BURKINA FASO

Ministère des Enseignements Secondaire, Supérieur et de la Recherche Scientifique

Université de Ouagadougou

Faculté des Langues, Lettres, Arts, des Sciences Humaines et Sociales (F.L.A.S.H.S.)

Département de Géographie

MEMOIRE DE MAITRISE

Thème

LE NAZINON A NOBERE : CONTRIBUTION A l'ETUDE HYDROLOGIQUE

Présenté et soutenu par :

KOSSADOUM NGABA

Sous la Direction de:

- Mr. NEUVY Guy Maître de Conférences
- Mr. DA Dapola E.C. Maître Assistant

Année Universitaire 92/93

DEDICACE

A

Ma mère GUINTA KOIDER

Mon père NGABA NODJIGOTO

Mon oncle RERI KOIDER

Mes soeurs Lydia, Salomé, ALHERE et ESTRA

Tous ceux qui me sont chers

Ma bien aimée Lucie NAMODJI

Mon oncle paternel Baulmbaye NGARAUD.

REMERCIEMENTS

J'adresse mes remerciements a tous ceux qui de loin ou de pres m'ont aide dans la conception du mémoire, et en particulier à :

- Messieurs NEUVY Guy et DA Dapola E. C., tous deux enseignants a l'Université de Ouagadougou, pour avoir bien voulu diriger ce memoire :
- Messieurs TRAORE Omar, Ingénieur des travaux en hydrologie et OUEDRAOGO Laurent, technicien supérieur en hydrologie, tous les deux en service a la D.I.R.H., pour mon encadrement technique;
- A tous les enseignants du département de Géographie, pour ma formation universitaire ;

Au Haut Commissariat des Nations Unies pour les réfugiés, pour leurs assistances materiel durant mon cursus universitaire;

- Monsieur Luc Antoine Boumard, prêtre catholique, pour son assistance materiel;
 - A toute la communauté tchadienne résidant a Ouagadougou;
- Les services competents, pour leurs collaborations durant mes travaux ;
- Mes frères : NGARASSIBAYE Masbé, GAGUIMBAYE Tolmbaye, MBAIWESSEM Ngaro, ASRA Lengar, TOGJE NGARTA, NGONNDIGAMLEMGOTO Alram Guebnan, YOMADJIOUTEGAR Oscar, pour leurs soutiens moraux et materiels pendant les periodes, les plus éprouvants de mon séjour au Burkina Faso.

SOMMAIRE

	Pages
DEDICACE	1
REMERCIEMENTS	2
Résumé & mots clés	3
Liste des abréviations	5
Liste des tableaux	6
Liste des figures	7
INTRODUCTION	11
PREMIERE PARTIE : CARACTERISTIQUES PHYSIQUES	
DU BASSIN VERSANT DE NAZINON A NOBERE	16
Chapitre I : Présentation de Nobéré	17
A : Situation géographique	17
B: Historique	17
Chapitre II: Aspects physiques du bassin versant	20
A : Formations géologiques	20
B : Aspects géomorphologiques	23
C : Eléments de la biogéographie	24
1 - Sol	24
2 - Végétation	27
Chapitre III : L'hydroclimatologie	32
A : Les précipitations	33
1 - Variations mensuelles des pluies	33
2 - Variations annuelles des pluies	34
B : Evaporation - Insolation	39
1 - Evaporation	39
2 - Insolation	44

C: Température - Humidité	44
1 - Température	44
a) variations moyennes mensuelles	
b) variations moyennes annuelles	
2 - Humidité	
	_
DEUXIEME PARTIE : CARACTERISTIQUES HYDROLOGIQUES	
DU BASSIN VERSANT DE NAZINON	54
Chapitre IV : Le bassin versant	55
A: La morphométrie	
1 - Dimension du bassin versant	55
2 - Le coefficient de compacité	55
3 - Le rectangle équivalent	57
B: L'hypsométrie	59
C: Le réseau hydrographique	66
Chapitre V : Les mesures hydrométriques	68
A . I on Aquinaments	
A: Les équipements	68
1 - Les stations de jaugeages	68
2 - Les instruments de mesures	69
3 - Dépouillement des limnigrammes	69
4 - La variation de la courbe d'étalonnage	74
5 - Les qualités des données	77
B: L'interprétation des données hydrométriques	70
1 - L'écoulement	7 8 78
2 - Analyse fréquentielle des modules	7 9
a) les modules mensuels	79
b) les modules annuels à l'exutoire	80
3 - Bilan hydrologique à l'exutoire	90
4 - Les crues	94
a) caractéristiques des crues	94
a, ear never losiques des et des	14

b) l'origine des crues	97
Chapitre VI: Ressources et besoins en eau	98
A: Les ressources en eau	98
B: Les besoins en eau	102
CONCLUSION GENERALE	106
BIBLIOGRAPHIE	109
ANNEXES	112

LISTE DES TABLEAUX

- I Distribution normale des précipitations annuelles de 1975 à 1990
- II Température moyennes mensuelles de 1980 à 1989
- III Humidité moyenne mensuelle de 1980 à 1989
- IV Evaporation moyenne mensuelle de 1980 à 1989
- V Insolation moyenne mensuelle de 1980 à 1989
- VI Caractéristiques physiques du Bassin versant
- VII Tableau hypsométrique
- VIII Débits moyens mensuels et annuels de Dakaye (1975-1990)
- IX Débits moyens mensuels et annuels de Nobéré (1975 1990)
- X Modules annuels classés de Nobéré (1975 1990)
- XI Tableau des valeurs ; quelques fréquences rares
- XII Evolution des paramètres hydrologiques de 1975 à 1990
- XIII Bilan des Fréquences annuelles des modules
- XIV Tableau des modules maximaux annuels, classés de 1975 à 1990 à Nobéré
- XV Tableau des débits maximaux des fréquences rares
- XVI Ressources en eau souterraine
- XVII Tableau récapitulatif

LISTE DES FIGURES

- 1. Carte de situation géographique de Nobéré
- 2. Carte géologique
- 3. Carte des sols
- 4. Carte de végétation
- 5. Evolution des précipitations totales annuelles de 1975 à 1990 (polygone de Thiessen)
- 6. Courbe évaporation insolation (1980 à 1989) OUAGADOUGOU
- 7. Courbe évaporation insolation (1982 à 1989) DE PO
- 8. Courbe des températures moyennes mensuelles de 1980 à 1989
- 9. Courbe d'humidité moyenne mensuelle de 1980 à 1989 de Pô et Ouagadougou
- 10. Bilan hydrique de Pô
- 11. Bilan hydrique de Ouagadougou
- 12. Courbe hypsométrique
- 13. Rectangle équivalent
- 14. Profil en long du Nazinon de la source à NOBERE
- 15. Profil transversal du Nazinon à l'exutoire de Nobéré
- 16. Carte du reseau hydrographique
- 17. Courbe d'étalonnage
- 18. Hydrogramme de Nobéré et Dakaye
- 19. Carte limnimetrique du bassin versant
- 20. Représentation graphique des fréquences cumulées
- 21. Carte du bassin versant.

LISTE DES ABREVIATIONS

M.A. = million d'année

C.R. = horizon du sol où C représente le matériel originel

aux dépends duquel sont formés les horizons A et B

A.C.R. horizon du sol où C représente le matériel originel, aux

dépens duquel est formé l'horizon A et R représente ici

la roche dure sous-jacente.

F.I.T. Front Intertropical

D.I.R.H. = Direction des inventaires et des ressources hydrauliques

BUNASOLS = Bureau National des Sols

BUMIGEB = Bureau des Mines et de la géologie du Burkina

ORSTOM = Office des Recherches Scientifiques et Techniques

d'Outre-Mer

CNRST = Centre National pour les Recherches Scientifiques et

Techniques

CIEH Comité Interafricain d'Etude Hydraulique

BRGM = Bureau des Recherches Géologiques et Minières

IGB = Institut Géographique du Burkina DEP = Direction d'Etude et de Planification

CRPA = Centre Régional pour la Promotion Agropastoral

 ΔH = Variation de l'altitude ΔL = Variation de longueur

∆L = Variation de longueur
 Ai = Superficie partielle rapportée à la superficie totale

A = Superficie totale en pourcentage

Aii = Superficie partielle

Ao = Superficie

Di = Dénivélé entre deux courbes de niveau

Q = La moyenne arithmétique des débits

Oi = Débits moyens annuel

= La somme

U = Nombre total d'années d'observation

 S^2 = La variance

= l'écart-type

Cv = Coefficient de variabilité

Cr = Coefficient de ruissellement

C Consommation d'eau par habitant La moyenne arithmétique de la lame d'eau Le écoulée P Précipitation totale annuelle Déficit d'écoulement D Débit initial Qo Besoin humain en eau Bh BAc) Ce sont des unités hydrogéologiques où les lères lettres GAc) représentent les codes géologiques et les 2èmes lettres, GF SV les codes pédologiques.)

Les codes géologiques

B = Granites syntectoniques et migratites
G = Granites antébirrimiens
S = Schistes birrmiens.

Les codes pédologiques

Ac = sols ferrigineux très cultivés (relief faible, buttes cuirassées)
 F = Sols ferrigineux peu cultivés (relief faible)
 V = Sols vertiques et vertisols (relief ondulé)

OMS = Organisation Mondiale de la santé.

RESUME

Le bassin versant du Nazinon à Nobéré, s'étend sur 7660 km² dans le "plateau" mossi sous un climat nord soudanien.

Dans cette position géographique les contraintes naturelles ont imprimé au bassin ces caractéristiques : déficit hydrique et caractère temporaire du cours d'eau principal. Etant tributaire des pluies celui-ci dispose d'une potentialité relative ne permettant pas une exploitation optimale.

Cependant, le réseau hydrographique doit pourvoir à l'alimentation en eau de la population résidante. C'est ainsi que le processus de captage du cours d'eau a été envisagé, il permet à la population de satisfaire ses besoins en eau et aussi de mener des activités agro-pastorales.

<u>Mots clés</u>: Burkina Faso, Zoundwéogo, Nobéré, Nazinon, hydrologie, bassin versant, climat soudanien, besoin en eau, aménagement.

INTRODUCTION

Le Burkina Faso, situé au cœur de l'Afrique de l'Ouest, à l'Intérieur de la boucle du Niger, compte trois bassins fluviaux :

- Le bassin versant de la Comoé au sud-ouest, avec une superficie de 18000 km²;
- Le bassin versant du Niger à l'est, avec une superficie de 72000 km^2 :
- Le centre, le nord, l'ouest et le sud sont occupés par le bassin versant des volta, avec 184000 km² de superficie. Le bassin versant des volta est constitué de trois (3) sous bassins :
 - *le bassin du Mouhoun
 - *le bassin du Nakambé
 - * le bassin du Nazinon.

C'est le bassin du Nazinon avec l'exutoire à Nobéré, qui fait l'objet de notre étude.

Après délimitation et planimétrage de ce bassin versant, celui-ci couvre une superficie de 7660 km², grossièrement situé entre 11°15' et 12°35' de latitude nord et de longitude 1° et 2°10' ouest.

L'importance d'une étude hydrologique dans un pays sahélien comme le Burkina Faso n'est pas à démontrer, surtout que depuis près de trois (3) décennies (1961-1990), la pluviométrie ne cesse de se dégrader, laissant entrevoir une sécheresse, qui se manifeste par une baisse sensible des niveaux d'eau de surface.

L'eau est un moteur de développement et comme telle, nous lui devons une attention particulière. C'est dans cette vision que nous avons opté pour une étude hydrologique. Le thème de cette etude est libelle comme suit : "Le Nazinon à Nobéré : contribution à l'étude hydrologique".

Ce thème nous conduit a determiner les termes essentiels composant le bilan hydrologique que nous pouvons résumer par la formule :

P = E + R + I

où P est la precipitation

E est l'évapotranspiration

R est le ruissellement de surface

l l'infiltration.

Mais en réalité, le phénomene met en jeu de nombreux facteurs, dont certains sont constants parce que n'évoluant que peu (topographie, nature du substratum) et d'autres variables (precipitations, couvert vegetal, évapo-transpiration, variation du stock d'eau souterraine positive ou negative, variation de l'humidité du sol positive ou négative, quantite d'eau interceptee...).

La compréhension des relations existantes entre les différents facteurs, permettra une meilleure connaissance des ressources en eau de surface et souterraine, et d'analyser les différents éléments qui conditionnent la conservation, ou la perte des eaux. C'est alors que nous évaluerons les ressources en eaux.

Pour une telle etude, nous avons conduit le travail à son terme suivant les règles classiques de recherche en géographie.

METHODOLOGIE

La démarche consiste à :

- déterminer la condition naturelle et les facteurs définissant l'écoulement ;
 - évaluer les potentialités du bassin versant ;
- établir un rapport entre la capacité du bassin versant et les besoins en eau de la région.

Pour réaliser cet travail théorique, des méthodes d'approches du sujet sont envisagées. Elles relèveront de la règle de recherche qui consiste à effectuer :

- les recherches bibliographiques
- le travail de terrain
- la conception du mémoire.

Les recherches bibliographiques

Ce travail a pour but, un assemblage des documents traitant du sujet ou du domaine de notre thème. C'est un préliminaire qui aide à la compréhension du thème et surtout renseigne sur les difficultés possibles qu'un tel sujet peut engendrer.

La constitution de ce tremplin a été réalisée grâce aux services compétents tel que : ORSTOM; DIRH, Projet bilan d'eau, DEP du ministère de l'eau, CIEH, CNRST, BUMIGEB, IGB, BRGM, BUNASOLS...

Les cartes utilisées sont à l'échelle de 1/200.000 pour la détermination de la courbe hypsométrique et les autres travaux ont été réalisés avec les cartes au 1/500.000.

Le travail de terrain

C'est la phase pratique de notre étude, il a duré six mois, pendant lesquelles nous nous sommes investis deux fois de suite.

Une première phase destinée à la compréhension du rapport existant entre l'Homme et son milieu. Cette première approche du terrain a été réalisée grâce aux enquêtes par questionnaire, lesquelles nous ont permis d'apprécier le problème de l'eau qui se pose aux habitants, et l'occasion nous a été donnée de nous impreigner durant notre séjour dans la région de la situation du bassin avant les premières pluies.

Pour une deuxième phase, le travail qui sera mené de façon collégiale avec les agents techniques de la D.I.R.H., va s'étaler de juin à août. Il a une orientation préférentielle : mesures des débits du fleuve dans les stations hydrométriques situées dans le bassin versant du Nazinon.

Cette phase du terrain, nous a permis de comprendre le mécanisme de fonctionnement des instruments de mesures et les différentes méthodes employées pour la mesure des débits.

Les données recueillies sur le terrain seront dépouillées et aideront à l'analyse des événements hydrologiques du bassin versant.

La conception du mémoire

C'est un travail de synthèse. Elle est le bilan des différentes approches du sujet qui ont soutenu l'analyse quantitative menée dans le cadre de notre travail.

Pour conduire une étude hydrologique à terme, l'on ne peut se passer des mesures à effectuer sur le site, parce que les données chiffrées sont la clé de toutes interprétations des événements hydrologiques.

La quantification ainsi faite à partir des mesures de débits est le maillon de toute analyse en hydrologie, elle permet également d'apprécier le rapport existant entre les paramètres hydroclimatiques et les événements hydrologiques.

Cette étude peut faire l'objet d'une projection dans le temps et dans l'espace à partir des lois statistiques et même d'une comparaison avec d'autres bassins versants situés dans les mêmes conditions hydroclimatiques.

La démarche adoptée, nous a conduit à subdiviser le thème en deux grandes parties, composées chacun de trois chapitres :

La première partie s'articule autour des caractéristiques physiques du bassin versant de Nazinon à Nobéré.

La dernière partie traite des caractéristiques hydrologiques du bassin versant.

PREMIERE PARTIE:

CARACTERISTIQUES PHYSIQUES DU BASSIN VERSANT DE NAZINON A NOBERE

CHAPITRE I : PRESENTATION GENERALE DE NOBERE

A) Situation géographique

Le département de Nobéré est (globalement) compris entre les coordonnées géographiques suivantes :

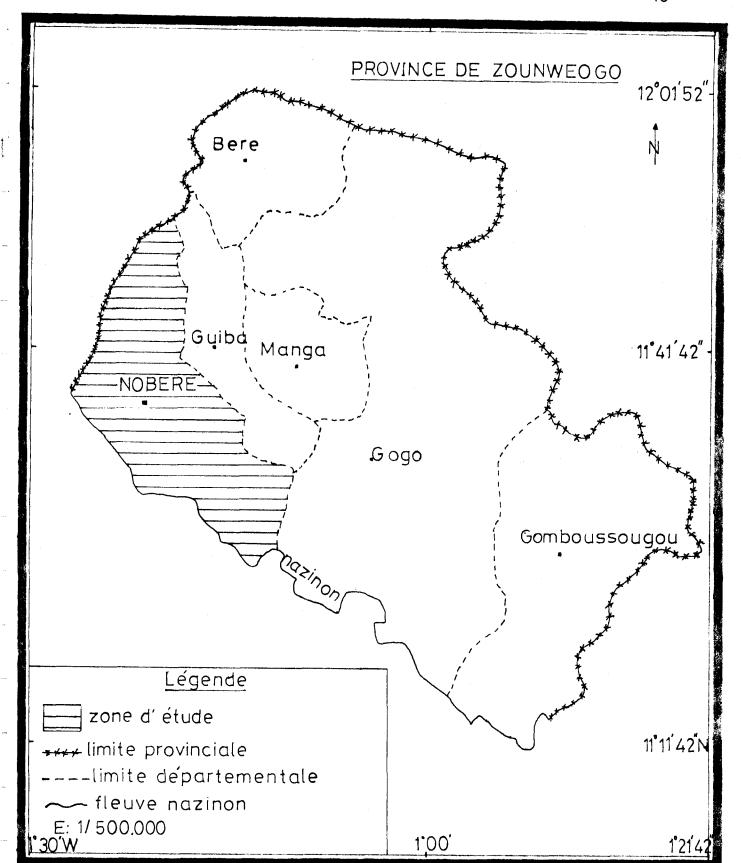
Latitude : 11°35' et 11°45' Nord

Longitude: 1°5' et 1°20' Ouest

Il borde la route nationale n° 5 et est situé à une distance de 100 km de Ouagadougou et 46 km de Pô. Département de la province de Zoundwéogo, il regroupe 26 villages avec une population totale de 23023 habitants (recensement de 1985 INSD). Sa population se compose de 53% de femmes et 47% d'hommes. Le département compte 2 gros villages : Nobéré et Nobili distants de 20 km et qui regroupent l'essentiel des services administratifs (Cf. carte de situation).

B) Historique

Le village de Nobéré, chef lieu du département a été fondé par les Nyonyoncé (ninissé); ce sont des agriculteurs de souche, à la recherche des terres fertiles. Ce peuple s'est installé sur une terre vierge qu'il a baptisée : Nobéré, "pays d'abondance".


Les premiers Nyonyoncé à fouler le sol de Nobéré avaient pour chef le Naba Nina qui, très vite, s'opposa à Naba Bilogho et l'affrontement entre les deux verra la victoire de Naba Bilogho qui règnera jusqu'à l'arrivée des blancs (Français). La famille de Bilogho assurera la destinée du village, génération après génération, jusqu'à l'accession au trône de Naba TIEMTORE Idrissa, chef actuel. Naba TIEMTORE est un reformateur, c'est-à-dire qu'il privilégie la religion Islamique au détriment de l'animisme, religion de ses prédécesseurs. Cette révolution dans la cité provoque son isolement par ses frères conservateurs et lui a même valu une perte partielle

du pouvoir (il ne jouit pas de toutes les prérogatives que lui confère son pouvoir).

Durant notre séjour dans le village, nous avons eu deux contacts avec le chef actuel, mais à chaque fois, il a déclaré : "Je ne suis pas en possession des informations" (informations concernant les premiers arrivants et l'évolution historique de Nobéré).

Les informations consignées dans la partie historique, nous le devons à KONGO Inoussa, oncle paternel du chef actuel (un vieux d'âge compris entre 80 à 90 ans).

Le village de Nobéré, devenu département en 1983 ne cesse de croître tant sur le plan démographique que spatiale. Cette croissance de la population combinée aux vicissitudes d'un climat tropical sec, très capricieux, offre à cette descendance un cadre d'épanouissement très incertain dans un milieu physique contraignant.

CHAPITRE II: PHYSIQUES DU BASSIN VERSANT

Le Burkina Faso appartient à la vieille plate-forme ouest diricaine appelée craton ouest africain à cause de sa relative stabilité par rapport aux régions jeunes où l'on observe encore des manifestations géologiques.

Deux grandes formations géologiques se partagent le pays :

- Les formations cristallines du Précambrien qui occupent 80% du territoire ces formations sont marquées par deux orogénèses :
 - * l'orogénèse libérienne qui va de 2800 MA à 2600 MA
 - * l'orogénèse Eburnéenne qui s'étend de 2500 MA à 1,85 MA.
- Les dépôts sédimentaires du Précambrien A, viennent se déposer de façon discordante sur les bordures ouest, nord et extrême sud-est des formations cristallines.

De ces deux ensembles géologiques qui constituent l'ossature du territoire national, le bassin versant du Nazinon à Nobéré, partie intégrante du Burkina, appartient, de part sa position géographique, au domaine Baoulé-mossi, caractérisé par la prédominance des formations pétrographiques birrimiennes impliquées dans l'orogénèse éburnéenne.

A) Les formations géologiques

Le bassin versant renferme essentiellement des formations du Birrimien (Précabrien C), surtout des venues granitiques postbirrimiennes que SAGATZKY (1947) qualifié de granito-gneiss (Notice explicative de la carte géologique au 1/1200 000 du degré carré de Pô). Ces formations du Birrimien occupent 90% du bassin versant, et regroupent :

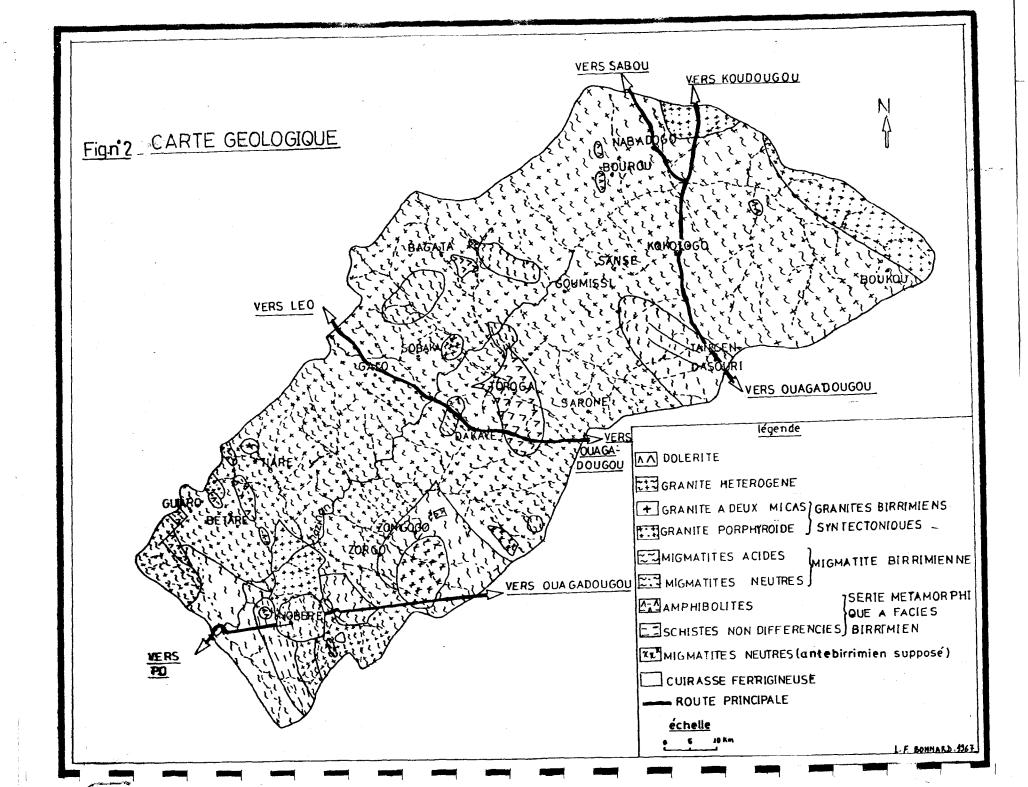
1 - Granites syntectoniques

Ces formations se sont mises en place consécutivement aux phases tectoniques qui ont marqué le Birrimien (2100 à 1950 MA). Ce sont des granites calco-alcalins présentant plusieurs faciès, celles tencontrées dans le bassin sont :

- a) Les granites à 2 micas à Tiaré
- b) Les granites porphyroïdes à l'ouest de Nobéré et au nord-ouest du bassin
- c) Les granites hétérogènes qui occupent plus de 70% du bassin

2 - Les migmatites

Ce sont des formations dont la génèse est liée à une anatéxie partielle. On distingue :


- a) Les migmatites neutres dans la localité de Nobéré, Timboué massif de Nangoum.
- b) Les migmatites acides au nord de Nobéré, Zio, Boulé, Sapoui, Daraptenga, Nord de Saponé, entre Tanguen-Dassouri et Ipala Kompti-Komsilga orienté nord-ouest et à Bingo.

3 - Les séries métamorphiques à faciès birrimien telle que :

- a) Les amphibolites dans le nord de Betaré, de Guiro, et au Sud de Nobéré.
- b) Les schistes au Nord de Nobéré dans la série de Basgana.

En dehors de ces formations birrimiennes observées nous retrouvons aussi :

4 - <u>Les dolérites</u> qui sont des roches basiques d'origine profonde. Elles sont caractérisées par les plagioclases, qui se recoupent et entre lesquelles s'insèrent les éléments ferromagnésiens. Elles sont généralement verdâtres ou mésocrates.

Elles sont visibles à Boulbi, au nord de Dakaye, dans le Torogo-Nioasna.

Ces formations géologiques observées dans notre secteur d'étude, ont été pendant longtemps sujettes à des forces internes et externes, qui les ont modelées pour donner les formes actuelles (cf carte géologique).

B) Aspects géomorphologiques

Le bassin versant du Nazinon s'intègre dans le géosynclinal éburnéen du socle birrimien (depuis l'èocène) (n°22 W. GUENDA, 1985).

C'est une zone de moyen glacis représentant le dernier cycle de cuirassement et d'altération kaolinitique (B. KALOGA, 1968). Dans ce secteur, la forme du relief est caractérisée par la platitude du terrain (pente 1% à 2%), l'altitude est comprise entre 250 à 300 m. Cette monotonie du relief est à chaque fois interrompue par :

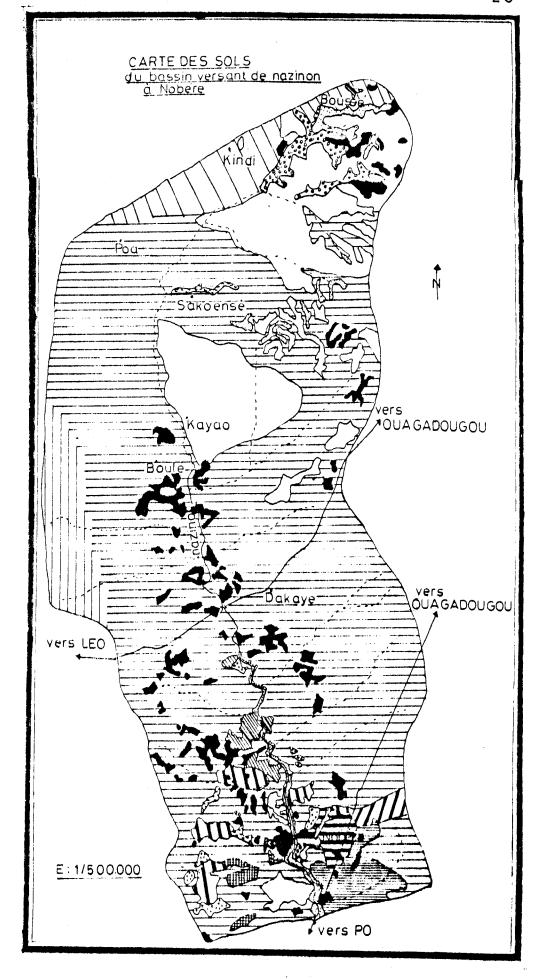
- 1 Des blocs granitiques qui atteignent environ 4 m de haut (piste Nobéré Nazinon), et barrent par endroit le lit du Nazinon. Sur la piste Nobéré Manga se dresse un massif (20 m de haut) dans lequel le cours d'eau s'encaisse.
- 2 Des dômes granitiques se trouvent à l'ouest de l'axe Ouagadougou Pô. Celui de Tiaré dépasse 30 à 40 m de haut, les pentes sont légèrement dissymétriques de l'ordre de 20 à 25°, le granite s'altère par desquamation.

Dans le village de Nobéré à quelques 500 m, se dressent des collines, hautes de 15 à 20 m. Dans le même secteur, il y a des dômes affectées de nombreuses diaclases, entraînant le détachement des blocs qui s'entassent pour donner des chaos granitiques.

Sur les routes allant de Nobéré à Pô, de Nobéré à Nazinon, de Nobéré à Manga se dressent des collines recouvertes de cuirasses ferrigineuses en démentellement.

1 - La couverture sédimentaire comprend des formations récentes indurées de nature cuirassée. les cuirasses affleurent tantôt en dalles denudées appelées localement Boué, tantôt enfouies sous des recouvrements d'origines et de formes variées. Leurs compositions étant bauxitiques pour les cuirasses supérieures, ferriques pour les niveaux moyens et inférieurs ou manganésifères dans certains cas.

Depuis la source, dans le plateau central jusqu'à Pô, le Nazinon traverse des structures cuirassées d'abord franchement latéritiques ensuite plus ou moins mêlées à des granites. Le reste du cours d'eau coule sur des granites et des schistes (cf carte des sols).


C) Les éléments de la biogéographie

1- sol

Le bassin versant du Nazinon à Nobéré regroupe quatre types de sols :

- a) Les sols non évolués ou sols minéraux bruts : ce sont des sols de type (C.R) ou (A.C.R) à horizon A peu épais. Il regroupent les affleurements granitiques (roches nues) et les lithosols sur cuirasse ferrugineuse, localisés le long du cours d'eau surtout à partir de Goumissi. Ces sols ont une valeur agronomique nulle.
- b) Les sols peu évolués sont généralement définis par un profil de type (A.C).

L'horizon A (humifère) est un produit d'apport ou un produit d'altération de la roche mère ; ils sont peu épais. Les sols peu évolués sur argile vertique sont localisés dans les zones confinées, le caractère vertique résulte de la conjonction des conditions du climat général (saison sèche) et des conditions de station (milieu confiné), matériaux riches en bases, ces sols sont appelés montmorillonites. La présence de cuirasses ferrugineuses à proximité explique pourquoi, ils sont recouverts de gravillons.

.

LEGENDE

lithosols sur cuiras	sses férrugineus	se s		
sols mineraux brute	s sur granite			
sols hydromorphes mineraux à pseudogley modaux sur matériaux alluviaux divers vertisols modaux sur materiaux argileux alluvial				
PARTICIPAL AND STREET		sableux à niveau grossier		
argilo-sableux		res ou appauvris sur matériaux		
lithosols sur cuiras	J	uх		
régosols sur schist	tes			
en protondeur		es sur matériaux argilo-sableux ur matériaux gravillonnaires		
lithosols sur cuirass remanies sur matério vertisols lithomorp	ses ferrugineux uux argilo-sabl ohes modaux	x et sols ferrugineux tropicaux leux en profondeur		
wertisols lithomorp	ohes surmater	riaux argileux gonflant		
sols à pseudogley h	nerites sur arê	êne granitique graveleuse		
sols ferrugineux tropicaux remanies sur materiaux limono- argileux à argilo-sableux sur cuirasse				
sols peu evolués su	ır argile vertiqu	ue à recouvrement gravillonnaire		
route principale				
reseau hydrog	graphi qu e			
A A				
<u>échelle</u> : 0	25	50 km		
	•			

c) Les sols évolués sont représentés par les sols ferrugineux tropicaux lessivés, concrétionnés, riche en sesquioxyde de fer individualisés, de couleur rouge caractéristique. Ces sols contiennent de la kaolinite. On les trouve dans la partie nord et ford-ouest du bassin. Ils s'individualisent bien dans ces régions par rapport aux complexes lithosols sur cuirasse et sols gravillionnaires.

Leur fertilité est médiocre et leur structure massive, avec une cohésion forte.

d) Les sols hydromorphes sont caractérisés par la présence dans le profil d'un excès d'eau pendant une certaine période provoquant un déficit en oxygène.

La présence d'eau dépend de la topographie du terrain et des conditions climatiques et lithologiques de la station. Nous trouvons les sols à pseudogley hérités bigarrés; le caractère bigarré est ici le résultat d'une imprégnation ferrugineuse par de grandes tâches rouges à rouille ces sols occupent plus de 80% du bassin.

Leur valeur agronomique est faible et surtout aléatoire, leur texture est sable-limoneuse, leur structure est non développée, avec une cohésion forte et une porosité moyenne à faible.

A Nobéré, ils s'y trouvent mais associés aux sols peu évolués hydromorphes sur arêne granitique graveleuse. Ils sont plus ou moins feldspathiques ou quartzeux, selon la nature de la roche mère.

2) La végétation

En nous référant à la subdivision en territoires phytogéographiques du Burkina Faso par GUINKO S. en 1984, nous distinguons 2 grands domaines :

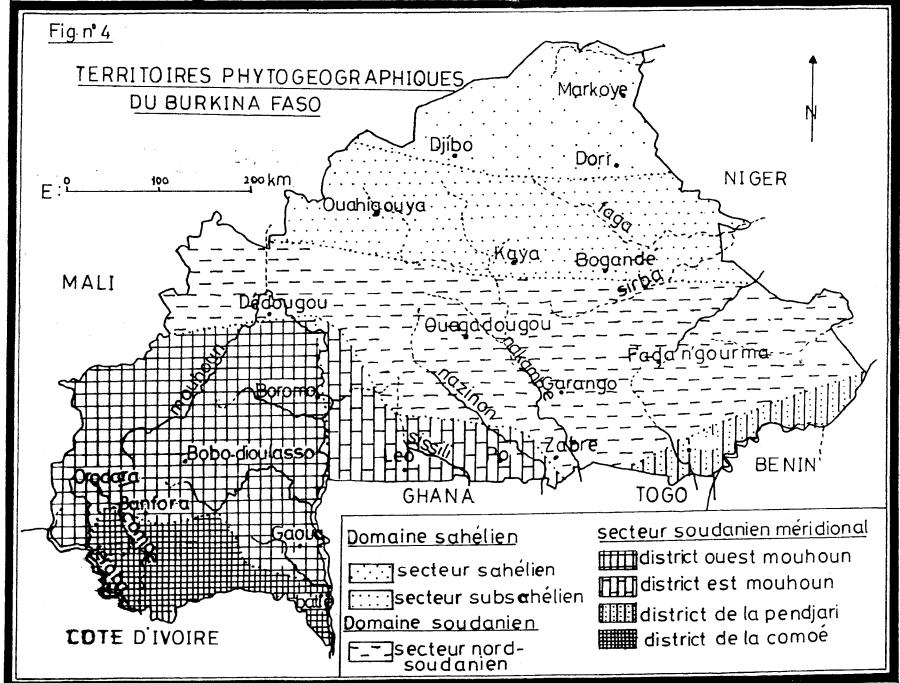
- Le domaine sahélien subdivisé en : le secteur sahélien strict et le secteur subsahélien.

- Le domaine soudanien subdivisé en : secteur soudanien septentrional et secteur soudanien méridional.

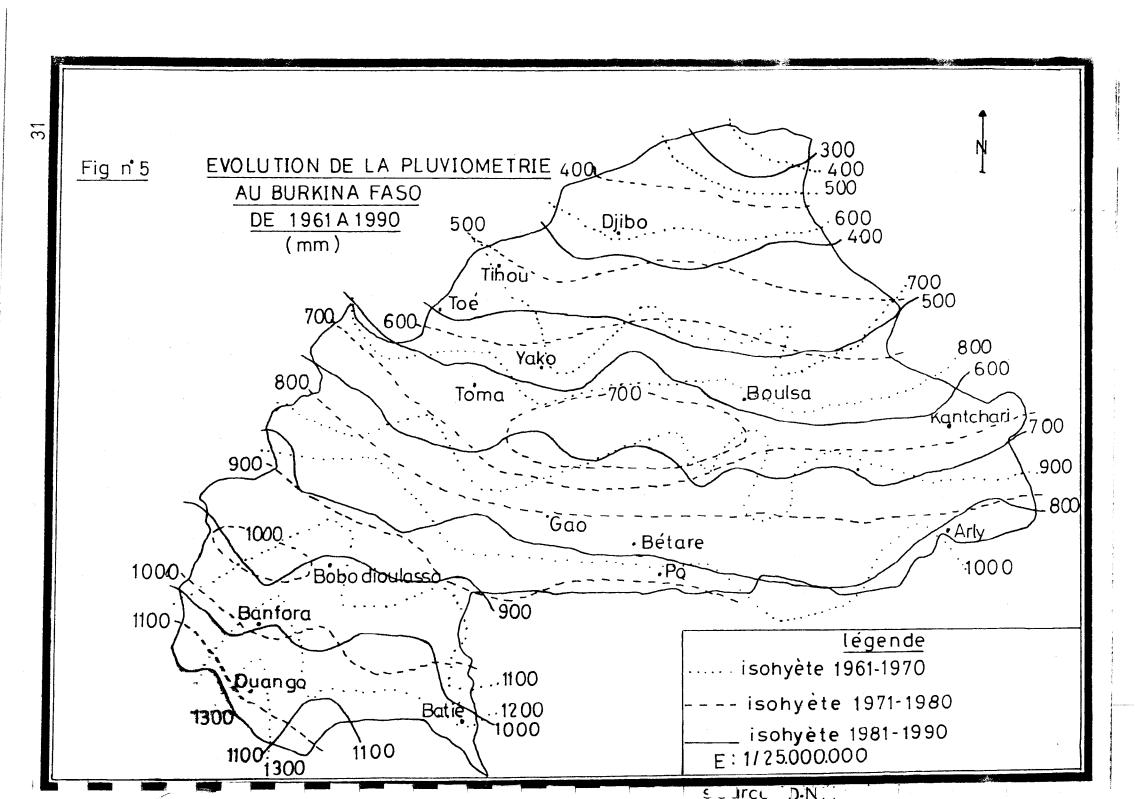
La zone d'étude appartient au domaine soudanien plus précisément au secteur nord soudanien. Elle constitue une zone de transition où cohabitent les espèces des deux domaines précités. Elle est essentiellement un domaine de savane arborée.

Il convient de signaler que malgré une intense colonisation humaine, nous observons entre 11°20 Nord et 12° Nord de latitude à la hauteur de Goumissi et ce jusqu'à Nobéré (exutoire du bassin) une forêt classée (forêt classée de Nazinon) longue de 55 km et large de 30 km.

La flore est composite. On y trouve des Mimosaceae, Sapotaceae, Bombacaceae, Anacardiaceae... Les graminées sont dominées par les andropogonees, les paniceaes, les mimosacees, Velivenia nigritana. En répartissant la végétation selon la topographie de la région, nous avons :


- a) Sur les collines cuirassées des espèces telles que : <u>Acacia seyal</u>, <u>Acacia albida</u>, <u>Gardenia sp</u>, <u>Loutedia togoensis</u>, <u>Lannea acida</u>, <u>Acacia penata</u>, <u>Diospyros-mespiliformis</u>...
- b) Sur les glacis s'étendent des parcs anthropiques dans lesquels se trouvent : <u>Butyrospermum parkii</u>, <u>Lannea microcarpa</u> et <u>Parkia</u> <u>biglobosa</u>.

En dehors de ces espèces dominantes nous avons des espèces compagnes, ce sont : <u>Acacia seyal</u>, <u>Ziziphus sp</u>, <u>Bauhinia sp</u> ; ce sont des jeunes pousses. Tout ce cortège floristique se rencontre dans les champs.


Dans la brousse nous rencontrons : <u>Bombax costatum</u>, <u>Combretum micrantum</u>, <u>Balanites aegyptiaca</u>, <u>Acacia seyal</u>, <u>Lannea microcarpa</u>, <u>Saba senegalensis</u>, <u>Ficus gnafalocarpa</u>, <u>Andansonia digitata</u>...

c) Dans la vallée, l'association graminées-arborescents va jouer un rôle important dans l'écoulement des eaux.

Malgré la durée de la saison sèche et les effets desséchants de l'harmattan, dans le lit mineur et majeur, l'eau se conserve dans les mouilles et sous les touffes d'arbres.

source: Guinko S. 1984

CHAPITRE III: LE CLIMAT

Le bassin versant du Nazinon à Nobéré est situé dans un climat tropical à saison contrastée.

L'alternance de deux saisons relève du flux et du reflux du front intertropical (F.I.T.) entre la côte et le sud du sahara. Ce mouvement du FIT est causé par la diffusion de 2 masses d'air issues de deux anticyclones :

- L'anticyclone des Açores au large des côtes Marocaines, Espagnols, Portugaises et l'anticyclone du Sahara, dans l'hémisphère Nord.
- L'anticyclone de sainte Hélène au long des côtes Angolaises dans l'hémisphère Sud.

Ces anticyclones génèrent de l'air responsable du mécanisme des pluies.

Dans l'hémisphère nord l'anticyclone du sahara diffuse l'air sec appelé harmattan, qui évolue dans la direction Nord-Est - Sud-Ouest.

Dans l'hémisphère sud, l'anticyclone de sainte Hélène diffuse l'air humide dans la direction contraire à celle des aiguilles d'une montre. Sous la force de coriolis cet air en franchissant l'équateur géographique change de direction et s'oriente : du Sud-Ouest vers le Nord-Est, opposé à celle de l'hémisphère nord.

La convergence des deux masses d'air est séparée par une ligne invisible mais réelle appelée F.I.T. ou C.I.T. (convergence intertropicale). Celle-ci va se déplacer au cours de l'année du sud vers le nord et du nord vers le sud en fonction des saisons et en fonction de la révolution terrestre. Ce mouvement sud-nord et nord-sud du F.I.T. se localise entre 30° de latitude nord et sud de l'équateur. Le F.I.T. fluctue aussi en même temps que l'équateur thermique.

Le mécanisme des pluies ainsi décrit n'est pas seulement l'apanage des deux masses d'air, mais une conjugaison de différents phénomènes climatologiques qu'il convient d'analyser.

A) Les précipitations

Les pluies sont des paramètres climatologiques de base dans l'étude d'un régime hydrologique et dans l'analyse du bilan hydrique d'un bassin versant. Il est alors important d'analyser les variations mensuelles et annuelles des précipitations.

1) Les variations mensuelles des pluies

L'analyse des variations mensuelles des pluies nous permet de déterminer les périodes d'écoulement d'un cours d'eau durant une année donnée.

Le bassin dispose de deux stations météorologiques synoptiques (Pô et Ouagadougou) et de 12 stations pluviométriques (cf tableau de distribution normale de pluies).

En nous référant au coefficient mensuel des précipitations par station, nous constatons que les premières pluies tombent entre avril et mai et les dernières en octobre.

La saison des pluies proprement dite s'étale de juin à septembre.

La concentration des eaux de pluies en quatre mois (juinseptembre) explique la courte durée du flot du cours d'eau et aussi
la période des débits moyens mensuels acceptables. Très vite, le
cours d'eau cesse d'être alimenté par les eaux des pluies, entre dans
une période morte où il se transforme en un chapelet d'eau avec un
débit nul. Cette période s'explique par le fait que le fleuve est
soumis à huit mois de période sèche où l'évaporation est très
importante.

2) Les variations annuelles des pluies

Deux types de méthodes nous permettent de déterminer les billes moyennes sur l'ensemble du bassin versant :

- la méthode des isohyètes
- la méthode de THIESSEN

Nous avons opté pour la deuxième méthode, appelée aussi méthode des médiatrices. Les moyennes annuelles des pluies obtenues varient de 700 mm au nord et 800 mm au sud.

Cependant elle est de 752,9 mm à Nobéré. Les variations moyennes annuelles de pluie évoluent dans le temps et dans l'espace.

En prenant comme référence les moyennes annuelles obtenues (moyenne sur 16 ans de 1975 à 1990) : nous constatons que le bassin versant a subi durant 3 années consécutives (1983-1984-1985) un déficit sur toute sa superficie. Par contre celles de l'année 1989 sont excédentaires sur l'ensemble du bassin.

Dans la répartition annuelle des pluies, des différences notables sont observées suivant les stations : pendant que les stations situées au nord du bassin enregistrent des excédents successifs (1986 à 1989), Bétaré, station au sud enregistre des excédents de 1987 à 1989 et la station de Pô (Sud) connaît des excédents seulement en 1986 et 1989. Cette répartition spatiale des pluies, dans le bassin explique que la période des hautes eaux en un lieu, ne coıncide pas toujours avec une abondance pluviométrique.

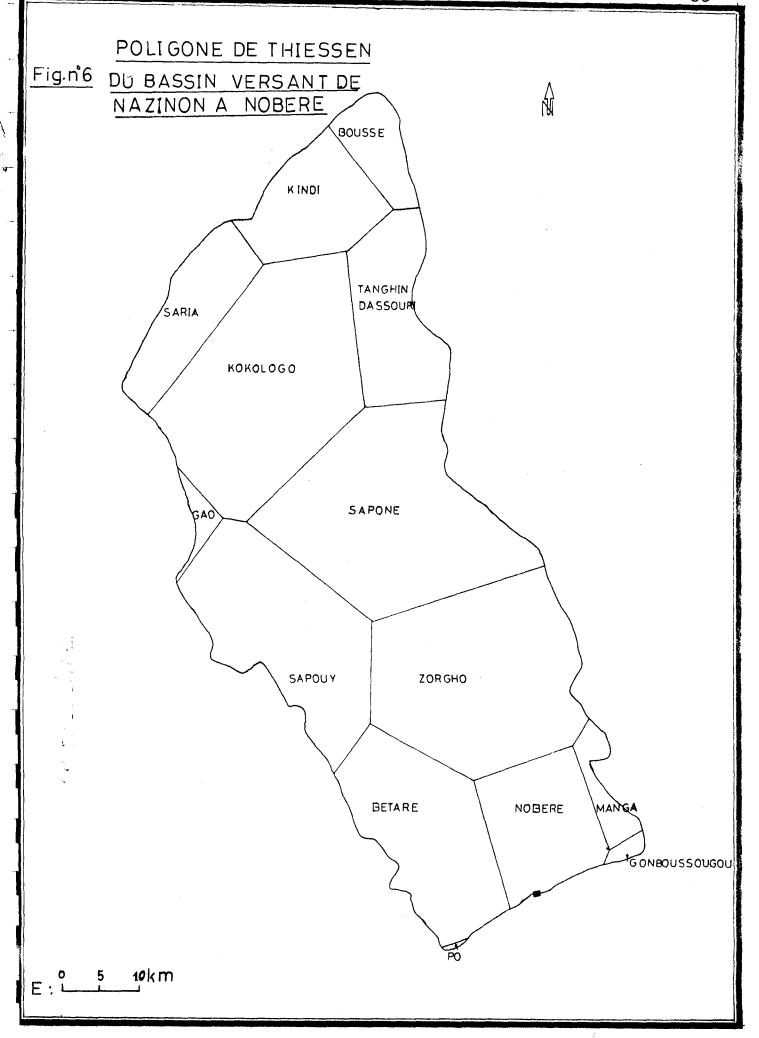
En essayant de faire un bilan hydrologique annuel, nous constatons qu'il existe huit mois secs dans l'année, ce qui explique le problème de l'eau posé aux habitants de la zone.

Durant notre séjour à Nobéré, nous nous sommes rendus compte des problèmes d'alimentation en eau du village, malgré les 2 retenues d'eau qui, durant la saison sèche, se réduisent en de petits points d'eau ayant à peine 1 m de profondeur. Cette pénurie en eau a conduit le gouvernement, sur financement de la B.I.D. (Banque Islamique de Développement), à faire exécuter 7 forages productifs dans le village.

Tableau I

DE 1975 A 1990

						Valeurs	estimées en humide	période	Valeurs estimées en période sèche			
Station	P maxi en (mm)	P moyen (mm)	P mini (mm)	Ecart- type (S)	Coefficie nt de variabilit é (Cu)	1/10	1/20	1/50	1/10	1/20	1/50	
Boussé	852,5	652,4	443,2	124,66	0,19	932,8	1022,6	1063,7	371,9	282,1	241,0	
Betare	1412,3	929,6	706,5	194,10	0,20	1366,3	1506,0	1570,1	492,8	353,1	289,0	
Gao	1140,3	770,5	475,8	151,59	0,19	1111,5	1220,7	1270,7	429,4	320,2	270,3	
Gonbous-	1066,5	731,3	536,7	138,94	0,18	1043,9	1143,9	1189,8	418,6	318,6	272,7	
gou												
Kindi	919,6	626,0	530,6	693,9	1,10	2187,2	2686,8	2915,8	935,2	1434,8	1663,8	
Kokologo	833,6	723,9	555,5	95,27	0,13	932,2	1006,8	1038,21	509,5	440,9	409,5	
Manga	1208,6	823,7	620,6	144,81	0,17	1149,5	1253,7	301,5	497,8	393,6	345,8	
Pô	1141,6	794,8	503,3	173,42	0,21	1184,9	1309,8	1367,0	404,6	279,7	222,5	
Saria	1017,5	766,8	594 ,7	114,61	0,14	1024,6	1107,1	1145,0	508,9	426,4	388,5	
Sapone	843,8	706,3	478,8	90,89	0,12	910,8	976,2	1006,2	501,7	436,3	406,3	
Sapouy	1261,9	808,9	540,2	159,24	0,19	1167,1	1281,8	1334.3	450,6	335.9	283,4	
TanghinD	· ·	712,7	591,8	96,12	0,13	928,9	998,1	1029,8	496,4	427,2	395,5	
Zorgho	821,3	665,4	516,0	95,78	0,14	880,9	949,8	981,4	4 49,8	380,9	349,3	


^{* 1/10 }}

^{* 1/20)} exprime la probabilité d'avoir une certaine hauteur annuelle de pluie tous les 10 ans, 20 ans, 50

^{* 1/50)} ans. Selon Galton (D'après les données de la D.N.M).

Tableau ||
LES PRECIPITATIONS MOYENNES PONDEREESPAR STATION

Station	Pluie moyenne de la station de 1975 à 1990	Coefficient de pondération Si/S	Pluie moyenne pondérée Pam =Pi x Si/S
Boussé	962,4	0,0261	17,02
Betaré	929,6	0,0986	91,65
Gao	770,5	0,0068	5,23
Gonbousgou	731,3	0,0032	2,34
Kindi	626,0	0,05613	35,13
Kologo	723,9	0,1697	122,84
Manga	823,7	0,01370	11,28
Pô	794,8	0,0013	1,03
Saria	766,8	0,0496	38,03
Saponé	706,3	0,1684	118,94
Sapouy	808,9	0,1195	96,66
Tanghin-Dass.	712,7	0,06462	46,05
Zorgho	665,4	0,1588	105,66
TOTAL			691,86 mm

Les causes de l'assèchement des eaux de surface durant la saison sèche ont été bien définies par Yves MONNIER (1981):

"L'harmattan provoque la chute de l'hygrométrie, accroît les ecarts thermiques, entraînant un fort dessèchement, une énorme evaporation et même l'appauvrissement des nappes souterraines peu profondes".

B) Evaporation - Insolation

1) Evaporation

C'est une transformation physique de l'eau, qui passe de l'état liquide à l'état gazeux. L'évaporation est considérée comme étant la partie de l'eau qui s'évapore dans l'atmosphère à partir de la surface des masses d'eau libre, soit du sol. Elle est mesurée dans les bacs évaporateurs de classe "A" (bac colorado) ou par l'évaporamètre "piche". Les données utilisées sont celles du bac "A". Ces données peuvent être rapportées à une grande retenue en les multipliant par un coefficient compris entre 0,8 et 0,9.

L'analyse des graphiques nous permet d'observer deux situations :

- La forte évaporation pendant la saison sèche est de 250 mm en moyenne par mois.
- La faible évaporation en saison pluvieuse, surtout en août ; est de 118 mm à Pô et 157 mm en moyenne à Ouagadougou.

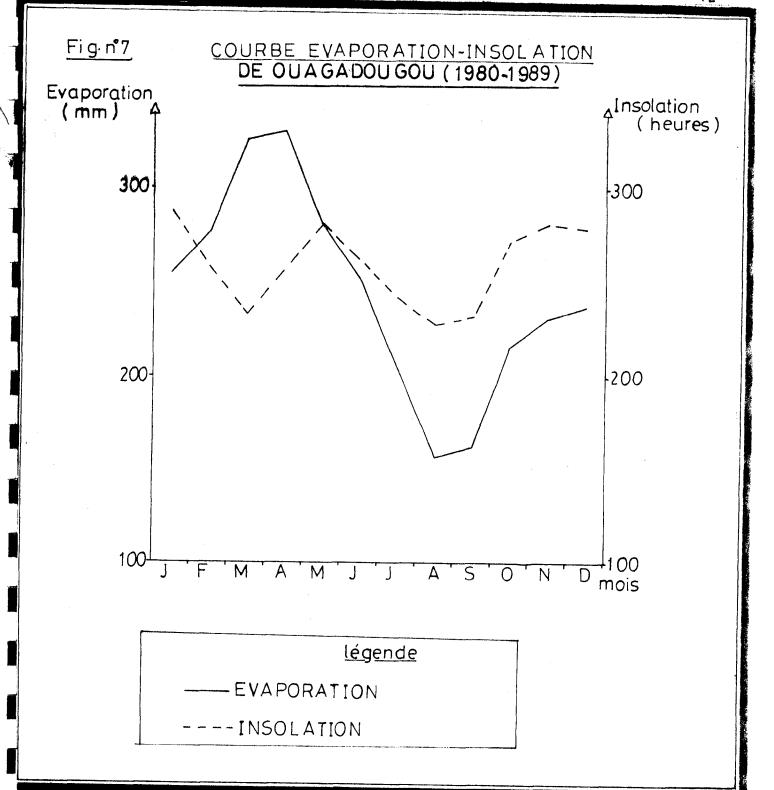
De ces deux constats nous dirons que :

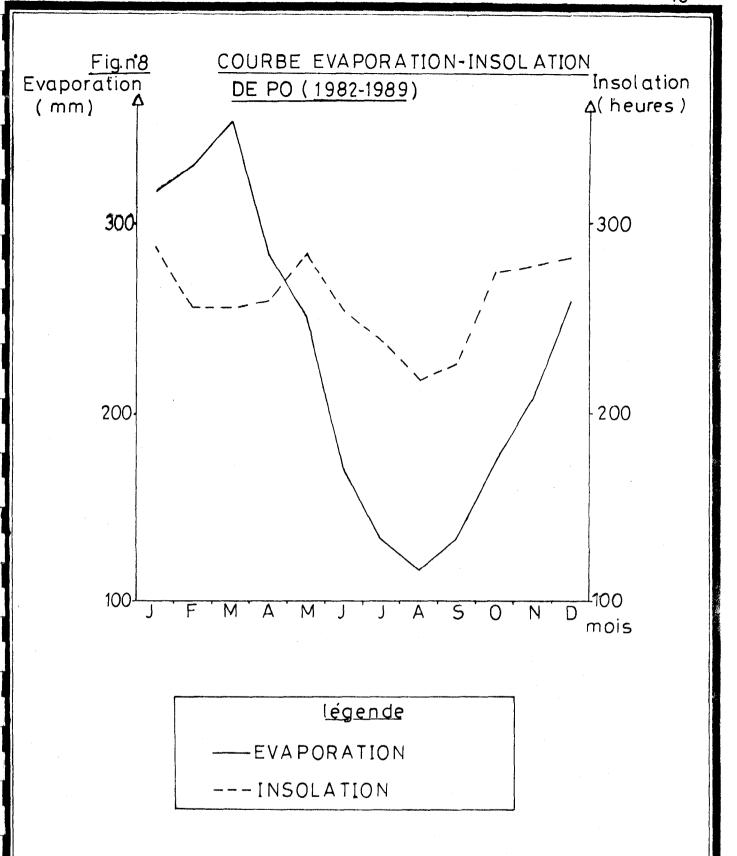
- Les fortes évaporations en saison sèche sont produites par la forte insolation et la présence de l'harmattan, vent sec.
- La faible évaporation constatée en saison pluvieuse est due à la présence de la "mousson" qui crée un écran de nuages, d'où une faible insolation.

TABLEAU III

EVAPORATION MOYENNE MENSUELLE (mm) (1980 à 1989) bac "A"

Station	Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Septem- bre	Octobre	Novem- bre	Décem- bre	Total annuel
Ouaga- dougou	254,1	276,2	326,2	330,5	281,6	252,5	204,3	157,8	163,3	217,4	231,3	237,6	2932,8
Pô	317,2	331,8	354,1	284,5	251,4	170,3	133,0	118,9	134,2	174,0	208,7	260,6	2738,7


Source : Direction Météorologie nationale.


TABLEAU IV

INSOLATIONS MOYENNES MENSUELLES (en heures) (1980 à 1989)

Station	Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Septem- bre	Octobre	Novem- bre	Décem- bre	Total annuel
Ouaga- dougou	287,8	257,5	233,9	256,6	280,4	262,1	242,2	228,0	233,7	272,4	281,7	279,2	3115,5
Pô	287,8	256,5	255,2	260,6	283,6	253,1	238,6	218,1	226,5	273,6	277,3	281,9	3112,8

Source: Direction Météorologie nationale.

Il convient de dire que l'évaporation est un paramètre essentiel dans notre étude ; elle permet d'établir une comparaison entre la pluviométrie et les pertes en eau, afin de connaître les mois entrédentaires (P > E) et les mois déficitaires en eau (P < E) (cf courbe bilan hydrique).

2) L'insolation

Par définition, c'est le nombre d'heures où le soleil a vraiment brillé. C'est une donnée qui nous permet d'analyser l'évaporation. La moyenne de l'insolation est supérieure à 3000 heures par an soit 125 jours.

En analysant les figures n°7 et n°8, nous faisons les mêmes observations que pour les données de l'évaporation, c'est-à-dire qu'elle est élevée pendant la saison sèche et faible pendant la saison des pluies.

C) Températures - Humidité

1) <u>Températures</u>

La température est un facteur important dans l'étude d'un bassin versant.

Dans le cas de notre secteur d'étude, la moyenne annuelle, calculée sur 10 ans (1980 - 1989) est de 27°5.

Cette moyenne interannuelle cache des disparités mensuelles et annuelles.

a) Les variations moyennes mensuelles

Les températures moyennes mensuelles en saison sèche sont très différentes. En nous référant à la température moyenne, qui est de 27°5, nous remarquons que les mois de mars-avril et mai appartenant à la saison sèche, enregistrent des températures moyennes supérieures à la moyenne annuelle. C'est le cas de la

station de Pô où les trois mois de la saison sèche ont une température moyenne mensuelle supérieure à 30°C.

Pendant ce temps, la station de Ouagadougou enregistre pour ces 3 mois une moyenne de 29°C.

Les mois de juin à septembre enregistrent des températures inférieures à la moyenne annuelle.

Cependant nous avons deux mois (décembre et janvier) très en dessous de la moyenne annuelle avec 23°C et 25°C. Cette variation de la température relève du fait que les mois de mars, avril et mai sont marquées par une forte insolation due à la présence de l'harmattan (ciel dégagé); au contraire les mois pluvieux sont sous l'influence de la "mousson", vent humide, d'où une faible insolation. Les mois de décembre, janvier et février sont influencés par la présence de l'alizé, vent frais, qui ne souffle que la nuit et jusqu'au matin, avec présence de brumes.

Les mois ayant une température sensiblement égale à la moyenne annuelle sont situés entre la fin de la saison des pluies et le début de la saison sèche (octobre - novembre). Ils bénéficient aussi bien de la chaleur que de l'humidité, équilibrant ainsi la température.

b) La variation des moyennes annuelles

La variation des températures moyennes annuelles est faible. cette moyenne annuelle est de 27°5C. Cette tendance à l'uniformité de la température est caractéristique du climat nord soudanien.

Cependant il faut signaler que cette variation moyenne annuelle des températures revète l'importance de l'évaporation dans la zone, laquelle constitue une source d'alimentation de l'air atmosphérique en vapeur d'eau.

2) <u>L'humidité</u>

L'air atmosphérique est chargé de la vapeur d'eau, Ethtinuellement entretenue grâce à l'influence qu'exercent la lempérature et les radiations solaires à la surface de la terre.

En observant le graphique n°10, nous remarquons une montée de l'humidité de janvier à août avant que celle-ci n'amorce une descente jusqu'en décembre. Cette évolution de l'humidité nous conduit à faire une certaine analyse :

TABLEAU V.

TEMPERATURES MOYENNES MENSUELLES DE 1980 A 1989 (en °C)

Station	Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Septem- bre	Octobre	Novem- bre	Décem- bre
Ouagadougou	24,3	27,3	27,9	33,0	28,9	29,3	27,5	28,7	27,4	26,4	27,7	24,5
Pô	25,8	28,5	30,9	32,1	29,9	27,6	26,2	25,7	26,3	28,0	27,0	23,3

Source : Direction Météorologie nationale.

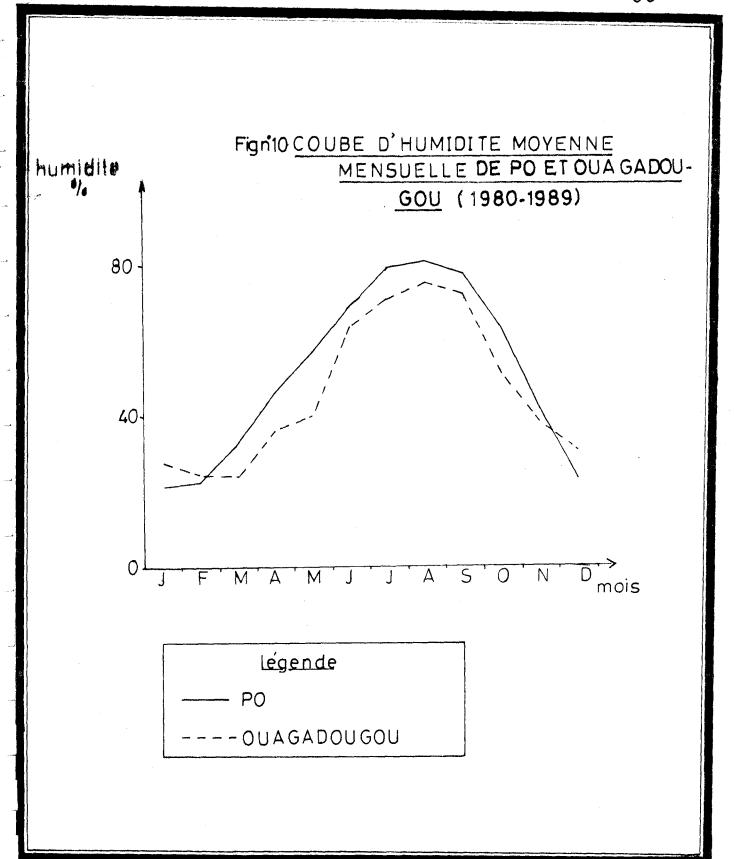

l<u>égende</u> ——OUAGADOUGOU –––– PO mois

TABLEAU VI

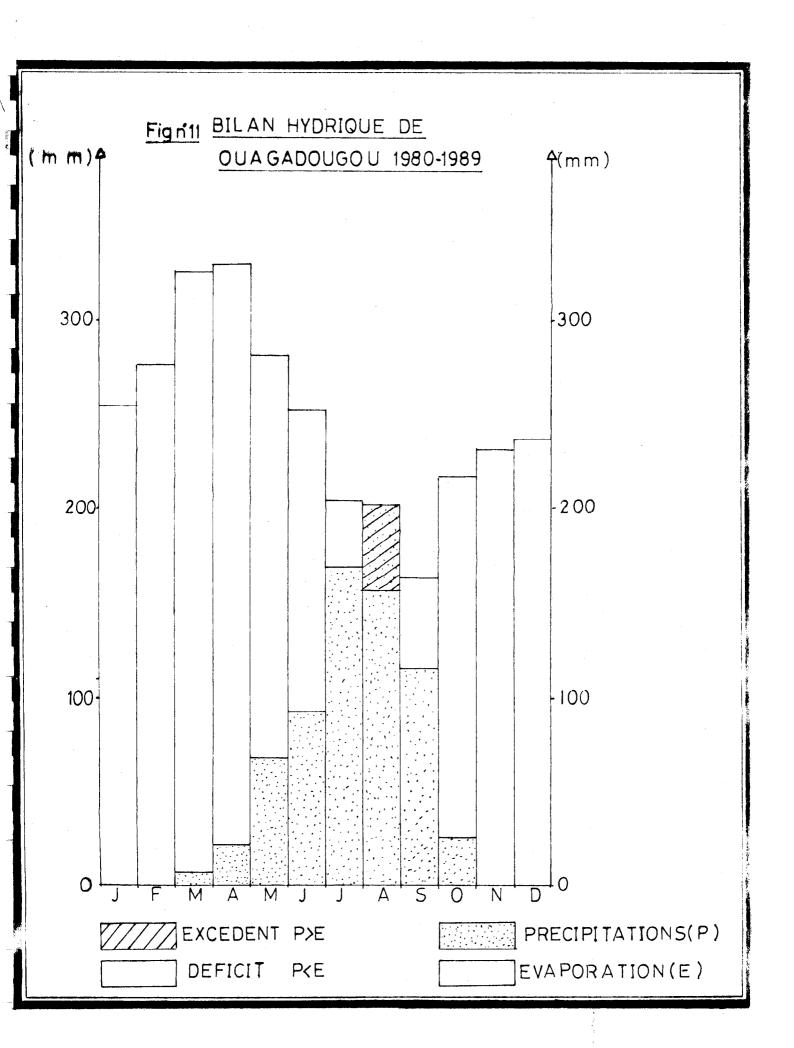
HUMIDITE MOYENNE MENSUELLE DE 1980 A 1989 (EN %)

Station	Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Septem- bre	Octobre	Novem- bre	Décem- bre
Ouagadougou	27,6	24,4	24,0	36,9	40,3	63,7	71,4	75,8	72,3	50,9	38,7	31,0
Pô	21,0	22,0	32,8	46,0	57,8	69,4	79,1	80,5	77,5	63,4	41,4	23,1

Source : Direction Météorologie nationale.

D'après la courbe évaporation - insolation, l'humidité suit l'évaporation et cela jusqu'en mars. En avril, la masse d'air venant de sainte Hélène augmente l'humidité de l'air et ce jusqu'en août. La balsse d'humidité observée à partir de septembre jusqu'en janvier, coincide avec la descente vers le sud du Front Intertropical. Ce reflux du FIT laisse planer l'influence de l'harmattan, vent chaud et sec, dont ces effets desséchants vont entraîner un déficit en eau de l'atmosphère. Ce déficit hygrométrique est caractérisé par une forte évaporation.

L'analyse du paysage physique et de l'hydroclimatologie du bassin-versant de Nazinon à Nobéré fait ressortir des aspects qui méritent une attention :


La position géographique de la région, place le bassin versant dans un climat à saison contrastée, avec une longue saison sèche et une saison des pluies de plus en plus courtes au fur et à mesure qu'on s'élève en latitude.


L'amplitude thermique s'accentue et la quantité d'eau tombée est en baisse progressive depuis déjà 3 décennies (1961-1990) (cf carte d'évolution pluviométrique 1961 - 1990).

La combinaison, position géographique, continentalité du pays et l'ensemble des conditions climatiques, maintiennent des risques de sécheresse avec comme corollaire une pénurie d'eau presque permanente.

Enfin les températures, l'insolation, la pluviométrie, l'évaporation et l'humidité sont des contraintes naturelles omniprésentes qui influent sur la fluctuation des eaux de surface.

Il faut convenir qu'une bonne connaissance de l'hydroclimatologie impliquée aux paysages physiques est indispensable à la compréhension des phénomènes hydrologiques.

DEUXIEME PARTIE:

CARACTERISTIQUES HYDROLOGIQUES DU BASSIN VERSANT DU NAZINON

CHAPITRE IV: LE BASSIN VERSANT DU NAZINON A NOBERE

Un bassin versant est une surface topographique, telle que toute l'eau destinée à y circuler librement passe nécessairement en un lieu d'écoulement appelé exutoire.

A) La morphométrie

1) Les dimensions du bassin versant

Le bassin a été délimité sur fond de carte topographique au 1/200.000 (Koudougou, Léo, Ouagadougou, Pô).

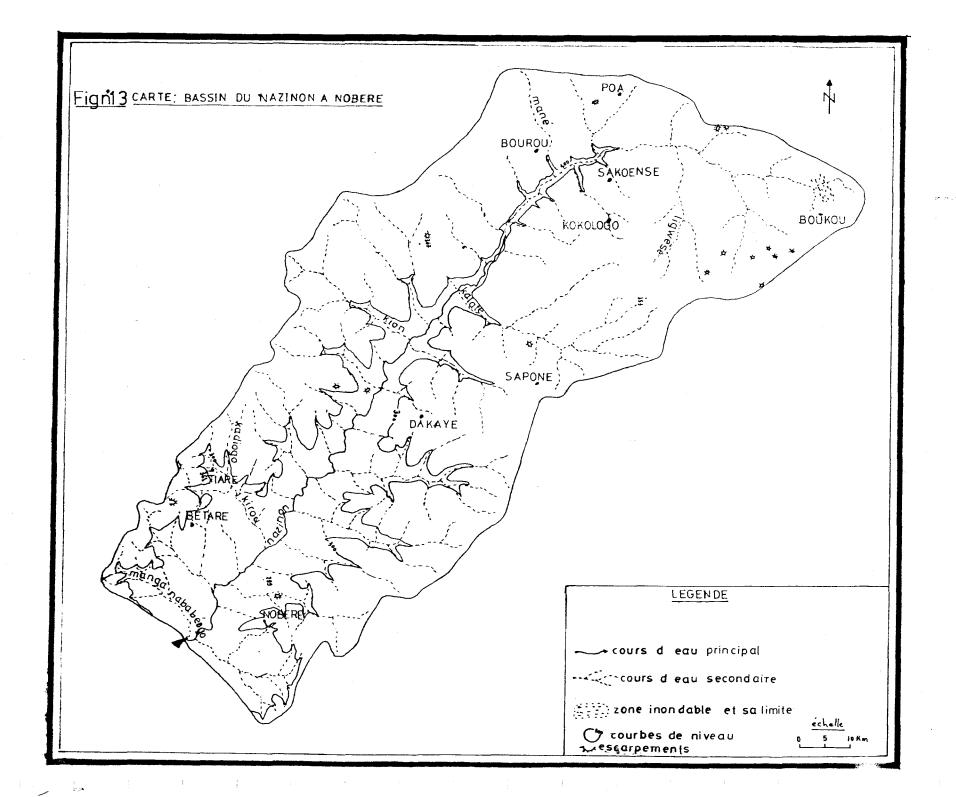
Après planimétrage, il couvre une superficie de :

$$\Lambda_0 = 7660 \text{ km}^2$$

Le périmètre du bassin est obtenu en utilisant le curvimètre :

$$P = 420 \text{ km}$$

2) <u>Le coefficient de compacité ou indice de GRAVELIUS</u> (Kc)


C'est le rapport périmètre du bassin sur celui d'un cercle de même surface. Si le rapport est égal à 1, le bassin est un cercle. Si le rapport est supérieur à 1, le bassin est allongé.

Il s'obtient par la formule:

$$Kc = 0.28 \frac{P}{\sqrt{A_0}}$$

où P est le périmètre du bassin et Ao la surface.

AN:
$$Kc = 0.28 \times \frac{420}{\sqrt{7660}}$$

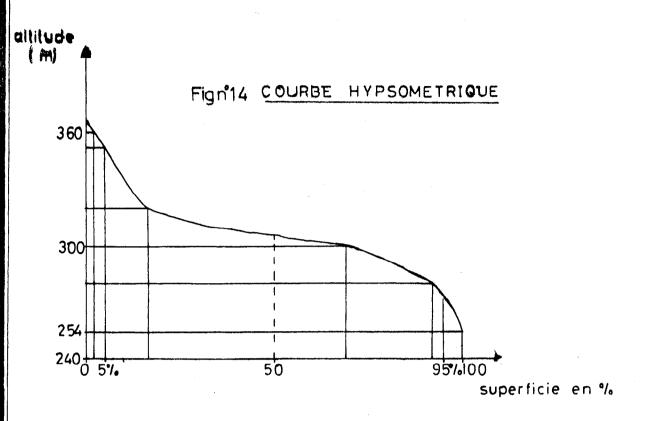
Kc = 1.34.

3) Le rectangle équivalent

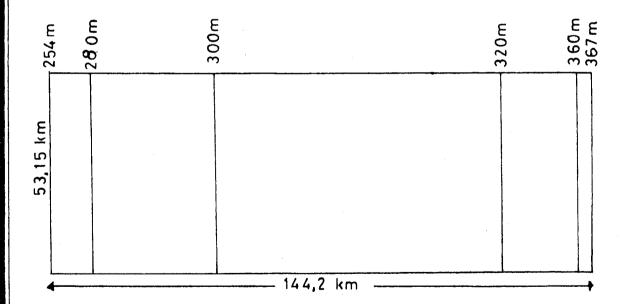
C'est un mode de représentation théorique du bassin. C'est une notion introduite par M. ROCHE de l'ORSTOM, pour comparer facilement les bassins entre eux.

Notre rectangle équivalent, a des dimensions déterminées par les formules suivantes :

- Longueur du rectangle équivalent :


$$L = \frac{K\sqrt{A_o}}{1,12} \left[1 + \sqrt{1 - (\frac{1,12}{K_c})^2} \right]$$

$$L = 144,2 \text{ km}$$


- Largeur du rectangle équivalent :

$$l = \frac{K\sqrt{A_o}}{1,12} \left[1 - \sqrt{1 - (\frac{1,12}{K_c})^2} \right]$$

$$l = 53,1 \, \text{km}$$

RECTANGLE EQUIVALENT

B) L'hypsométrie

Sur une carte topographique, le relief est représenté par des courbes de niveau. Pour établir une hypsométrie du bassin, nous avons adopté une méthode qui consiste à planimétrer les superficies de chaque zone, en allant des plus élevées au plus basses

Cette méthode nous permet de cumuler chaque superficie mesurée. Les superficies ainsi cumulées sont exprimées en pourcentage de la surface totale et à partir d'un tableau dressé, une courbe hypsométrique est tracée.

- L'indice global de pente (Ig)

Il est défini par le rapport :

$$Ig = \frac{\Delta H}{L} \Longrightarrow Ig = \frac{H5^{\circ}/_{\circ} - H95^{\circ}/_{\circ}}{L}$$

H est la dénivellée entre l'altitude telle que 5% de la surface du bassin soit située au dessus, et l'altitude telle que 5% de la surface du bassin soit située en dessous. Ce sont des points d'abscisse 5% et 95% de la courbe hypsométrique.

∆H est exprimée en mètre

L est la longueur du bassin, exprimée en km.

$$Ig=0.56 \, \text{m/km}$$

- L'indice de pente de roche : Ip

Il est défini par la formule :
$$Ip = \frac{1}{\sqrt{L}} \sum \sqrt{A_i \times D_i}$$

où Ai représente les surfaces partielles entre deux courbes de niveau et Di les équidistances entre ces courbes de niveau. C'est un indice de susceptibilité au ruissellement.

$$Ip = 0,792$$

L'altitude médiane

Elle est lue sur la courbe hypsométrique au point correspondant à l'abscisse 50% de la superficie totale.

Altitude médiane: 308 m

- l'altitude moyenne

Elle s'obtient à partir de la courbe hypsométrique par une méthode simple : il faut planimétrer la surface comprise entre la courbe hypsométrique et les axes de coordonnées, limitées à la côte d'altitude de l'exutoire.

L'altitude moyenne s'obtient par la formule :

TABLEAU VII

DONNEES HYPSOMETRIQUES

Altitude (m)	Superficies partielles (si) (k m²)	Pourcentage des superficies partielle %	Superficie cumulée (k m²)	Ai = si/A	Di (m)	Ai x Ai *
367 - 360	14,8	0,2	14,8	0,002	7	0,118
360 - 320	1267,2	16,5	1282	0,165	40	2,57
320 - 300	40008	52,3	5290	0,523	20	3,23
300 - 280	1764	23,0	7054	0,23	20	2,15
280 - 254	606	8,0	7660	0,08	26	1,44
			·			
						= 9,508

Ai = superficie partielle entre des courbes de niveau

Di = dénivelée entre les mêmes courbes de niveau choisie Di = 40 m et 20 m intercalaire.

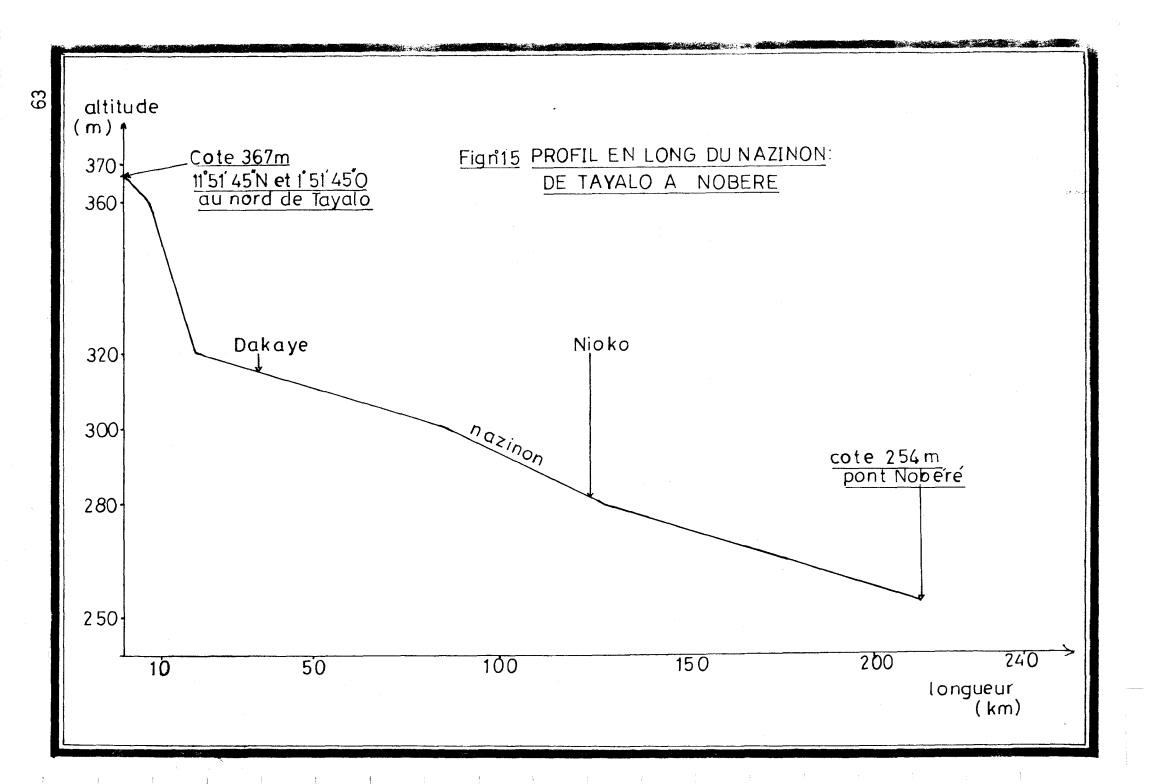
où H moyenne =
$$\frac{1}{A} \int_{0}^{s} H(s) ds$$

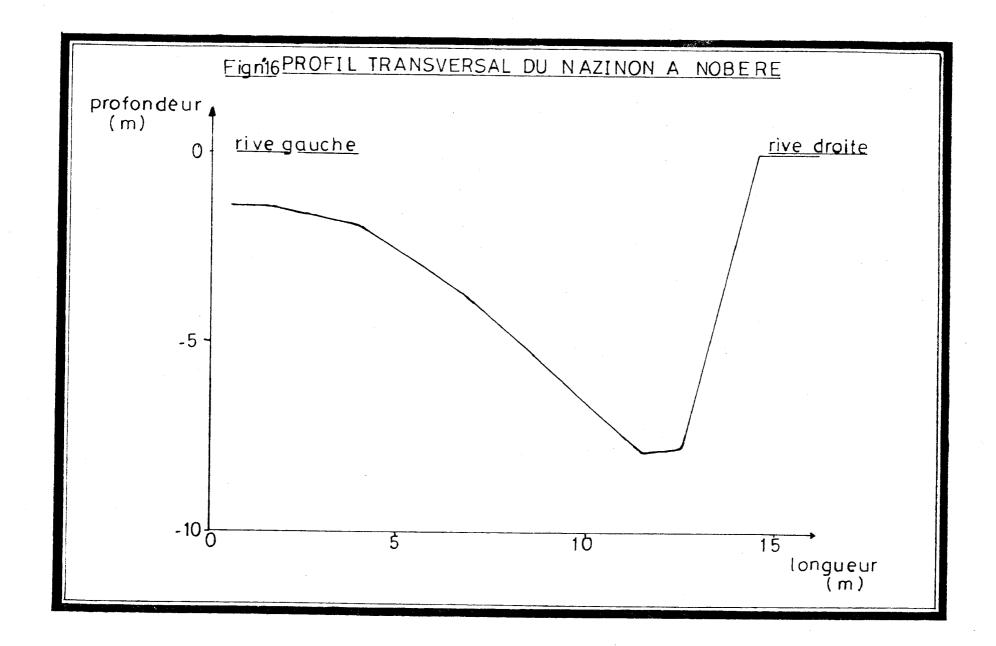
AM: H moyenne = 306 m

- Pente longitudinale du bassin versant

Selon RODIER AUVRAY, la pente longitudinale est évaluée en prenant le profil en long du cours d'eau principal sur lequel on élimine 20% de l'extrémité amont et 20% aval. La pente se calcule sur seulement 60% de la longueur du profil en long.

$$P = \frac{\Delta H}{\Delta L} \Rightarrow P = \frac{H20\% - H80\%}{L20\% - L80\%}$$


$$P = 0.380 \, \text{m/km}$$


- Pente transversale du bassin versant

Selon RODIER AUVRAY, la pente transversale est évaluée en considérant la moitié du profil transversal du cours d'eau en partant du bord supérieur des talwegs vers le lit mineur en éliminant 20% en amont et 20% en aval. La pente se calcule suivant la formule ci-dessous :

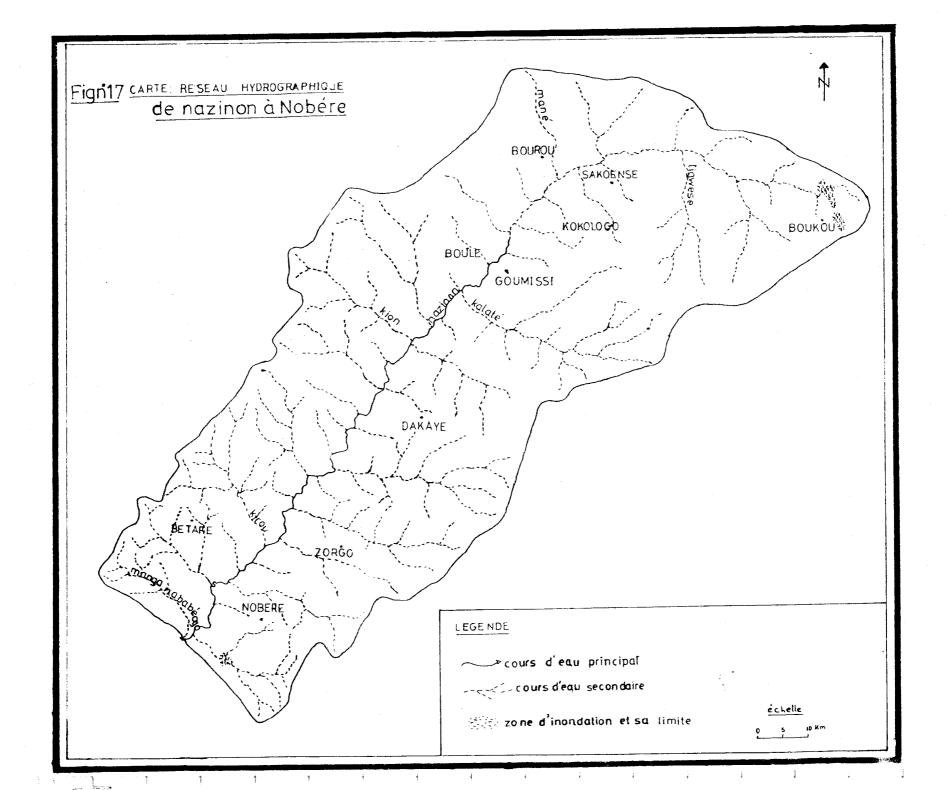
$$P = \frac{\Delta H}{\Delta l} \implies P = \frac{H20\% - H80\%}{120\% - 180\%}$$

$$P = 0.5 \text{ m/km}$$

Tableau VIII

CARACTERISTIQUES PHYSIQUES DU BASSIN VERSANT

Superficie km²	Périmètre k m	Longueur k m	Largeur km	Kc m/km²	Ig m/km	Ip m/km	Altitude moyenne (m)	Altitude médiane (m)	Pente longitudi- nale	Pente Latitudi- nale
7660	420	144,2	53.15	1,34	0,56	0,792	306	308	(m/km) 0,38	(m/km) 0,5


C) Le réseau hydrographique

Le Nazinon, affluent de Nakambé, prend sa source dans une région tropicale sèche, à 330 m d'altitude, et se situe à 50 km au Nord-Ouest de Ouagadougou dans le village de Boussé, province d'Oubritenga.

Cette rivière est alimentée non par une nappe souterraine, mais par des marigots souvent à sec et qui ne débitent que sous de fortes pluies (Moniod, et Coll 1977, GUENDA W, 1980, SAVADOGO, 1984). Il coule dans la direction nord-sud jusqu'à Sakoinsé, à une altitude de 299 m, après un parcours de 55 km.

La pente à cette station est de 0,212 m/km, il se dirige ensuite vers le sud-est en décrivant des méandres de faibles amplitudes. Avec une pente régulière de 0,245 m/km le cours d'eau arrive à la station de Nobéré (cf carte de réseau hydrographique).

Pour contrôler des différents événements qui peuvent survenir dans le bassin versant, le réseau hydrographique est équipé d'instrument de mesures, répartis dans trois stations hydrométriques.

CHAPITRE V: LES MESURES HYDROMETRIQUES

A) Les équipements

1) Les stations de jaugeages

a) <u>La station de jaugeage de Nobéré</u>

Elle est située à 11°26' de latitude nord et à 1°11' de longitude ouest. La station a été équipée le 24 juillet 1965, puis réinstallée le 17 mai 1973, suite à la construction du nouveau pont en aval de l'ancien. Cette modification a occasionné l'interruption des observations de 1970 à 1972.

b) La station de jaugeage de Dakaye

Située à 11°46' de latitude nord et 1°36' de longitude ouest, la station de Dakaye a été installée par l'ORSTOM les 8 et 9 avril 1975, sous le pont métallique de la route Ouagadougou - Léo, côté aval, rive gauche.

c) La station de jaugeauge de Sakoince

Elle a pour coordonnées géographiques :

12°12' de latitude nord et 20°21' de longitude ouest. La première échelle au pont sur le Nazinon de la route Ouagadougou - Koudougou fut installée en 1963. Après l'installation d'un limnigraphe en 1965, la station fut suivie plus ou moins régulièrement jusqu'en 1976. En 1977 ont commencé les travaux du nouveau pont routier. Les tracées de l'ancien pont ont été volontairement fermées par un mur jusqu'à une certaine hauteur pour créer en amont une petite retenue d'eau. Celui-ci influence les débits de l'étiage, surtout en début de saison des pluies, lors du remplissage par les premières crues.

La station a été réinstallée le 4 octobre 1978 par l'ORSTOM à la section du nouveau pont avec une batterie de 4 échelles et un limnigraphe. Après la destruction de cette batterie par les eaux d'écoulement, la plaque a été fixée sur les pulliers en 1980 et en 1987 elle fut de nouveau fermée.

2) Les instruments de mesures

Sur l'ensemble du bassin versant, il y a trois stations hydrométriques équipées :

- a) la station hydrométrique de Sakoince
- b) la station hydrométrique de Dakaye
- c) la station hydrométrique de Nobéré.

Toutes les trois (3) sont équipées d'un limnigraphe à tambour horizontal de marque OTT à rotation mensuelle et d'une échelle limnimétrique à 3 éléments (0 - 3 m) pour la station de Sakoince et de 5 éléments (0 à 5 m) pour les stations de Dakaye et de Nobéré. Ces instruments de mesures permettent une inspection régulière des événements hydrologiques dans les différentes stations hydrométriques.

3) Le dépouillement d'un limnigramme

Un limnigramme est en faite une matérialisation de la variation du niveau d'eau d'un cours d'eau donné. Il reflète l'évolution quantitative du niveau d'eau pendant une période considérée. Le dépouillement d'un limnigramme demande une prise en compte de la capacité du fonctionnement des limnigraphes.

Un limnigraphe est un appareil qui enregistre les variations du niveau d'eau en fonction du temps sous forme de graphique ou de bande perforée. Le graphique ou la bande perforée représente le limnigramme.

Au Burkina Faso, nous disposons de deux types de limnigrammes : semestriels et mensuels. Dans notre cas d'étude, il s'agit de limnigramme mensuel.

Le dépouillement d'un limnigramme mensuel peut susciter plusieurs méthodes d'approches suivant l'importance du cours d'eau et la fiabilité des informations à fournir.

Pour nous procurer des informations indispensables à la poursuite de notre travail, nous avons opté pour une méthode d'approche simple qui consiste à : subdiviser le limnigramme mensuel en jours et chaque jour en 6 valeurs de 4 heures chacune, ce qui donne une répartition journalière suivante : 04 heures - 08 heures - 12 heures - 16 heures - 20 heures - 24 heures. Ce découpage régulier de limnigramme nous donne les hauteurs d'eau toutes les 4 heures et la somme totale des 6 valeurs de 4 heures chacune donne la hauteur moyenne d'eau journalière. Le débit équivalent aux hauteurs d'eau à ces différentes valeurs est obtenu grâce à un barème préétabli (voir annexe II).

Le barème a été établi à partir de la courbe d'étalonnage réalisée après une série de jaugeage effectuée (minimum 15 jaugeages). C'est la courbe hauteur d'eau-débit.

La courbe de tarage ainsi réalisée, sera divisée en tronçon, ce qui nous donne à chaque hauteur d'eau un débit correspondant et entre deux hauteurs d'eau s'effectue le calcul du coefficient de correction*.

La courbe d'étalonnage ou de tarage peut s'obtenir aussi par la formule :

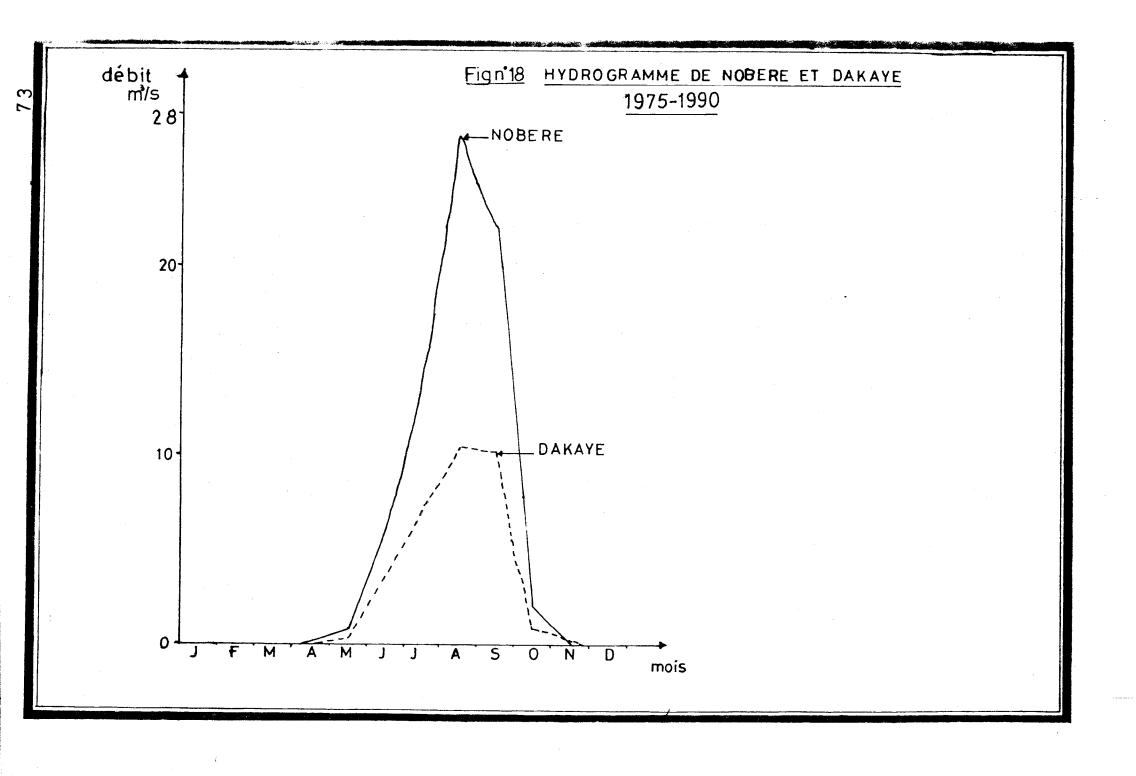
$$Q = C1(H1 - Ho)^2 + C2(H1 - Ho) + C3$$

^{*} Les coefficients de correction (C1, C2, C3) sont des données informatisées consignées dans l'ordinateur, nous les avons utilisés tout simplement pour établir les courbes de lamages.

où C1, C2, C3 sont des coefficients de correction H1 - Ho, la variation de la hauteur d'eau.

Parmi les trois stations hydrométriques cités plus haut, deux ont fait l'objet d'étude. Cependant il faut convenir que les données élaborées précisent ou non, abondantes ou partielles, nous ont permis d'étudier le régime hydrologique du Nazinon à Nobéré.

Tableau IX: Débit moyen mensuel et annuel de Nobéré en m3/s


Année	Avril	Mai	Juin	Juit.	Août	Sept	Oct	Nov	Déc	Moyen nes
1975	0,0	0,211	0.945	7,23	13,6	42,9	1,57	0,299	0,0	5,56
1976	0.0	1,25	1,88	4,19	6,76	4,42	1,57	1,82	0,0	2,02
1977	0,0	(0)	(5,45)	12,1	51,5	48,0	4,01	(0,42)	-	(10,19
1978	0,0	1,29	(1,29)	8,38	13,4	6,39	(4,86)	0,328	0,0	(2,84)
1979	0,0	4.78	11,20	8,30	27.0	27,10	2,73	0,36	0,0	6,96
1980	0,0	0	6,20	3.33	22,80	25,80	4,79	0.48	0,0	4.97
1981	0,0	0,08	5,29	11,20	30,50	14,40	1,12	0,0	0,0	5.21
1982	0,57	1,80	2,21	4,01	11,0	11,80	0,62	0.0	0,0	2,55
1983	0,0	0,76	12.30	10.10	5,79	3,81	0,20	0,0	0,0	2,75
1984	0,0	0,62	4,64	16,40	11,30	5.88	0,08	0,03	0,0	3,73
1985	0,0	0,0	5.78	35.90	24,70	7,42	1.95	0	0	6,26
1986	0,0	1,24	10,0	9,85	15,90	50,60	0,27	0	0	7,86
1987	0,0	0.0	10,0	3,21	21,70	5.31	1,47	0	0	3,44
1988	0,31	0,79	3.04	14,30	33.0	36,40	0,72	0	0	7,44
1989	0,0	0,301	2,62	29,10	19,1	12,3	1,28	0	0	(5.43)
1990	1,09	0,0	9,99	13,2	9,95	0,979	1,76	0	0	2,96

<u>Source</u>: D.I.R.H. (Direction des inventaires et des ressources hydrauliques)

Tableau X : Débit moyen mensuel et annuel de Dakaye Q m³/S

Ånnée	Avril	Mai	Juin	Juil.	Août	Sept	Oct	Nov	Déc	Modu 1es
1975	0	0,889	3,97	6,49	9,24	18,6	2.09	1,18	0,413	3,57
1976	0	0	2,84	1,77	5,92	3,55	2,99	2,32	0	1,61
1977	0	0	0,828	1,92	37,3	25,3	0,433	0	0	5.48
1978	0	(0,87)	0,42	5.45	9,24	7.33	2,26	0.32	0	2,15
1979	0	0,481	4.72	8,38	8,06	15,8	2,18	0,109	0	3,31
1980	0	0,066	4.96	2,85	11,7	11,1	0,213	0	0	2.57
1981	0	(0,463	2,87	8,14	10.9	8,66	0,332	0	0	2,61
1982	0,577	-	2,21	4.01	11,0	11,8	-	0	0	2,46
1983	0	1.01	9,18	2.86	2,69	0,813	0	0	0	1,37
1984	0	1,13	1,16	12,5	3.22	2,46	0,036	0	0	1.70
1985	0	0	3,56	23,7	7,51	3,84	0,089	0	0	3.22
1986	0	0	2,62	6,20	3,38	18,4	0,378	0.01	0	2,58
1987	0	0	8,57	1,07	3,78	0,248	0,486	0	0	1.17
1988	0	2,30	2,86	14,2	23.1	16,1	0,418	-	0,00	4,91
1989	0	0,00	3.394	15,6	8,71	6,69	0,289	-		2,64
1990	0									

<u>Source</u>: D.I.R.H. (Direction des inventaires et des Ressources Hydrauliques).

4) Les variations de la courbe d'étalonnage

a) Station de Nobéré

Depuis l'ouverture de la station hydrométrique de Nobéré, deux courbes d'étalonnage ont été utilisées.

La première courbe a été réalisée après 19 jaugeages et fut valable de 1965 à 1969.

Suite à la construction du point de Nobéré sur le Nazinon, la station a été déplacée en 1973.

Une deuxième courbe d'étalonnage sera tracée après 6 jaugeages de 1973 à 1974. Cette deuxième courbe qui était restée en vigueur jusqu'en 1979, malgré les faibles données sera utilisée à tort, après 19 jaugeages effectués ultérieurement de 1974 à 1979 parce que mal ajustée en dessous de la hauteur d'eau de 3 m (H = 3 m).

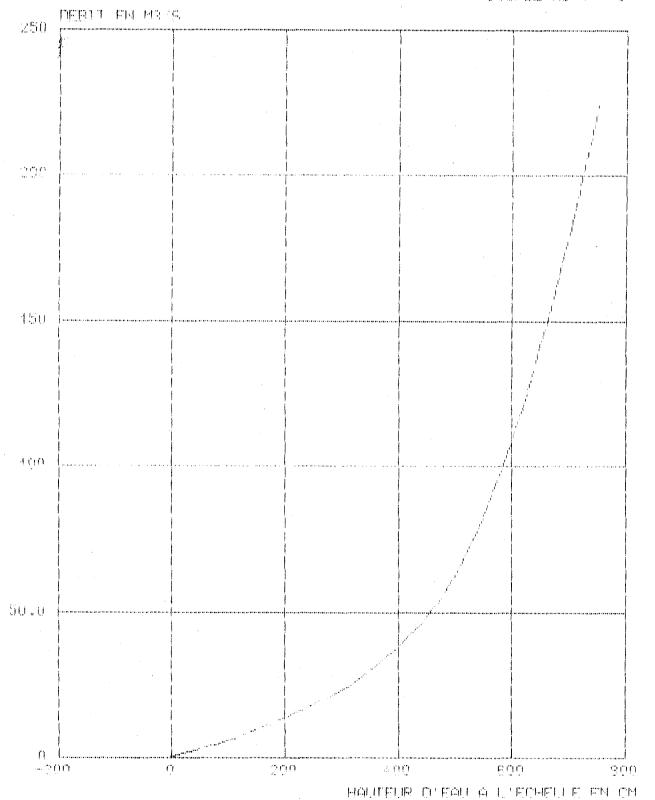
Une troisième courbe sera adoptée en s'appuyant sur les 24 jaugeages (1973 à 1979) laquelle courbe est entrée en vigueur depuis le 1er juin 1973 et reste encore valable.

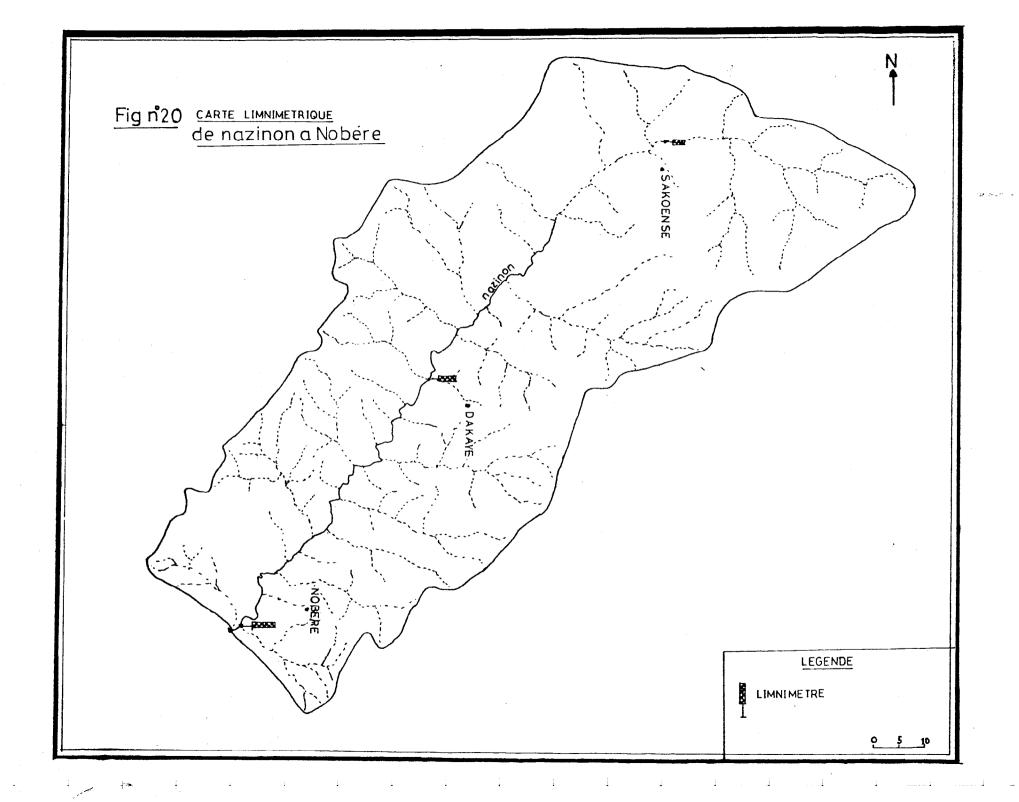
b) La station de Dakaye

De 1975 à 1977, 10 jaugeages ont été exécutés, 11 jaugeages supplémentaires en 1978 ont permis de préciser la courbe d'étalonnage.

Il n'y a pas de jaugeages en 1979 mais 2 jaugeages de 1980, un de 1981 et un autre de 1982 en basses eaux confirment la courbe. La courbe est peu précise en moyennes eaux à cause de la très faible vitesse d'écoulement. En hautes eaux, elle est basée sur 2 jaugeages de crue de 1977. (4,69 m; 76 m³/S et 4,59 m; 62,2 m³/S).

Fig n°19


COURBE D'ETALONNAGE


BINGTURE THAT OF HOBBERG

COURS DEBALL MARTNOU

BURKINA FASO DIRECTION OF L'SHUEHTAIRE DES RESSOURCES, HYDRAULIGUES constant proposed our

COUPEE NO :

5) Qualité des données

Sur les 3 stations hydrométriques que compte le bassin Versant du Nazinon à Nobéré, nous n'utiliserons que deux : Nobéré et Dakaye.

Le choix est guidé par la plus grande disponibilité des données existantes dans les 2 stations. Ce sont des stations récentes, créées respectivement en 1973 et 1975.

Pour harmoniser les données, nous avons pris pour année de base 1975 ce qui nous donne 16 années d'observation (1975 - 1990).

La longueur des séries est à notre avis, acceptable, vu qu'il faut généralement travailler sur une série de 30 ans et plus.

Dans le document, vous trouverez deux types de données :

- les données extrapolées extraient des documents (annuaires hydrologiques) ;
- les données calculées sont obtenues en utilisant une méthode statistique. La méthode des corrélations linéaires.

La méthode de corrélation est employée pour compléter des données manquantes et étendre les enregistrements d'une station hydrologique en corrélant les données disponibles de cette station avec celle existantes dans une station voisine.

Dans notre cas, nous avons corrélé les données de la station de Dakaye avec celles de Nobéré pour déterminer les données manquantes de la station de Nobéré.

La fiabilité des données calculées n'est effective que si le coefficient de corrélation est supérieur ou égal à 80%. Les coefficients de corrélation calculés sont :

 $r = a - \frac{S_x}{S_y}$ r = 0.83 et r = 0.83 avec les droites de régression suivantes : y = 1.95x - 0.73 et $y = 17x - \frac{8}{10}$.

Les données calculées consignées dans le document peuvent faire l'objet de critiques du fait que les erreurs peuvent s'y glisser.

B) Interprétation des données hydrométriques

1) L'écoulement

Le tableau des débits moyens mensuels de 1975 à 1990, fait ressortir deux temps essentiels :

- de janvier à avril et de novembre à décembre, nous observons des modules nuls ou presque nuls ;
- de juin à septembre, les modules mensuels sont progressifs. Cependant nous constatons qu'une période de transition se situe en mai (fin de la saison sèche, début de la saison des pluies) et octobre (fin de la saison des pluies, début de la saison sèche).

De cette observation, une analyse s'impose :

De janvier à avril et novembre à décembre le cours d'eau a un débit nul, mais les premières pluies du mois de mai, déclenchent un écoulement à la mesure de la quantité d'eau tombée, mais seulement cette eau très vite se dissipe.

En octobre, certaines régions enregistrent de la pluie, prolongeant ainsi le temps d'écoulement, qui peut résulter de la collecte des eaux en provenance des différents affluents. Les quatre mois (juin à septembre) considérés comme pluvieux, vont générer une croissance progressive de l'écoulement amorcé déjà en mai jusqu'à atteindre le maximum en septembre avant de décroître progressivement en octobre pour atteindre un niveau critique en novembre, décembre.

Nous pouvons dire que le Nazinon a un écoulement progressif de mai à septembre et une décroissance rapide à partir du mois d'octobre.

Il convient aussi de souligner que dans le déclenchement de l'écoulement du cours d'eau, le facteur anthropique entre en jeu, surtout au début et à la fin de la saison des pluies (barrages et retenues d'eau retardent l'écoulement parce que ne deversent leurs eaux dans le réseau hydrographique qu'après leurs saturations).

2) Analyse fréquentielle des modules

a) Les modules mensuels

Le bassin versant du Nazinon à Nobéré est situé dans le climat soudanien septentrional, c'est un bassin alimenté par les eaux de pluies, d'où son caractère saisonnier.

Ce caractère apparaît dans les résultats des données hydrométriques consignées dans le tableau des débits mensuels. En observant les tableaux statistiques, nous constatons une durée de 6 mois (novembre à avril), où le fleuve est à sec, le module est nul ou presque nul.

Cette situation logique est due au fait que le cours d'eau tributaire des précipitations, n'est pas alimenté pendant cette période, la situation pouvant se prolonger jusqu'en mai. Entre les mois de juin et septembre, correspondant aux mois pluvieux, nous avons une progression croissante des modules.

Les pluies stimulant l'écoulement tombent entre juin et juillet, et déclenchent un écoulement faible. Cette mince lame d'eau en écoulement ne réflète pas le volume d'eau tombée sur le bassin, parce que à cette période les eaux de pluies sont retenues dans les barrages et retenues, nombreux dans le bassin versant.

Cependant les mois d'août et septembre enregistrent des écoulements très appréciables avec des modules journaliers très élevés.

(147 m^3/S le 7 septembre 1976 ; 116 m^3/S le 2 septembre 1975 ; 94,6 m^3/S le 19 août 1977).

C'est une période où les barrages et retenues d'eau ont atteint leurs côtes maximales et par conséquent déversent leurs trop pleins, qui alimentent le cours d'eau principal.

Ce temps d'abondance en eau du bassin est si court que très vite, le bassin va amorcer une phase d'assèchement liée au manque d'eau de pluie, mais aussi au retour de l'harmattan.

b) <u>Les variations annuelles des modules à l'exutoire de Nobéré</u>

En observant le tableau statistique des débits de 1975 à 1990, soit 16 ans d'observations, nous constatons une variation des débits entre $2,02 \text{ m}^3/\text{S}$ à $10,19 \text{ m}^3/\text{S}$.

Le module interannuel est de 5 m³/S, le débit spécifique de 65.10⁻² 1/S/Km² et le coefficient de variation interannuel est de 0,03. Cette faible variation affecte les autres paramètres hydrométriques : lame d'eau écoulée, volume d'eau écoulé, le déficit découlement... La pluviométrie moyenne annuelle de 691,4 mm entraîne un ruissellement de 20,5 mm. Le déficit d'écoulement est de 671 mm et le coefficient de ruissellement de 2,9%

avec Le = Lame d'eau moyenne écoulée

Pa = précipitation moyenne annuelle

G = coefficient de ruissellement.

Ce déficit, nous l'attribuons à la topographie du bassin très plane entraînant un écoulement lent et diffus. Cet écoulement expose la lame d'eau à une évaporation forte dû à l'ensoleillement intense, et aussi à une infiltration plus ou moins grande en fonction des différentes types de sols traversés par le cours d'eau.

Tableau XI: Modules annuels instantanés classés de Nobéré (1975 - 1990)

Années	Q(m ³ /S)	Rang	Fréquence
1977	(10,19)	. 1	0,0312
1986	7,86	2	0,0937
1988	7,44	3	0,156
1979	6,96	4	0,218
1985	6,26	5	0,281
1975	5,56	6	0,343
1989	(5,43)	7	0,406
1981	5,21	8	0,468
1980	4,97	9	0,531
1984	3.73	10	0,593
1987	3,44	11	0,656
1990	2,96	12	0,718
1978	(2,81)	13	0,781
1983	2,75	14	0,843
1982	2,55	15	0,906
1976	2,02	16	0,968

<u>Tableau</u> XII <u>Modules annuels instantanés classés de Dakaye</u> (1975 - 1989)

Années	Q(m ³ /S)	Rang	Fréquence
1977	5,48	1	0,0333
1989	4,91	2	0,10
1975	3,57	3	0,1666
1979	3,31	4	0,233
1985	3,22	5	0,30
1989	2,64	6	0,3666
1981	2,61	7	0,4333
1986	2,58	8	0.50
1980	2.57	9	0,5666
1982	2,46	10	0,6333
1978	2,15	11	0,70
1984	1,70	12	0,7666
1976	1,61	1 3	0,8333
1983	1,37	14	0,90
1987	1,17	15	0,9666

Station de Nobéré

La moyenne :
$$\overline{\mathbf{Q}} = \frac{\sum Q_i}{N}$$
 $Q = \frac{3}{5}$ N

La variance :
$$S^2 = \frac{1}{N} (\sum_{i=1}^{N} Q^2 N_{i}^{-2})$$

$$S^2 - 5.42$$

L'écart-type :
$$6 = \sqrt{52}$$

$$6 = 2.32$$

Le coefficient de variation interannuel

$$Cv = \frac{S}{\overline{Q}}$$
 $C_V = 0.0289$ $Cv = 0.03$

Station de Dakaye

La moyenne :
$$\overline{Q} = 2,75 \,\text{m/s}$$

La variance :
$$S_{=1,91}^2$$

L'écart-type:
$$\sigma = 1,38$$

Le coefficient de variation interannuel

$$\mathbf{C}\mathbf{v} = \frac{S}{Q} \qquad \mathbf{C}_{\mathbf{v}} = \mathbf{0.50}$$

- Classement et ajustement graphique

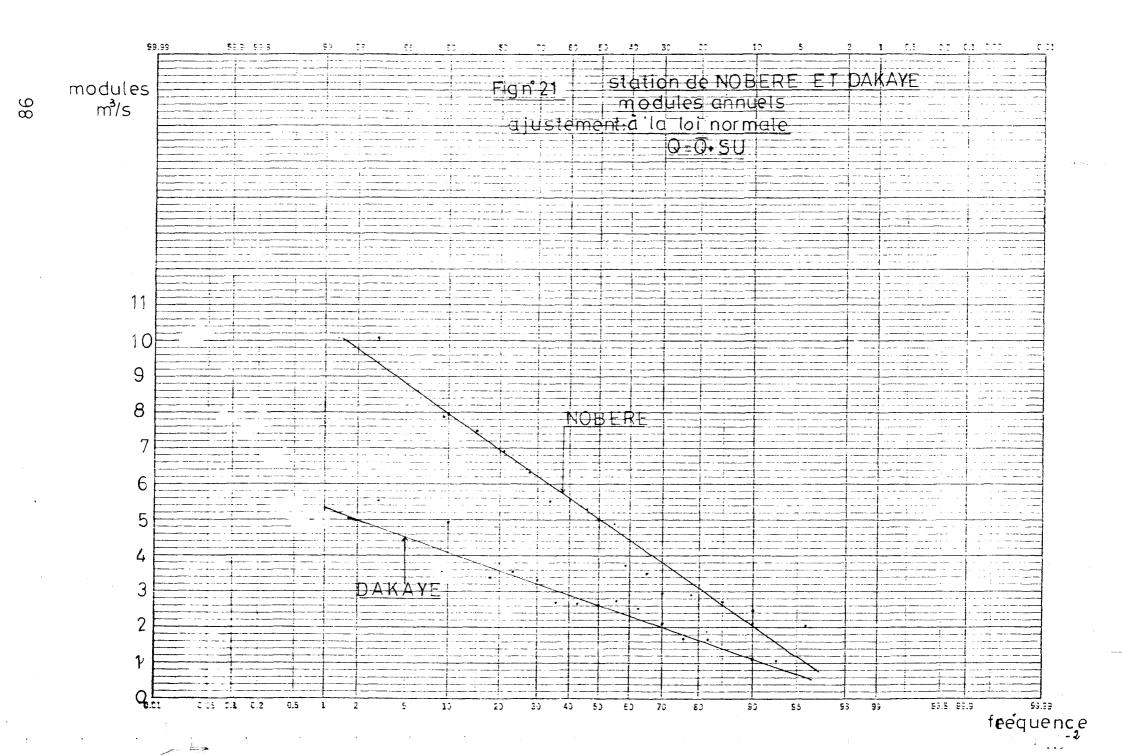
Dans le tableau, les modules annuels sont classés par ordre décroissant. Les fréquences expérimentales sont calculées par la relation:

$$F = \frac{R - 1/2}{N}$$

F est la fréquence expérimentale, R le rang de classement et N nombre d'années, 1/2 une constante.

Le coefficient de variabilité est inférieur ou égal à 0,5. Cette condition nous permet d'utiliser la fonction de répartition appliquée aux modules annuels et mensuels. Cette loi de GALTON ou la loi normale s'écrit :

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{u} e^{1/2U^2} du$$


où $\mathbf{u} = \frac{X - \overline{X}}{S}$ De la relation $\mathbf{u} = \frac{X - \overline{X}}{S}$, nous pouvons tirer la valeur de

$$\mathbf{u} = \frac{\mathbf{X} - \overline{\mathbf{X}}}{\mathbf{S}} \implies \mathbf{u}\mathbf{S} = \mathbf{x} - \overline{\mathbf{x}}$$

$$\mathbf{x} = \overline{\mathbf{x}} + \mathbf{S}\mathbf{u}$$

X :

 $\mathbf{x} = \overline{\mathbf{x}} + \mathbf{S} \mathbf{u}$ est appelée la droite de HENRI; on peut tracer la droite en utilisant les valeurs suivantes:

De l'équation de la droite de HENRI, nous remplaçons \mathbf{x} par \mathbf{Q} , ce qui nous donne la relation suivante :

$$Q = \overline{Q} + Su$$

La valeur de **u** est donnée par le tableau de l'intégral de GAUSS.

Les valeurs de quelques fréquences rares

Elles sont obtenues par la relation de GAUSS.

$$Q = \overline{Q} + Su$$

Cette relation nous permet d'obtenir les tableauxsuivants :

La station de Nobéré

En appliquant le module moyen interannuel et l'écart-type (S), la relation de GAUSS peut s'écrire :

0 = 5 + 2.32U

Tableau XIII Les débits estimés de la station de NOBERE

Temps en années (T)	F (Q)	Valeur estimée de u	Valeur estimée de la période humide m ³ /S	F (Q)	Valeur estimée de u	Valeur estimée de la période sèche m ³ /S
5	0,20	0,84	6,94	0,80	-0,84	3 0 5
10	0,10	1,28	7,96	0,90	-1,28	2,03
15	0,06	1.55	8,59	0,94	-1,55	1,04
20	0,05	1,64	8,80	0,94	-1,64	1,19

La station de Dakaye

Les valeurs des fréquences rares de cette station peuvent s'obtenir avec la même relation de GAUSS mais rapportéeaux valeurs numériques; elle peut s'écrire:

Q = 2.75 + 1.38 u

Tableau XIV Les débits estimés de la station de Dakaye

Temps en années (T)	F (Q)	Valeur estimée de u	Valeur estimée de la période humide m ³ /S	F (Q)	Valeur estimée de u	Valeur estimée de la période sèche m ³ /S
5	0,20	0,84	3.90	0,80	-0,84	1,59
10	0,10	1,28	4,51	0.90	-1,28	0,983
15	0,06	1,55	4,88	0,94	-1,55	0,611
20	0,05	1,64	5,01	0,95	-1,64	0,486

T est le temps de récurrence

F(Q) = fréquence au dépassement

F1(Q) = fréquence au non dépassement

L'intérêt de ces deux tableaux est de montrer à partir de la relation de GAUSS, les débits estimés de la période humide et de la période sèche en fonction du temps récurrentiel.

De ces deux tableaux, il ressort que chaque cinq années, pendant la période humide nous pouvons enregistrer dans la station de Nobéré un débit moyen d'environ 7 m³/S, et dans la station de Dakaye 4 m³/S, tandis qu'en saison sèche, le débit moyen à Nobéré tourne autour 1 m³/S et à Dakaye autour de 0,5 m³/S.

Nous pouvons dire que les résultats acceptables à Nobéré sont dûs au fait qu'elle soit située à l'exutoire du bassin versant et comme telle, reçoit en dernière position, le drainage des eaux des différents affluents. De ce deux tableaux nous pouvons calculer le coefficient d'irrégularité interannuel $(K\underline{3})$ des deux stations :

Décennale humide

K₃ = Décennale sèche

Ainsi pour Nobéré $K_3 = 3.92$ et pour Dakaye $K_3 = 4.58$.

3) <u>Bilan hydrologique à l'exutoire</u>

Après une analyse mensuelle et annuelle des événements hydrologiques, il serait intéressant d'établir le bilan du bassin versant à l'exutoire.

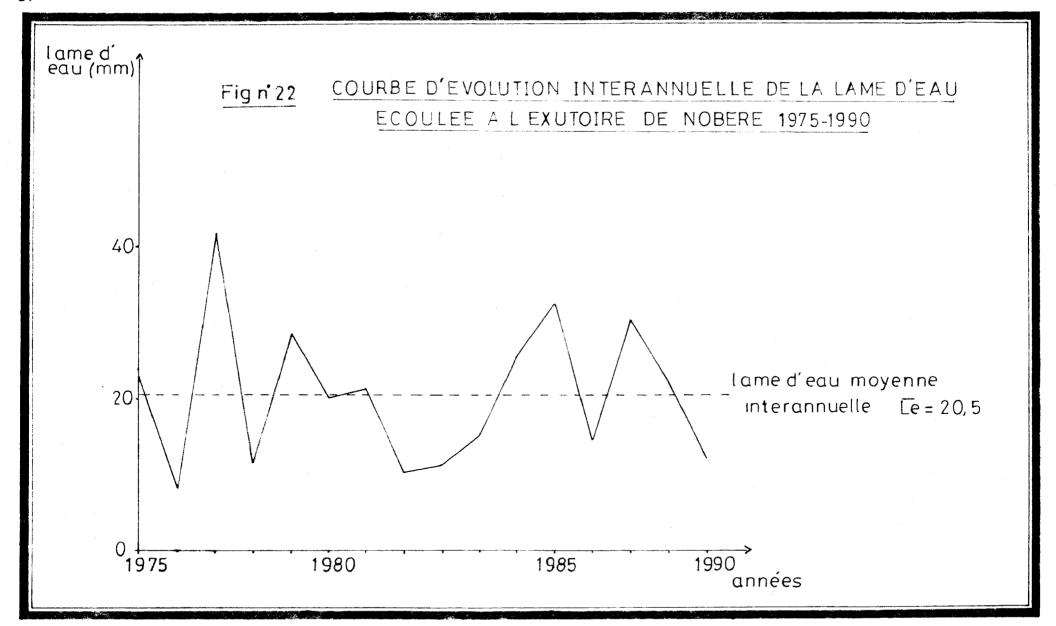
Caractéristiques empiriques d'écoulement

La moyenne arithmétique : Le = 20,5 mm

La variance : S=9.4,1

L'écart-type : G = 9,7

Le coefficient de variabilité interannuel:


 $C_{v} = 0.03$

<u>Tableau XV</u> 3) <u>Bilan hydrologique à l'exutoire</u>

Ånnee		Débits (m³/S	Volume d'eau écoulée par an (m ³)	Lame d'eau écoulée (mm)	Déficit D = Pa - Le (mm)
1975	698,56	5,56	175,340160	22,8	675,76
1976	702,15	2,02	63,70 2720	8,3	693,85
1977	783,34	(10,19)	321,351840	(41,9)	(751,44)
1978	735,62	(2,81)	88,6 161 60	(11,5)	(724,12)
1979	756,39	6,96	219,490560	28,6	727,79
1980	709,02	4,97	219,490560	20,4	688,62
1981	677,82	5,21	156,733920	21,4	656,42
1982	686,30	2.55	164,302560	10,4	675,9
1983	653,13	2,75	80,416800	11,3	641,83
1984	553,15	3,73	86,7 24000	15,3	537,85
1985	625,95	6,26	117.629280	25,7	600,25
1986	732,59	7,86	197,415360	32.3	700,29
1987	675,32	3,44	247,872960	14,6	660,72
1988	768,23	7,44	108,483840	30,6	737.63
1989	747,46	(5,43)	234,627840	(22,3)	(725,16)
1990	548,73	2,96	171,240480	12,1	536,63
Moyenne	691,48	5,00	93,346560	20,5	670,98

Ve = Q moyen x 24h x 365 j x 3600 s.

Le tableau nous permet de dire que le bassin dispose d'une lame d'eau interannuelle de 20,5 mm en moyenne, cependant il faut remarquer que certaines années (1976, 1978, 1982, 1983, 1984, 1987 et 1990) ont une lame d'eau nettement inférieure à la moyenne interannuelle, par contre les années (1977, 1979, 1985, 1986, 1988) ont un écoulement supérieur à la moyenne

interannuelle. A partir de ces deux observations, nous pouvons affirmer que l'influence des précipitations sur les potentialités du cours d'eau est réelle, ce qui sous entend qu'une situation pluviométrique défavorable dans la région, laissera planer sur la population résidante dans le bassin, un spectre de sécheresse avec pour corollaire la pénurie d'eau, la famine, les maladies... Cette influence notable des précipitations sur le contenu du bassin versant nous amène à croire que le développement de ce peuple (population occupant le bassin versant du Nazinon) dépend d'un élément aléatoire, la pluie, mais une transposition de cette dépendance sur son existence, son devenir, peut-il se vérifier ?

Tableau XVI AJUSTEMENT DES MODULES ANNUELS DE DAKAYE ET MOBERE A LA LOI DE GAUSS

						uences rare iodes humi		-	iences rare riodes sèch	i
Station	débits moyens (m³/s)	variance (S ²)	écart- type (S)	Coefficient de variation (Cv.)	1/5	1/10	1/15	1/5	1/10	1/15
DAKAYE	2,75	1,91	1,38	0.50	3.90	4.51	4,88	1.59	0,983	0,611
NOBERE	5,00	5,42	2,32	0,03	6,94	7,96	8,59	3,05	2.03	1,04

DAKAYE: nous avons 15 années d'observations.

1/5; 1/10; 1/15 sont les fréquences de retour, c'est-a-dire une fois tous les 5 ans, 10 ans, 15 ans.

4) Les crues

a) Caractéristiques des crues

Les crues sont des hautes eaux exceptionnelles. Elles n'apparaissent, sous climat tel que celui qui sévis dans notre zone d'étude, qu'après une forte pluie. L'étude des crues est intéressante, mais elle ne fait pas l'objet de notre étude, néanmoins, dans le cadre d'une étude hydrologique, il faut chercher à comprendre cet événement hydrologique, c'est dans cette optique que nous avons voulu déterminer leurs fréquences aux dépassements. (Débits maximaux instantanés).

Caractéristiques empiriques de l'échantillon

Moyenne interannuelle : $\overline{Q} = 59,11 \text{ m}^3/\text{s}$

Variance: S = 1235

Ecart-type: $\sigma = 35,14$

Coefficient de variation interannuelle :

 $C_v = 0.59$

<u>Tableau XVII</u>: <u>Modules maximaux instantanés annuels classés</u>
(1975 à 1990) <u>de Nobéré</u>

Années	Q(m ³ /S)	Rang	Fréquence au
Marie Committee and the committee of the	-		dépassement
1986	147,0	1	0,031
1975	116,0	2	0,063
1977	94,6	3	0,156
1988	82,1	4	0,218
1985	79,0	5	0,281
1989	68,5	6	0.343
1981	49,7	7	0,406
1980	47,6	8	0,468
1979	40,7	9	0,531
1984	39.3	10	0.593
1987	39,1	1 1	0.656
1990	38.2	12	0.718
1982	35,8	13	0.781
1978	28,9	14	0,843
1983	26,6	15	0,906
1976	10,8	16	0,968

$$R - 1/2$$

N

où **F** est la fréquence au dépassement de rang **R**. **N** est le nombre d'années d'observation (16).

L'étude des fréquences rares des débits maximaux est soumise à une analyse statistique, suivant la loi de réparation de GUMBEL, la densité de probabilité est :

$$F(Q) = e^{-e^{-a(Q-Q_0)}}$$

- <u>Estimation et ajustement graphique des paramètres det **Qo**</u>

d et Qo sont obtenus à partir des relations suivantes :

$$\frac{1}{\alpha} = 0.780 \text{ s et } O_0 = \overline{O} - (0.577/4)$$

$$\frac{1}{\alpha} = 0.780 \times 35.14 \Rightarrow \frac{1}{\alpha} = 27.4$$

$$O_0 = 59.11 - (0.577 \times 27.4)$$

$$O_0 = 43.31$$

Ainsi l'équation de la droite relative à l'ajustement est :

$$Q = Q_0 + \frac{1}{d} \cdot U$$

(0,780 et 0,577 sont des coefficients)

Dans la fonction de GUMBEL

$$F(Q) = e^{-\alpha(Q - Q_0)}$$

posons $d(Q - Q_0) = U$
 $dou F(Q) = e^{-u}$

- <u>Détermination de la valeur de u</u>

Multiplionsles 2 termes de l'égalité par Log

$$log F(Q) = log e^{-e^{-u}} \implies log F(Q) = -e^{-u} log e$$

 $log F(Q) = -e^{-u}$ ($log e = 1$)

multiplions les 2 termes de l'égalité par -1

$$-LogF(Q)=e^{-U} \Rightarrow Log \frac{1}{F(Q)}=e^{-U}$$

multiplions les 2 termes encore de l'égalité par Log

$$Log(Log \frac{1}{F(Q)}) = Loge-U$$

$$Log(Log \frac{1}{F(Q)}) = -u Loge$$

$$Log(Log \frac{1}{F(Q)}) = -u \Rightarrow u = -Log(Log \frac{1}{F(Q)})$$

Temps (années)	Fréquence I(Q)	Variation de GUMBEL u	Débit estimés en m ³ /S
5	0,80	1,49	84,13
10	0,90	2,25	104,96
20	0,95	2,97	124,68
50	0,98	3,90	150,17
100	0,99	4,60	169,35

b. origine descrues

Les crues sont une élevation exceptionnelle du niveau de l'eau due aux eaux des pluies. A la station de Nobéré, l'exutoire du bassin, l'observation d'une crue est l'objet (par moment) d'une conjugaison des apports d'eau de pluies en amont de Nobéré par ecoulement.

Le débit maximal pendant la periode d'observation est de 147 m³/S le 7 juillet 1986.

Pour extrapoler sur le temps de retour des crues (fréquences rares), la loi de GUMBEL appliquée aux débits maximaux nous a permis d'effectuer des opérations dont les résultats sont consignés dans le tableau n° XV.

Au regard du bilan hydrologique effectué, on serait tenté de se poser certaines questions relatives à la capacité d'aménagement du bassin versant. Pour lever l'équivoque par rapport à toutes les différentes questions et interrogations, après consultation du bilan hydrologique, il convient ici de mener une étude sur les besoins en eau de la population et les ressources disponibles au niveau des eaux de surfaces et des eaux souterraines.

Cette étude qui fait l'objet du chapitre VI, constitue un elément d'approche nécessaire à la détermination des potentialités hydrologiques et hydrogéologiques du bassin et à l'évaluation des besoins en eau de la population résidante.

CHAPITRE VI: RESSOURCES ET BESOINS EN EAU

A) Les ressources en eau

1) Les eaux de surface

Les potentialités en eau du bassin versant de Nazinon à Nobéré sont étroitement liées au facteur pluie, un paramètre aléatoire.

Pour pallier le déficit en eau observé en saison sèche, dans le bassin versant, de nombreux barrages et retenues d'eau ont été réalisés. L'ensemble de ces réalisations a permis de stocker un volume d'eau total annuel de 10263.10^3 m³ dont l'utilisation est généralement orientée vers le secteur agro-pastoral. Les différents ouvrages hydrauliques ainsi réalisés, ont permis de disposer de 343 ha de surfaces aménageables dont seulement 156 ha soit 45,48% sont cultivées. Les surfaces disponibles permettront aux habitants résidants dans la région de développer des activités agro-pastorales mais jusqu'à quand?

Cette interrogation n'est que le résultat d'un constat de déséquilibre observé entre une population à croissance rapide (taux de croissance moyenne de 2,6 %) et un milieu naturel en régression. Cependant, pour satisfaire les besoins sans cesse grandissants de cette population, il serait intéressant de chercher à connaître les potentialités en eau souterraine du bassin.

L'évaluation de ces potentialités si elles s'avèrent concluantes peut ou peuvent être exploitées pour renforcer les eaux de surfaces, dans l'alimentation en eau de la population et des animaux (voir tableau).

TABLEAU XIX

RESSOURCE EN EAU DE SURFACE

						lonnée	Amenagement (ha)		
Province	Départe- ment	Village	Volume 10 ³ m ³	Execution (date)	Longitude	Latitude	Amenagéa bles	Cultivées	¥,
	Kindi	Kindi	5	1985	2°01'W	12°26′N	-		
	Kindi	Gouim	5	1984	2°09 W	12°25 N		_	
	Koudougou	Sarya	6	1985	2°10′W	12°15′N		-	
	Kokologho	Doure	80	1965	1°53′W	12°12 N		18	
Bulkiemdé	Kokologho	Kokologho	200	1947	1°52'W	12°11'N	30	15	
	Sakoinsé	Gouloure	120	1948	1°57'W	12°12 N		15	
	Kadkologo	Zoulougou	120	1948	1°58 W	12°11 N	15	13	
	Poa	Poa	400	1980	2°00 W	12°12 N	-	-	-
	Poa	(Yaogen)	40	1936	2°05 W	12°14 N	15		
		Gogo	45	1945	2°12'W	12°08 N	15	_	-
	Doulougou	Doulougou	300	1959	1°27′W	11°59 N	50	10	
	Saponé	Boulbi	2350	1959	1°31'W	12°13'N12°0	87	75	
	Saponé	Kalzi	120	1985	1°38 W	6'N	5	5	
	Saponé	Pissi	10	1942	1°29'W	12°05 N	5		
Bazèga	Toécé	Timboué	5350	1961	1°20′W	11°44 N	83		
	Toécé	Boussourma	32 0	1985	1°14'W	11°45 N	_		
	Toecé	Toécé	100	1976	1°16'W	11°50 N	8	5	
	Tanghin D.	Gueswendé	100	1987	1°40′W	12°11′N			·
Zoudwéogo	Nobere	Nobéré	60	1987	1°12'W	11°30'N			
		Nobili	502	1984	1°15 W	11°44 N	30		-
		Voko	10	1955	1°15 W	11°37′N	-	-	

Source : ONBAH.

2) Les ressources en eaux souterraines

Le bassin versant du Nazinon à Nobéré est localisé sur un socie precambrien avec des aquifères discontinus.

Cependant, il dispose d'une potentialité appréciable.

En observant le tableau des ressources en eau souterraine, nous remarquons des indices qui attestent la fiabilité des ressources. Le bassin hydrogéologique dispose des réserves en eau qui varient selon la nature des unités hydrogéologiques de 0 à 90 mm.

Le niveau statique qui varie de 8 a 14 m dépend de la periode ou les mesures ont ete effectuees et non des unites hydrogéologiques.

La quantité d'eau stockée, nous permet de comprendre le taux de réussite des forages effectués qui est supérieur à 70%.

Cependant il convient de signaler que les forages sont exploitables intensément dans la proportion de 99%, ce qui est satisfaisant.

Par contre une exploitation extensive n'est pas souhaitable dans les régions à recharge annuelle de 5 à 15 mm d'eau;

Ces eaux souterraines dans les formations cristallines se localisent dans les fissures et les arénes granitiques.

La recharge est directe c'est-à-dire que l'alimentation en eau des nappes souterraines s'effectue par infiltration directe et percolation. La décharge ou perte en eau des nappes souterraines s'effectue par évapotranspiration et (ou) écoulement latéral.

Le niveau des eaux souterraines évolue en fonction de la topographie, de la nature du sol et de la lithologie.

Tableau XX

RESSOURCES EN EAU SOUTERRAINE

Unité hydrogéolo- gique	Pronfondeur moyenne des forages (m)	Pourcentage de réussite (%)	Débit moyen des forages positifs (m ³ /s)	Niveau statistique (m)	Reserve totale (mm	Recharge (mm/an)	Potentialité exploitation extensive	Potentialite exploitation intensive
						·		
B.A	49	77	6,5	8	400 à 900	15 à 30	bonne	très bonne
G.A	54	75	5,2	12	400 à 900	5 à 15	médiocre	bonne
G.F	50	73	3,9	12	200 à 400	superieur à 50	bonne	bonne
S.V	48	78	3,7	14	0 à 100	5 à 15	bonne	mauvaise

Source : Direction des Etude et de la Planification (DEP) : Projet Bilan d'eau.

B) Les besoins en eau

1. consommation en eau de la population

En considérant qu'un homme doit consommer 20 1/j et en appliquant la formule des besoins en eau de la population :

$B_{\rm H} = C \times N \times 365$

C est la consommation en eau d'une personne N est la population totale B_H représente les besoins annuels de la population.

Nous avons trouve que les 3565 habitants du chef lieu du département doivent consommer par an 26024,5 m³ d'eau. cependant il faut savoir que le chef lieu du département dispose de 7 forages d'un débit moyen 3 m³/heure, soit 3000 l/heure ou encore 7200 l/jour par forage.

En une année, un forage peut genérer en moyenne une quantité d'eau totale annuelle de 26280 m³. Les sept forages ensemble, fournissent à la population une quantité d'eau totale annuelle 183.960 m³.

La quantité d'eau totale annuelle par forage, rapportée à la consommation d'eau annuelle des habitants, qui est de 26024,5 m³ nous donne un supplément de 255,5 m³/forage, les sept forages dégagent un excédent total annuel de 157935,5 m³ d'eau.

Pour la consommation d'eau potable de la population du chef lieu du département, chaque habitant doit consommer en moyenne 141,3 1/jour et 51601,6 1/an.

En se basant sur ces calculs, nous voyons que la population a juste ce qu'elle doit consommer et être dans les "normes" de l'O.M.S. (Organisation Mondiale de la santé).

Cependant il convient de signaler que le village dispose des pults traditionnels qui constituent un appoint non négligeable aux des forages. Ce complément d'eau permet au village de se placer au dessus de la norme africaine.

2) Alimentationen cau des animaux

Le département de Nobéré n'a pas une tradition d'élevage. L'élevage pratiquée est du type domestique. Le département périodiquement reçoit la visite de bergers généralement peuls venus du Nord-Est du centre Nord, Centre-Est et du centre du pays.

En nous référant aux données du C.R.P.A. de Nobéré, on dénombre 15.585 têtes de gros bétails (bovins, asins, équins) et 33.000 têtes de petits bétails (ovins, caprins).

Cependant la consommation en eau de ces deux catégories de bétails est très différente en quantité : bovins, asins et équins consomment entre 30 à 50 l/tête/jour, ovins et caprins 15 à 20/l/tête/jour.

Pour une consommation minimale de 30 l/jour pour le gros bétail et de 15 l/jour pour le petit bétail, l'évaluation de la consommation en eau du gros bétail par jour et par tête donne 467,55 m³ et celle du petit bétail donne 495 m³.

L'évaluation totale journalière de toutes les categories de bétails confondus (gros bétail + petit bétail) donne une quantité d'eau de 962,55 m³ soit 351,330,75 m³/m.

En rapportant le besoin annuel du bétail à la quantite d'eau stockée, évaluée à 572.10³ m³ : nous constatons un excèdent de 220.669,25 m³ d'eau. Cette quantité d'eau théorique dépend d'une logique physique, qui prend en compte la superficie des ouvrages.

Ces excédents sont exposés à une évaporation (perte en eau) mais aussi à des infiltrations. Il faut aussi prendre en compte la durée de la transhumance qui est variable.

En dehors des activités agro-pastorales, les eaux de surface sont utilisées pour les besoins secondaires : fabrication des briques pour la construction des maisons.

Tableau récapitulatif du bassin versant de Nazinon

Cours d'eau

Nazinon

Station:

Nobéré

Superficie du bassin versant :

 7660 km^2

Période d'observation :

1975 à 1990

Précipitations interannuelles : 691,48 mm

Module interannuel:

 $5 \text{ m}^3/\text{S}$

Module spécifique :

 65.10^{-2} 1/S/k m²

Fréquence rares

Décennale humide :

 $7.96 \text{ m}^3/\text{S}$

Décennale seche :

 $2.03 \text{ m}^3/\text{S}$

Coefficient de variabilite Cv :

0.03

Coefficient d'irrégularité K₃:

3,92

Crue maximal observé et date :

147 m³/S le 7:07:1986.

Coefficient de variabilité Cv :

0.59

Déficit d'écoulement :

670,98 mm

Lame d'eau moyenne écoulée :

20,5 mm.

CONCLUSION GENERALE

Au terme de cette étude, nous retiendrons que :

La station du bassin versant dans un climat nord soudanien, lui impose un caractère saisonnier dû au fait que le bassin est tributaire des eaux de pluies, dont la durée varie entre 4 à 5 ans.

Le caractère aléatoire des pluies et les fortes évaporations enregistrées dans la zone expliquent le bilan hydrologique peu favorable.

La presence dans le bassin versant de nombreux ouvrages anthropiques et celle d'une zone marécageuse à la source du cours d'eau principal (cf carte du réseau hydrographique) peuvent être responsable du décalage existant entre le début de la saison des pluies et le déclenchement de l'écoulement des eaux dans le collecteur principal.

Ces deux paramètres peuvent également expliquer l'arrêt précoce des ruissellements.

Ces données physiques ne permettent pas un écoulement permanents des eaux, d'où le statut d'un cours d'eau temporaire attribué au Nazinon.

Le Nazinon à Nobéré enregistre ces basses eaux entre octobre et mai avec des débits presque nuls et les hautes eaux d'août a septembre.

Le module maximal observé depuis 1973 est de 147 m³/S le 7 juillet 1986.

Le Nazinon est un cours d'eau sollicité pour l'aménagement hydroagricole et pastoral, vu la quantité d'eau stockée (10213.103 m³) dans les ouvrages hydrauliques (barrages et retenues d'eau).

Au regard du rôle joué par le bassin versant dans la résolution de certain problèmes socio-économiques de la région, il faut mentionner que le problème de l'eau existe toujours, pour la simple raison qu'aujourd'hui on observe un déséquilibre entre la quantité d'eau de pluie en baisse depuis 3 décennies (1961 - 1990) et une population en croissance qui implique une augmentation des besoins en eau.

C'est un constat qui nous interpelle tous et nous devons nous poser un certain nombre de questions :

- Quelles seront les potentialités hydrologiques du Nazinon d'ici 20 à 30 ans, si les conditions climatiques ne s'améliorent pas ?
- Au regard de la dégradation continuelle entre les conditions climatiques et la croissance rapide de la population, quelles alternatives pour la population résidante dans une periode à moyen et long terme ?

Devant cette situation, ne serait-il pas souhaitable de limiter la construction des ouvrages hydrauliques de décongestionner la région en deplaçant la population jeune sur des périmètres aménagés dans les régions encore moins saturées et aux conditions climatiques peu favorables.

A titre d'exemple : si nous évaluons seulement la population du département de Nobéré à l'an 2015 en utilisant la formule statistique d'exploitation de la population :

$$P_n = R_0 (1 + \frac{t}{100})^n$$

 P_n est la population à chercher

Po la population du dernier recensement (ici 1985)

t est le taux de croissance naturelle (2,6)

n est le nombre d'années choisies (30 ans).

Le résultat nous donnera une population estimée à 49.725 habitants, en l'an 2015, soit une augmentation en valeur absolue de 26.702 habitants et en valeur relative de 46%.

D'ici à l'an 2015, si les estimations se confirment, il va falloir répondre aux besoins en eaux des 49.725 habitants de Nobéré (département) et partant de tous les habitants résidant dans le bassin versant de Nazinon.

BIBLIOGRAPHIE

- 1. CHEVALIER P. 1978: Cours d'hydrologie ORSTOM-ETSHER, Ouaga, 58 pages.
- 2. PUECHC.1984: Méthode de références pour la conception et l'analyse des aménagements hydro-agricole au Burkina Faso. Tome I Hydrologie des petits barrages Ouaga C.I.E.H. pages 70.
- 3. <u>C.I.E.H.</u>, <u>B.R.G.M.</u> 1976: Notice explicative de la carte de planification des ressources en eau souterraine de l'Afrique soudano-sahelien Ouaga, page 35-41. 3 cartes.
- 4. <u>D.H.E.R.</u>, 1983 : Apercu sur l'écoulement des cours d'eau de la Haute Volta en 1982, Ouaga 23 pages.
- KALOGA B. 1966: Etude pédologique du bassin versant des Volta Blanche et Rouge en Haute Volta. Cahier ORSTOM Dakar HANN 61 pages.
- 6. KALOGA B. 1968 : Etude pédologique de la Haute Volta, région centre Sud. Dakar HANN, 244 pages + 1 carte.
- 7. MONNIER Y. 1968 : Les effets de feux de brousse sur une savane préforestière de la Côte d'Ivoire, Abidjan page 126-195.
- 8. ROCHEM. 1963: Hydrologie de surface éd. Gauthier Villards. Paris, 390 pages
- 9. Moniod F.; Pouyaud B.; Sachek P.1977: Monographie hydrologique: Le bassin du fleuve Volta, ORSTOM, Paris, 513 pages + 3 cartes.
- 10. TIERCELIN J.C. 1972: Introduction à l'hydrologie C.I.E.H. CERAFER, Paris, 95 pages.

- 11. J.C. HENRY 1976: Note sur l'Hydrométéorologie et les eaux de surface, UNESCO, Paris, 64 pages.
- 12 S. VIM KERE 1982 : Etude du Bilan hydrique et données hydrologique d'un Bassin versant. Hydrographique de la Haute Volta: Bassin de BAMBASSOU à Batié, 51 pages.

Ouvrages spécialisés

- 13. ALDEGHERI M. 1979 : Manuel d'Hydrométrie Tome IV, mesure des débits à partir des Vitessez ORSTOM 279 pages.
- Réménieras G.1986 Hydrologie de l'Ingenieur, ed, Eyrolles 453 pages.
- 15. <u>IWACO</u> Mars 1990 : Etude du Bilan d'eau au Burkina Faso : Impact de la dégradation de l'environnement sur l'écoulement superficiel dans les bassin versant de NAKAMBE et NAZINON, 18 pages.
- 16. ONBAH 1983 : Barrages de NOBERE, programme populaire de développement n° 000443, 18/NOB R.E. N° 017.
- J. BALEK, G.P. Jones : E. Skofteland, 1989 : Note de cours de formation pour technicien en hydrologie ; UNESCO, Paris ed. GP. Jones, 3 Tomes.

Mémoires et Thèses

18. KEITA M., 1986 : - Caractéristique morpho-structurales et hydrologique des Hauts bassins de la région de N'DOROLA. (Application de deux méthodes a un même Bassin versant). Mémoire de Maitrise en géographie ESLSH, Ouaga, 108 pages.

- 19. MIE TTONM., 1980 : Recherches géomorphologiques au sud de la Haute Volta dynamique actuelle dans la région de Pô Tiébélé. UER, Grenoble, 235 pages (thèse de 3è cycle : géographie).
- 20. TAHO A. ..., 1976: Contribution à l'étude géologique et hydrogéologique du bassin de la Volta Blanche. Etude du Haut Bassin versant de la NOUAHO.
 D.E.A., Université des Sciences et Techniques du Languedoc (Montpellier) page 1 à 48, France.
- 21. SERE B. S., 1988 : Etude des potentialités hydrologiques du Bassin versant de Mouhoun à Boromo. Mémoire de Maîtrise : INSHUS, Ouaga, 92 pages.
- 22. GUENDA.M.1985: Hydrobiologie d'un cours d'eau temporaire en zone soudanienne: La Volta Rouge (Burkina Faso le Ghana). Relation avec les traitements chimiques antisimulidiens Université de droit, d'économie et des sciences d'Aix Marseille, Faculté des Sciences et Techniques de St JEROME Thèse 3è cycle, 193 pages.

ANNEXE : 1

Espace végétales rencontrées dans la zone d'étude

Dénomination scientifique	Famille
Arlstidia Kerstingii	Aristideae
Aristidia Kordeacea Kunth	-
Aristidia adscenionis Linn	
Andropogon schirensis	
Andropogon gayanus variété squamulatus	Andropogoneae
Aneilenia lancealaka	Commelinaceae
Andropogon pseudopricus stapf	Andropogoneae
Andropogon gayanus varietė bisquamulatus	Andropogoneae
Asparagus africanus	Liliacee
Aneilema lanceolatum	
Allophyllus africanus	Spindaceae
Aspargus flagellaris	Liliaceae
Afzelia africana	Cacralpinacee
Albizia chevalieri harmis	Mimosaceae
Afromorsia laxiflora	Papillionaceae
Acacia sceberiana	Mimogaceore .
Acacia seyal	Mimosaccae
Acacia polycantha	Mimosaceae
Anogeissus leiocarpus	Combrétaceae
Acacia gourmaensis	Mimosaceae
Acacia nilotica variété adansonia	Mimosaceae
Acacia dudgeoni	Mimosaceae
Beckeropsis Uniseta	Paniceae
Brachiaria distichophylla	Papilionacee
Brachystelma bingeri	Arclepiadacee
Bulbostylis filamentosa	Cyperaceae
Brachiaria Jubata	Papilionacee
Brachiaria lata	Papilionacée
Borréria filifolia	Rubiacée
Borreria stachydea	Rubiacee
Burkia africana	Cesaepiniacée
Balanites aegyptiaca	Lygophyllacee
Bridélia scleronewra	Euphorbiacée
Bridélia ferruginea	Euphorbiacée
BRIDELIA MICANTHA	Euphorbiacee
Cyperus kaspau	Cyperacee
Crotalaria macrocalyse	Papilionaceae
Cassia mimosoides	Cesalpiniacée
Cassia nigricans	Cesalpiniacee
Chloris pilosa schumach	-
Cissus jatrophoides	Ampéledacee

Dénomination scientifique	Famille
Chasmopodium candatum	-
Commélina sp	Commétinacée
Cyanotis sp	Commélinacée
Ciscolepis protea	
Cypérus conglomératus	Cypéraceae
Cypérus sp	Cyperaceae
Cypérus iria	Cypéraceae
Cténium newtonii hack	Cypéraceae
Cymbogognon giganteus Variété inermis	
Cymbogognon subspthus	-
Cymbopognon gyganteus	-
Cissus araloides	Andropogonec
Canthium cornelia	Ampelidacee
Cleome vis cosa	Rubiacée
Combretum crotonoides	Caffaridacee
Combretum mollis	Combretaceae
Combretum paniculatum	Combétaceae
Cassia sceberiana	Combrétaceae
Combretum binderanum	Cacralpinacee
Combretum ghasaleuse	Combrétaceae
Combretum lamprocarpum	Combretaceae
Cadaba farinosa	Combrétaceae
Combrétum paniculatum	Carparidaceae
Combretum molle	Combrétaceaes
Combretum micrantum	Combrétaceaes
Cajanus kerstingii	Combretaceaes
Cola laurifolia	Papilionacees
Costus spectabilis	Sterculiacees
Cissus docringii	Zingibéracees
Capparis corymbosa	Ampélidacees
Crateva réligiosa	Caffaridacees
Cochlospermum planchoni	Caffaridacees
Digitaria lecardii stapf	Cochlospermacees
Digitaria gayana	-
Dactylocténium aegyptium	
Dichrostachys glomeerata	-
Diospyros mespiliformis	Mimosacees
Eragrostis aegyptiacas	Ebenacee
Eragrostis ténélla	
	-

Dénomination scientifique	Famille
Ehtada africana	Mimosacee
Elytrophorus spicotus	
Elionorus élégans kunth	
Elensine indica	
Echinoahloa colona	Cyperacee
Eragrostis ciliaris	- · · · · · · · · · · · · · · · · · · ·
Eragrostis trémula	
Elytrophorus spicatus	Gramineae
Fimbristylis dichotama	Cyperacée
Fimbristylis sp	Cyperacée
Fimbristylis sp	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Ficus platyphylla	Moracee
Feretia apodamthera	Rubiacee
Fadogia agrestis	Rubjacee
Ficus gnaphalocarpa	Moraceae
Plocourtia flavescins	Flacourtiacee
Grewia flavescens guss	Tiliacee
Grewia mollis guss	Tiliacee
Grewia barteri	Tiliacec
Grewia cissoides	Tiliacee
Gardenia sp	inaccc
Guiéra sénégalonsis	
Hiptis tecègera	
Hoslundia opposita	Labicee
Hyparrhenia smithiana	Bablece
Hyparrhenia rufa	
Hyparrhenia subplunosa	
Hyparrhenia involucrata statf	
Heteropogon contortus	
Hyparrhénia glabriuscuba	
Hymenocardia acida	Funbanhiagaa
Heiria inriguis	Euphorbiacee Anacardiacee
Indigoféra bractéo lata	
Indigofera bracteo fata Indigofera simplicifolia	Papilionaceae Papilionaceae
Ipomea argentaurata	Comvolvulacee
Indigofera tepricurii	Papilionacee
Isoberlinia Doka	
Irewia spp	Caesalpiniacee
Tardenia spp	Pubiasas
Kyllinga welwitschii	Rubiacee
	cypiracee
Khaya senegalensis	Méliacee

Dénomination scientifique	Famille
Lipocarpka albicops	
Loudétia annua	-
Loudetia simplex	-
Lépidagathis anobrya	Acanthaceae
Lannea acida	Anacenadiacee
Lantana shodesiensis moldenke	Verbenacee
Lannea microcarpa	Anacenadiacee
Lonchocarpus laxiflorus	Papilionacee
Mimosa pigra	Mimosacee
Maytenus senegalensis	Rubiacee
Maerua angolensis	Caffaridacee
Moghania faginéa	Papilionacee
Morelia senegalensis	Rubiacee
Nelsonia Canescens	-
Nancléa latifolia	Rubiacee
Ostryodemis stuhlmannii	Papilionacee
Oryza longistaminata	
Opilia Celtidifolia	Opiliacee
Ocimum spp	Labietace
Phragmites carca	-
Panicum anabaptistum	
Panicum pansum	***
Panicum subalbidum	va
Pycreus macrostrachys	cyperacee
Pandiaka heudelotii	Amaranthacee
Polycarpaea linearifolia	Caryophyllacee
Pancratum trianthum	Amaryllidacee
Prosopis africana	Mimosacee
Ptéléopsis suberosa	Combrétacee
Panllinia pinnata	Sapindacee
Ptérocarpus erinocus	Papilionacee
Psorospermum febrifugum Speach variété	
febrifum	Hypernacee
Pseudocedrala kotschvi	Méliacee
Polycarpaea ériantha	Caffaridacee
Piliostigma thonningii	-
Sesbania sesban	
Schizachyrium chweinfurthii	
Sporobalus festivus	_
	Cyperacii
Scirpus jacobii	Cyperacii

Dénomination scientifique	Famille
Scleria bulbifera	Cyperacee
Sclerocarya birrea	Anacardiacee
Sporobolus pyramialis beauv	_
Syphrstrabis bipennatum	_
Schizachynium inceolatum	Andropogonee
Setaria pallide fusca	
Striga spp	Scrophulariacee
Stylocketou hyptogacus	Aracée
Stereospermum kunthianum	Bignoniacee
Sterculia setigera	Sterculiacee
Securinega virosa	Euphorbiacee
Spium grahamii	Euphorbiacee
Strychnos spinosa	Laganiacee
Strychnos innocua	Laganiacee
Syzygium guineense	Myrtacee
Saba Senegalensis	Apoeynacee
Sporobolus micropotus stapt	
Typha australis	
Tephrosia bractéolata	Papilionaceae
Tristachya thollonnii	Arundinelleae
Tripogon Hinimus	-
Terminalia avicennoides	Combrétacee
Terminalia laxiflora	Combrétacee
Terminalia macroptéra	Combrétacee
Tamarindus indica	Ceralpiniacee
Tinnea barteri	Labietacee
Vetiveria nigritana	
Vitex diversifolia	Verbenacee
Vitex simplicifolia	Verbenacee
Vitex chrysocarpa	Verbénacee
Véronia kotschyana	Comporce
Walteria indica	Sterculiaceae
Wissadula amplissima variété rostata	Malvacee
Zizysphus mucronata	Rhamnacee

0 7

JAUGEAGE

	Moulinet I	N* :	<i>C</i> Λ	· ·		Hélice I	No:	207		· . <u>04/06/91</u>
	Ah asumor	. 10	•			Compte	ır <u>: C</u>	5/2 22	Y Had	r:
	Equations Emplaceme Nature de	IA RECTION		partis		505 595 t (Lio	b + o b · fin	0 011 0 011 migra	Hei	ore to : 11 to 0 min F: 18 to 5 min foretours: 00 1 1 min + 50 min foretours: 00 1 min + 50 min + 5
No vert.	Heure Hauteur Echelle	Distance	Profondeur - mesurée - corrigée m	1	moulinet corrigée m	Nbre tops	Temps s	n tr/s	m/s	Observations
		DO -								
		1,30	3,166,14	2,98	6,14	10	30"			
	<u> </u>	 		2.110	ļ	26				
,		 		1,50		36		ļ	ļ	
		 		0.10		35			 	
		†	<u> </u>	0.20	<u> </u>	133			<u> </u>	
		X .30	2775,36	2,59	11, 5				<u> </u>	
				1.96		19				
				160	<u> </u>	16				
			ļ	1,00	<u> </u>	35			ļ	
	<u> </u>	<u> </u>		0,60	ļ	46				
	 	ļ.	ļ	0,10	<u> </u>	50	-		-	
	<u> </u>	220	2 8 1/211	111/2			100			
		8.30	3,817,40	3,63		55	18,9		ļ	
	+	 	<u> </u>	2/60		66	1.		<u> </u>	
				1,80		62	 		 	
}		 	<u> </u>	0.10	 	61	1		 	
 	 			10,10		65_			 	
	<u> </u>	9,30				†	1 :			
<u> </u>		1/130		 	†	 	-		 	
		00								
	1	1)/0	3.476	13.29		22			1	
		13/	•	2.50		27				
				1.80		129				
				0,90	ļ	29	ļ	ļ		
<u> </u>				0,10		33	ļ		-	
			+	110	+	10	 	ļ	-	
-	-	5,10	4.308,0	11/2 12	+	32	 	 	 	
-	- 		<u> </u>	3,25	-	166	 	 	+	.:
			1	290	1	72		 	 	
-	-	 	+	1.00	 	811	 	 	 	
-		 		10110	+	1 9 7	1	 		
-		+		 	 	†	†	†	†	
-	- 	4		1	 	+	 	1	1	
 			1	 	1	+	 	 	ų.	
1	- 1	l l	1	1	_1		1			

					JAUG	EAG	E			
		:				STATIO	N :		Date	
	Moulinet	Nº :			•					
			-							eur D :
	Ah saumo	•					1top =	=	tr	F:
	Equations		n <				n + —			
	kinnië, u		n >		V =		n +_			. D 1
		ent de la se la section	ction :							F 1
	Début en		***************************************				······································		Oper	rateurs:
						 		· • • • • • • • • • • • • • • • • • • •		
No	Heure	Distance	Profondeur	Position	moulinet	Nore	Temps	•	v	Observations
vert.	Hauteur	•] .	- mesurée	mesuree	corrigée	tops			1.	
	Echelle	m	- corrigée m	m	m		8	tr/s	m/s	
	 			 		ļ ———		1	"""	
		9.10	4.769	44,58	16,6	7-3	30'			
		9/	77.47	3.60		86				
,				2,50		102				
	 	<u> </u>		1,20	ļ	102		 		
	 			0,10	<u> </u>	101				
	 	10,50		 	 	<u> </u>		-		
		1				 		 		
		100								•
		1,50	3.817.4	13.63	24	27				
			'	2,25		33				
	<u> </u>			1,90		73	-		-	
	 			100	-	86		ļ	 	
	 		<u> </u>	0,10	ļ	104		+		
		4,50	3,236,1	112 05	 	107		1		
		14,50	3,23/0,0	9 40	 	25				
				2,40		23		1		
				0,80		33				
				0110		75				
	1		1		77.		 	 	 	
	 	7,50	3,65A1	113,4+	31,1	63	1	-	<u> </u>	
	+		 	120	 	68	+	 	-	
	 			0,90	<u> </u>	12/	1-1	+		·
	+		†	0.10	†	102	1		1	
\mathcal{T}				1 1		100				
1	n	2,70								
0										
		19m200	20m.			 	1	 		
			 	 	 	 	 	 	 	
	+		 	 	+	 	 	 	+	
			+	+	-	 	+	+	 	
 			 	 					 	
 			1	1	 	+	1	 		
1	1.	i	I	L	1	1				

119 20/06/89

BURKINA-FASD 20270305 BASSIN: VOLTA

PAGE: 1

VOLTA ROUGE A DAKAYE

ETALONNAGE NO: 2 valable du 1/1/82 au 0/0/0

Q:m3/s

		***	dalab 	le du	1/ 1/	82 au	0/ 0/	0			
•	•									· ••• ••• ••• ••• •••	
1 .	į	0	1	2	3	4	5	6	7	8	9 !
! dm	!										į
! 8	ŗ	.000	.018	.036	.054	.073	.093	.113	.134	. 156	.178 !
! 9	!	.200	.223	.247	. 271	. 295	.321	.346	.373	.400	.427 !
! 10	!	. 455	. 485	.516	.549	.582	.616	. 651	. 687	.723	.761 !
! 11	ţ	0.80	0.34	0.88	0.92	0.96	1.01	1.05	1.10	1.14	1.19
! 12	!	1.24	1.28	1.33	1.37	1.42	1.47	1.51	1.56	1.60	1.65
! 13	!	1.70	1.75	1.80	1.85	1.90	1.95	2.00	2.05	2.10	2.15 !
! 14	!	2.20	2.26	2.32	2.37	2.43	2.49	2.55	2.61	2.68	2.74 !
! 15	ı	2.80	2.86	2.93	2.99	3.05	3.12	3.18	3.25	3.32	3.38 !
! 16	į	3.45	3.52	3.59	3.65	3.72	3.79	3.86	3.23 3.93	4.01	4.08 !
1 17	ļ	4.15	4.22	4.30	4.37	4.44	4.52	4.59	4.67	4.75	4.82 !
! 18	•	4.90	4.98	5.06	5.14	5.22	5.30	5.38	5.46	5.54	5.62 !
1.19	!	5.70	5.78	5 .86	5.94	6.02	6.10	6.18	6.26	6.34	6.42 !
! 20	!	6.50	6.59	6.67	6.76	6.85	6.94	7.03	7.12	7.21	7.31 !
1 21	!	7.40	7.50	7.5 9	7.69	7.79	7.89	7.99	8.09	8.19	8.30 !
! 22	!	8.40	8.49	8.58	8.68	8.78	8.88	8.98	9.08	9.18	9.29 !
! 23	!	9.4	9.5	9.6	9.7	9.9	10.0	10.1	10.2	10.3	10.5 !
! 24	:	10.6	10.7	10.8	11.0	11.1	11.2	11.4	11.5	11.6	11.8 !
! 25	ı	11.9	12.0	12.2	12.3	12.5	12.6	12.8	12.9	13.1	13.2 !
! 26	į	13.4	13.6	13.7	13.9	14.0	14.2	14.3	14.5	14.7	14.8
! 27	•	15.0	15.2	15.3	15.5	15.7	15.8	16.0	16.2	16.4	16.5 !
! 28	ţ	16.7	16.9	17.1	17.3	17.5	17.7	17.9	18.1	18.3	18.5 !
! 29	!	18.7	18.9	19.1	19.3	19.5	19.7	19.9	20.1	20.3	20.5 !
! 30	!	20.7	20.9	21.2	21.4	21.6	21.9	22.1	22.4	22.6	22.9 !
! 31	!	23.1	23.3	23.6	23.8	24.1	24.3	24.6	24.8	25.1	25.3
! 32	į	25.6	25.9	26.1	26.4	26.7	27.0	27.2	27.5	27,8	28.1 !
! 33	!	28.4	26.5	28.9	29.2	29.5	29.8	30.1	30.4	30.7	31.0 !
! 34	!	31.3	31.6	31.9	32.3	32.6	32.9	33.2	33.6	33.9	34.3 !
. 35	•	34.6	34.9	35.3	35.6	36.0	36.4	36.7	37.1	37.5	37.8
. 36	ţ	38.2	38.6	39.0	39.3	39.7	40.1	40.5	40.9	41.3	41.7 !

20/06/89

Cours d'eau: NAZINON Mois: JUIN Barême:
Station: JAKAME: Année: 1989. Hen cm Clen 1978

1						r .		T				<u> </u>			T	T	COL	
071		Ц			8 H		21!		6 4		04		1 4	Hmj	Qmj		CRU	
3	Jours	Н	Q	Н	Q	H	Q	H	Q	Н	Q	Н	Q			Heure	H	Q
	2							·				-			ļ			
	. 3										 				 			
١	4										!							ļ
-	5																	
	6						ļ											
١	7					1.	6.66											ļ
	8														ļ			
1	10								*** <u> </u>				· · · · · · · · · · · · · · · · · · ·					
	.0																	
1	11								<u>``</u> ,									
1	11 12 13			· · · · · · · · · · · · · · · · · · ·														
,	13																	
$\{ \ $	14 15										7.	* .,						
AININE NE	16											· · · · · · · · · · · · · · · · · · ·				-		
	17								-									
۱۱ ۱	18																	ļ
	19	<u>کر</u>	0.00	59	0.00	9 0	<u> ১.২০১</u>		0.516			102	0.516		0,313.			
	20	95	0.324	89	0.178	3 b	0.113	84	0.073	84	0.0-3	βų	0.073		0.138	 -}	·	
	21	83	0.054	<u>F3</u>	D. 050	82	0.036	83	0.054	9 4	0.073	86	0.113		0,064			
	21 22 23	89	0.178	91	७. २२३	કર	0.247	94		98	0,400	103	0,549		0.317			
1	23		0.687	111	0.84	115	1.01	116			1.05	116	1.05		6,0A1			
	24 25 26	116	1.05	<u>JJU</u>	0.96		0.84			106	0.601	103	0- 549		0,795	ļ		
	25	101	0.41			97	0.373	35	0.321	<u> </u>	0 295	23	0.271		0,362			<u>-</u>
	27		0.247		0.223		0,093		0,093		540,0		0,073		0,193			
	28	84	0.073		0.156		0.130		0.134		0,178	93	0,271		0.157	 		
	29	101	0.485	109	0.781	115	1.01	120	1.24		2,20	165	3,79		138			
	29 30	179	4,82	188	5,54	196	2.38	196	6,18		7,12		12,2		687			
L	31				1		l						uel (m³		0.290		l	

Station : D.A.K.A.Y.E Année: 1989. Hen cm. Q on miles

	4	Н	8	Н	1.	2 H.	1	6 H	21	H	20	4 #	11-1	0		CRUE	
Jours	Н	Q	H	Q	Н	Q	Н	Q	Н	Q	H	Q	Hmj	Omj	Heure	H	D
1	266	14.3	278	16.4	289	18,5	299	20,5	323	26.4	320	25,6		20,28			
2	321	25.9	303	26.4	372	27.5	332	28,9	332	30.4		31.3		28.4			
.3	360	31.3	339	31.0	334	3 D. L	२२.ह	28.9	325	27.8	727	26.4		29.2			
4	3.16	25.1	7113	23.6	307	22.4	300	20.7	300	19.5	257	18.1	,	21.3			
5	229	16:5	243	15.3	254	14.0	1.57	12.9	250	11.9	24-1	10,7		13.5			
6	231	9.5	2.2.2	8.58	113	8-30		9.5	239	10.5	240	10.6		9,4			
7	230	10.3	236	10- L	234		233	9,6	231	9.5	230	9.4		9.8			
8	230	9.4	22.8	9.18		9.08	225	8.88	223	8.68	220	8.40		8,93			
9	220	15.0	306	33.7		21.6		21.4	307	22. Y	313	23.8		21.05			
10	321	25. 2	326	27.2	728	27.8	328	27.8	325	47.0	321	25.9		26.9			
			·														
H	790	27.0		3 2.3		30.4	328	27,8	320	20.6	317	24.8		27.9.			
2	318	25.1	325	27.0	330	29.1	344	32, 6	352	35.3	360	38.2		3.2			
3	369	41.7	370	42.2	375	42.3	376	42.0	377	42,5	310	42.9		26.3			
4	383	43.1	382	43,1	382	43.1	300	42.9	377	42.5	374	42,2		42,8	LL	382	
5	300	41.8	360	39.7	359	37.8	35.7	35.6	305	33.9	342	31.9		36.7			
16	3 ; 7	30.4	331	28.6		27.2	320	25.6	314	24.1	370	23. ⊥		26,5			
7	305	21.9	301	20.9	297	20.1	293	19.3	291	18.9	288	.18.3		19.9			
18	756	17.5	3 8 3	17.5	282	17.11	2 9%	16.9	250	16. 7	278	16.4		70			
9	226	16.0	2711	15.7		15.3	260	14.8	266	14.3	262	13.7		14.9			
05	858	13.1	253	12.3	207	11.6	203	11.0	237	10.2	231	9.5		11,2			
n	225	8.88	219	8.30	2.43		206	t. 03	200	6.50	193	5.94		7.3			
2.	187	5.46	180		174		169	4.08	165	3.79		3.52		4.3			
3	157	3-52	153	730	149	2.74	145	2.49	143	3.37		2.32		26			
4	143	7.75	144	2.43	146	7.11	141	2.69	140	2.74	150	2.80		2.5			
5	150	2.80	143	2.74	146		1411	2.43	1149	4.50	136	2,00		2,4			
6	131	1.35	197	1-56	125		1.13	1.14	1.14	0.96	1111	0.84		1.26			
	100	0-761	106	2.651				0.176	1.09.	0.761	11:0	0,80		0,67			
8	100	0.761	107	0.687				0.723	111	0.84	1196	1.05		0,791			
9	170	1.24	323	1.37	125	1.47	126	1.51	176	1.51	125	1.47		0,743			
0	12:11	1.33	1118	1.14	114	0.96	1.11	0.84	1192	0.96	121	1.28		1.08			
1	123	1.37	12 11	1.42	125	1.47	130	1.70	337	2.15	146	2.55		177			

Eours deau: NALINON Mois HOUT....
Station : DAKAYE. Année: 1989.

	41	,	8	H	12	. H	16	H	20	Н	24	#	u_:	Omi		CRUE	
Jours	Н	Q	Н	Q	H	Q	Н	Q	H	Q	H	Q	Hmj	Qmj	Heure	H	Q
1	150	2.80	155	3.12	170	4, 15	208	7,21	223	863	226	8,98		5,82			
2	225	2.88	994	8.78	225	8,88	2.23	9,08	233	3,7	238	10,3		3,27			
3	\$39	10.5	239	10,5	235	10,0	232	9,4	225	8.88	220	8,40		3,61			
4	214	779	208	7,21	5£0	6,50	<u> </u>	6,02	1.57	5 46	031	490		6,31			
5	-1-α	4.37	\. ! + \.	3,79	1.28	3,32	151	2.85	145	2,43	139	215	·	3,16	 		
6	133	1.85	128	1,60	123	1,37	AAE	114	+	0.06	114	0,84		1,29	 	∤	
7	201	1,723	105	0.616	103	0,549	101	0,485	100	C 455	93	0,400		0,538			\
8	9-	0,373	95	0,346	96	0,346	9 +	0,3116	95	0,321	95	0,321		0,345			
9	94	0.295	93	0 271	93	0,17		0,346	ريوري	1:37	126	1.51		0, 6 ?	 +		
10		1,60	133	1.85	143	2.37	153	4,93	1-6	3,86	V80	4.90		2,92			
44	185	6.10	CNS	7.40	123	9.68	250	8, 88	265	14, 2	271	150		10,07	1		
11 12	276	16.0	280	16,7		17.3	285	17.7	257	17.1	282	183		17.35			
	28 9	17.5	289	14	258	18.3	252	18.1	235	177	284	17.		18.1			
14	23 3	12.3	286	17.9	296	17.9	255	17,7	253	17.3	281	16.9		17,5			
15	280	16,7	278	16.4		15.2	274	15.7	2+2	13.3	2 70	15.0		15.81			
16	268	14,7	246	14.3	214	14.0	263	13,9	261	13,6	258	13.1		13.93			
17	ک رے 2	12.6	252	12,2	249	11.8	245	11.2	242	10.8	239	10.1		11,51			
18	235	10,0	230	9.4	226	8.98	221.	8,49	217	8.09	5/13	7,69		8,77			
19	213	7,69	213	7,69	2,2,3	9,29	225	8.88	321	8,49	218	8,19		8,37			
20	217	8,09	215	7,89	હ 12	7,59	210	7,40	305	7.21	206	7,03		7,53			
~	505	6,94	203	6,76	203	6,76	205	6,04	206	7,03	207	712		6,92			
21 22	73 S	2 + 2 4	200	1,21	206	7,03	20 F	2.12	1.5	(,94	201	1.9		7.01	1		
23 ·	190	6,34	0.4	6,07	190	7,70	187	705	153	5.14	17-9	4.82		5.58			
	176	4:59	173	(1,37	174	44	173	4,27	1177	(16+	17:	4.75		4.53			
24 25	790	(1,00	153	5.14	104	3.22	157	5.46	189	5.62	193	5.94		5,38			
26	190	6,34	25 5	6.76	208	7,21	214	7,75	220	6,40	225	8.88		7.56			
27	228	9.18		61.1	234	9,9		10,1	238	10,3		10,6		9,93			
28	341	10,7	243	11 0	246	11,4	249		251		253	12,3		11,53			
29	255	126			260	13.4	213	13,7	264	14.0	245	14,3		13,42			
29 30	267	1415		14,7	269	14,8	230	15,0		15,0	270	15,0		14,83			
31	262	14.8			262	1445			267		266	1413	<u> </u>	14.52		1	
-		· 7 / · · · ·				-			Dé	it moye	n mens	uel (m	3/5]	8,71.			

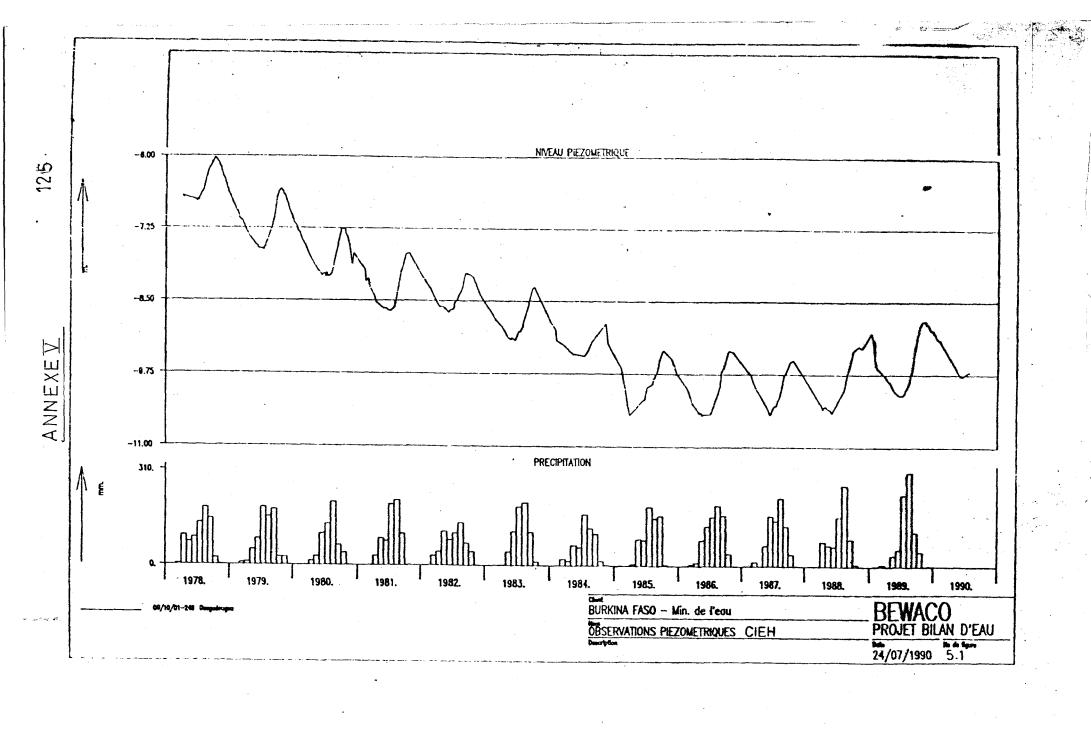
Cours d'eau: NAZINON Mois Schtembre.

Station : DAKAYE. Année: 1989. Hen

Hencin. Q en m3/s

CRUE 20 h 24h 12 h 16 h Sn 4 h Hmi Qmi . 0 H Heure Q Q Q a Q Q Jours 12.82 218 11.6 12,0 951 000 258 10,9 239 10.5 201 10,7 0 43 202 10.05 97 222 6 20 237 10,1 270 10.02 7 9 2211 10,0 23% 10, 1 10,1 230 9.56 220 277 8,73 8,20 2.49 5: 6 8 98 6 10,31 10.5 To, 99 74 10,76 11, 8 10.7 10.3 736 70,3 10,3 8 12,03 12,3 12,2 12.0 751 12,0 9 11.9 10.06 11.6 248 2 65 123 902 467 10 10,75 10,0 640 10,6 10,2 11,0 203 US 2 47 11 7.53 9.4 9,0 9.11 230 9.6 1.5 ^ 2 m 224 234 12 7.46 9,5 231 9,5 177 13 9,95 10,1 10,0 226 10.0 10.0 235 231 14 9,27 9.08 9.4 233 15 8.14 7,89 2.09 2-15 8.30 58 16 6,67 6,2% 5 94 6,75 6,50 $^{\circ}$ to U200 17 1 --U0 5,27 110 4,90 4.78 5,14 5,38 196 .53 199 5.62 18 A 6 8 4,36 4,08 4,22 4.15 . 21 4.37 4,50 72 % 19 195 3,87 3.79 150 3.86 163 3,93 20 4,01 3,88 3,79 116 3.86 116 3.86 3,92 17 3.93 393 21 3,62/ 3,59 3,59 3,65 72 142 22 3,55 3.45 3,59 7.59 3.59 23 3.08 2,86 2,93 2.05 ,12 15 11 321 24 2,37 2,43 2,49 2.68 € 1 25 15r 2.18 2,05 2,10 2.15 2.20 130 2,26 2,32 26 1.72 1.90 1,90 1.95 2,00 27 2.0 176 2.10 72 1, 56 1,65 1,70 131 133 28 ul 1.28 1,33 231 1,47 29 1777 126 1.56 1. OL 1,01 770 1116 1,05. 110 1,10 1119 1.19 112 30 6,69 Débit moyen mensuel (m³/s)

. 12.3


Cours deau : N. H. E.I. NO.N. Mois . Weto Fre ...

:NAZINON. Mois : Watofre :DAKAXE Année: 1989.

Hencm Qen m3/s.

ERUE Uh Sh 12 h 16h 20 h 24/2 Hmi Qmi H : 0 Heure O Q Ω Q Q Jours 0.850 0.74 0.96 0.92 1.82 0.1 111 0.24 1.14 173 112 112 111 111 0,841 0.00 110 109 100 109 2 0.53 6 212 0.76 107 1.582 109 108 0.72 1.68-103 107 107 0.68-0.55 0.651 1-1 0.687 0,687 106 0,40 106 107 100 106 0,65 10% 0.35 1-6 0.651 2.618 0.64= 17.6.0 106 0 517 104 0,58 0.082 0. 582 104 104 103 6 105 77.75 1,(1 0.499 1 51 0,42 1. 1-25 101 7 103 1 , 1 99 90 0.427 0,45 0.622 0.1127 n (45) 70. 8 MILT 1 655 Inn 100 5:3 100 011 104 9512 104 104 0.172 0. rf? 100 772.0 100 0.05 12 3 2 10,582 05/19 10,425 0.45 103 101 100 10 1011 1011 0.450 6170 17:11:0 F. [1] O 98 Or (CE) 0.110 98 08 99 99 20 11 0,320 0, (13) 0.7.7-7 22 ० पंच 0,373 97 0777.0 12 98 97 97 92 .49 327 0 366 002 2366 0.321 13 0,34 96 96 95 91 92 0.195 3,371 0,295 0,190 0,795 0.321 95 94 94 0, 11 14 ar 0.24 10.771 17 0.42 0. A+ 97 92 15 07 92 911 0.2117 0,22 21117 0,2112 OHA 0.123 J = J16 91 92 97 91 92 0,600 7 30 91) 17 77227 91 001.0 90 0-161 95 90 90 20 2:16 28 5, 178 0,7,6 80 0.178 0,122 0,150 18 88 90 90 0,700 2116 01.56 0,156 0150 2117 19 88 0.10 88. 0.15 88 88 88 0.136 0,134 D 13 5130 0134 20 10.150 88 82 27 82 0,393 0.093 0,106 10, 113 0.093 0.144 26 5.113 80 9. 85 87 87 21 1 0+3 5.073 0.07 0,673 $0, 0 \rightarrow 3$ 94 84 0,53 22 0 093 8 62 8 11 35 0,048 0.036 0,034 0.530 7 0 T4 2017 97 27 23 10.573 2 7 214 22 0,013 21 002 0.036 81 81 0.012 0,51% 7721 81 0,03 24 97 0,01% 0.018 0,573 25 81 0 218 8. 71 6.018 91 21 77012 0.300 0,000 0.000 26 ヘヨソ 81 D. 0 00 317 21 87) 31 70 70 7.550 0,5 27 79 0.00 D. 531 14 0.000 800 217 817 D, NJ 28 6,010 ひいひき 7.9) / O) ? 1. 55 701 10 79 70 20 0.00 7.9 in, m 78 78 29 79 7,80 79 0 155 d m O 650 NO 70 30 28 D. CO 78 78 t) , t 🕃 C. 000 79 7 % 1) 3 2.9 0,000 7-9 79 77-Débit moyen mensuel (m³/s)

124

KOSSADOUM NGABA

ANNEXE <u>∏</u>

UNIVERSITE DE OUAGADOUGOU

BP. 7021

Departement de Géographie

Fiche d'Enquête I.

Lieu Noberé	! Date !	Nom et Prenoms	! Age	! ! Thème Traité !
	Questionr	naires		Réponses
Lapuis combien de village.	temps reside	ez vous dans le		
Avez veus vu le fl	euve Nazinor	?	!	
Lvez vous une fois le fleuve ? En que		ie l'eau à débordé	!	
Est-il annuel ou l'eau est-il arri si non avez vous	vé jusqu'au	village ?	!	
Est-il arrivé que fois en une année	ce phénomèr ? les mois	ne s'était répété 2 concernés.	!	
Est-il arrivé que En quel moment de		soit see ?		
l'eau monte.	é que les pu	puits ? uits sont à see ou s l'année ; periodique		
non et pourquoi ?		eaux vous surprend ou ou elle a été catas-		
			!	