$ du

$$U_1 \leq U_{tp}$$

matériel du poste.

Le tableau 5-6 donne les valeurs maximales de $\ R_p$ pour différentes valeurs de $\ I_m$ et $\ U_{tp}$.

	Valeurs à R_p à ne pas dépasser					
Courant de défaut I_m (A)			<i>U_{tp}</i> = 4 000 V Classe II			
	= 2 000 V			= 10 00 V Classe spéciale		
	TN-b; $TT-b$	IT - c	TN-b; $TT-b$; $IT-c$	TN-b; $TT-b$; $IT-c$		
300 A	5,9 Ω	5,3 Ω	12 Ω	30 Ω		
1 000 A	1,8 Ω 1,6 Ω		3,6 Ω	10 Ω		
5 000 A	0,35 Ω	0,32 Ω	0,72 Ω	2 Ω		

Tableau 5-6 : valeurs maximales de R_p en schémas TN-b , TT-b et IT-c

bb

■ schémas TT-a et IT-b

Correspondance avec la norme C13 100 : $TT - a \rightarrow TTN$; $IT - b \rightarrow ITN$

Dans ces deux cas, la prise de terre des masses du poste et celle du neutre sont communes. La prise de terre des masses de l'installation BT est séparée.

Le courant de défaut àla terre s'écoule àtravers la prise de terre commune (poste neutre).

Comme indiqué sur la figure 5-56, on constate qu'il y a risque de claquage pour le matériel BT dont la prise de terre des masses est séparée de celle du poste.

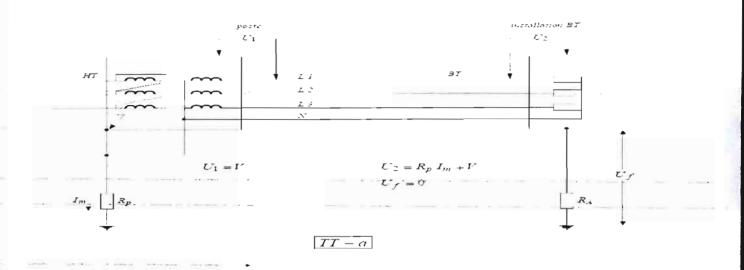
Les conditions suivantes doivent être respectées :

$$U_{tM} > R_p I_m + V$$
 pour le schéma $TT - \bar{a}$

et
$$U_{rM} > R_p I_m + V \sqrt{3}$$
 pour le schéma $IT - b$

d'où
$$R_p \sim \frac{U_{tM} - V}{I_m} \qquad \qquad \text{pour le schéma} \quad TT - a$$

$$R_p \sim \frac{U_{tM} - V \sqrt{3}}{I_m} \qquad \qquad \text{pour le schéma} \quad IT - b$$


avec:

$$U_{tM}$$
 : tension de tenue à 50 Hz du matériel BT de l'installation égale à $2V-1000\,$ pour $V=$ 220 à 250 V, soit 1500 V

Le tableau 5-7 donne les valeurs de R_p pour différentes valeurs de I_m .

	TT – a	IT – b
I _m = 300 A	4 Ω	3.5 Ω
I _m = 1000 A	1,2 Ω	1 Ω
$I_{pq} = 5000 \text{ A}$	0.24 Ω	0.2 Ω

Tableau 5-7 : valeurs maximales de R en schémas TT-a et TT-b

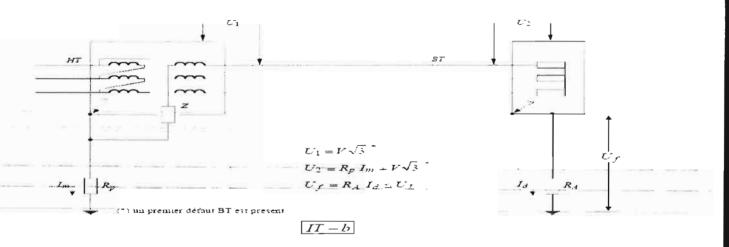


Figure 5-56 : Elévation des potentiels en schémas TT-a et TT-b

Projet de fin d'étude ESP/THIES

■ tableau récapitulatif des tensions de contact et des surtensions qui apparaissent pour chaque schéma de liaison à la terre

	IN - a	IT – a	TT – a	II b	IN-b	TT – b	IT - c
Tension de contact	0	0	N	N	N	.V	N
Surtension masses installation BT	N	.V	0	0	Ŋ	Ŋ	.V
Surtension masses poste	Ŋ	.V	N	N	0	0	0

O - : oui-N : non

Tableau 5-8 : tensions de contact et surtensions qui apparaissent pour chaque schéma de liaison àla terre