REPUBLIQUE DU SENEGAL

UNIVERSITE CHEIKH ANTA DIOP DE DAKAR

ECOLE SUPERIEURE POLYTECHNIQUE Centre de THIES

DEPARTEMENT GENIE CIVIL

PROJET DE FIN D'ETUDES

EN VUE DE L'OBTENTION DU DIPLOME D'INGENIEUR DE CONCEPTION

Titre:

Alimentation en eau potable et évacuation des eaux usées et pluviales de la Zac de Nord Nguinth à Thiès.

Auteurs : Cheikh

: Cheikh Déthialaw SECK

Daouda BA

Directeur

: M. Séni TAMBA

Co-Directeurs: M. El Hadj Bamba DIAW

M. Sérigne TOURE

Année Académique: 2004 / 2005

1

DEDICACES

Nous dédions ce travail:

A nos très chers parents,

A nos familles respectives,

A nos amis et à tous ceux qui nous sont chers,

A nos camarades de promotion.

REMERCIEMENTS

Nous saisissons cette occasion pour exprimer nos sincères remerciements à nos Directeurs internes Monsieur Séni TAMBA et Monsieur El hadj Bamba DIAW, professeurs à l'ESP, pour leur disponibilité et l'appui incessant qu'ils nous ont fourni tout au long de ce travail.

Nous remercions également Monsieur Sérigne TOURE, notre directeur externe, qui, malgré son emploi du temps chargé, n'a ménagé aucun effort pour la réussite de ce projet.

Satisfecit à Monsieur NDIR, Directeur Général de BET, pour avoir mis à notre disposition les documents de base.

Nos remerciements s'adressent également à :

- Monsieur Amadou T. AW, pour son assistance multiforme,
- Monsieur Mouhamadou M. FALL, ESP Thiès,
- Monsieur Abdoulaye THIAM, pour sa précieuse contribution,
- Monsieur TALL, responsable de la facturation, SDE Thiès,
- Monsieur BAAL, Direction Technique de la SDE,
- Monsieur Seyni NDOYE, Professeur à l'ESP.

Une pensée pieuse à la mémoire de Monsieur Amadou SARR, Professeur à l'ESP, qui a beaucoup contribué à notre formation d'ingénieur.

Nous voudrons enfin remercier la Direction de l'Ecole Supérieure Polytechnique et l'ensemble du corps professoral ainsi que tout ceux qui, de près ou de loin, ont contribué à la rédaction de ce rapport.

SOMMAIRE

Le but de ce travail est de concevoir un système d'alimentation en eau potable et d'évacuation des eaux usées et pluviales de la Zac de Nguinth à Thiès. En effet, la Zac de Nguinth est une nouvelle cité conçue pour décongestionner l'ancienne ville et équilibrer son développement spatial.

Ce projet ambitionne de desservir en eau potable une population de 150 000 habitants répartie sur une superficie de 1 500 ha. Dans un souci de réaliser une zone d'habitation saine, nous avons procédé à l'étude de l'évacuation des eaux.

Un réseau mixte est envisagé pour l'alimentation en eau. Son étude obéit à une démarche consistant d'abord à la recherche, l'analyse et à l'exploitation des données. Ensuite, à la détermination des demandes de base aux différents nœuds. Enfin, à l'usage du logiciel EPANET pour le dimensionnement et la modélisation du réseau après sa conception.

Les résultats obtenus ont donné dans leur grande majorité des satisfactions. En effet, 75% des vitesses dépasse la valeur minimale de 0.5 m/s et la totalités des pressions en heure de pointe est supérieure ou égale à 15 mce.

Pour le réseau d'évacuation des eaux usées, le débit de rejet est estimé à 80% de la consommation moyenne journalière. Son dimensionnement est effectué à l'aide du Logiciel d'assainissement Mensura. Dans ce réseau à écoulement gravitaire, la vitesse minimale en pleine section est de 0.69 m/s respectant ainsi les conditions d'autocurage.

L'évacuation des eaux pluviales a nécessité des études topographiques et hydrologiques permettant la définition des 33 sous bassins versants urbains ainsi que leurs caractéristiques. La méthode utilisée pour la détermination des débits est celle de Caquot dont les coefficients de Montana a et b de la ville de Thiès, déduits par régression à partir des courbes IDF, sont respectivement 7.17 et 0.47.

L'existence des ces trois réseaux conjugués à un bon système de maintenance concède sans doute à la Zac des conditions de vie appréciables et attrayantes au grand bonheur des ses habitants.

TABLE DES MATIERES

DEDICACES	I
REMERCIEMENTS	II
SOMMATRE	1111
TARLE DES MATIERES	I V
LISTE DES TABLEAUX	VI
LISTE DES FIGURES	VII
LISTE DES ABREVIATIONS	VIII
INTRODUCTION GENERALE	1
PARTIE I: PRESENTATION DE LA ZONE DU PROJET	
1.1. La situation géographique	4
1.2. Situation hydrologique	6
1.3. Situation démographique	6
1.4. Etat des lieux	6
1.5. Etudes socio- économiques	6
PARTIE II: ALIMENTATION EN EAU POTABLE	
PARTIE II; ALIMENTATION EN EAUTOTABLE	
Chapitre 1: Estimation des Besoins en eau	9
1 1. Consommation domestiques	10
1.2. Consommations des zones commerciales	10
1.3 Consommation des zones industrielles	
1.4. Réserve administratives	
1.5. Réserve incendie : RI	
1.6. Les pertes d'eau	
Chapitre 2: Conception du réseau de distribution	13
2.1. Ossature du réseau	
2.2 Les réservoirs	
2.3. Les poteaux d'incendie	
2.3.1. Localisation et espacement	
2.3.2. Raccordement et prises	16
2.4. Sectorisation	
2.5. Les accessoires du réseau	
Chapitre 3: Dimensionnement du réseau	
•	
3.1 Détermination de la consommation à l'intérieur de chaque maille	
3.2. Détermination de la demande de base aux nœuds	
3.3 Dimensionnement du réservoir de tête	
3.3.1. Calcul de la réserve d'équilibre : RE	
3.3.2. Calcul de la réserve minimale : R _{min}	
3.3.3. Détermination des dimensions du réservoir	
3.4 Dimensionnement de la bâche	
3.5 Dimensionnement des conduites	
3.5 1 Présentation sommaire du logiciel EPANET	
3.5.2. Les Étapes de l'Utilisation d' EPANET	26
3.5.2.1 Dessin du réseau représentant le système de distribution à l'aide d'un	
fond d'écran.	26

3.5.2.2. Saisie des propriétés des éléments du réseau	27
3.5.2.3. Sélection des options de simulation	28
3.6. Dimensionnement de la pompe	30
3.6.1. Calcul du débit : Q _p	32
3.6.2. Calcul de la hauteur manométrique totale . HMT	32
3.6.2.1. Détermination des pertes de charge	32
3.6.3. Choix de la pompe	34
3.6.3. Choix de la pompe	
PARTIE III: EVACUATION DES EAUX	
GENERALITES	35
Chapitre 1: Evacuation des eaux usées	37
1.1. Nature des eaux usées	37
1.1.1. Les eaux usées domestiques	37
1.1.2. Les eaux industrielles	37
1.2. Estimation des rejets	38
1.3. Conception et Dimensionnement du réseau	38
1.3.1. Composition	39
1.3.2. Débit de design	39
1.3.2.1.Débit d'infiltration	39
1.3.2.2. Débit de captage	39
1.3.2.3. Rejet moyen: Q _m	40
1.3.2.4. Débit maximal	40
1.4. Utilisation du logiciel Mensura	
1.4.1. Présentation	40
1.4.2. Paramètres d'entrée	
1.4.2.1. Découpage des bassins d'influence et saisie du réseau	
1.4.2.2. Calcul du facteur de pointe	41
1.4.3. Démarche de calcul des caractéristiques des tronçons	
Chapitre 2: Evacuation des eaux pluviales	
1.1. Les précipitations	
1.2. Notion de période de retour.	
1.3. Le ruissellement	
1.4. Bassins versants	
1.4.1. Définition	
1.4.2. Délimitation des bassins versants	
1.4.3. Caractéristiques des sous bassins versants	
1.5. Intensité de la pluie	
1.6. Courbes IDF	
1.7. Débit	
1 7.1. Méthode rationnelle	
1.7.2. Modèle de Caquot	
1.8. Conception du réseau d'évacuation des eaux pluviales	
1.9. Dimensionnement des canaux d'évacuation des eaux pluviales	
1.9.1. Démarche de calcul	
CONCLUSION ET RECOMMANDATIONS	
REFERENCES BIBLIOGRAPHIQUES	69
A DELIGITATION FOR	- .

LISTE DES TABLEAUX

	page
facturation par bimestre de la ville de Thiès	9
Quelques valeurs de consommations	11
Consommation à l'intérieur de quelques mailles du réseau	20
Demande de base pour quelques nœuds du réseau	22
Facteurs de pointe suggérés pour le design en pourcentage	
de la consommation moyenne journalière de l'année	29
Pourcentage de la consommation en fonction de l'heure de la journée	29
Exemple de Saisie de données	44
Extrait des Résultats du dimensionnement	45
Coefficient de ruissellement pour différents secteurs	52
Caractéristiques des sous bassins versants	53
Valeurs de calcul pour la régression linéaire	56
Coefficients de Montana de Thiès pour t<1h	56
coefficients de Montana de Thiès pour t>1h	56
Récapitulatif des calculs des canaux	64
Tableau des Profils en long des canaux principaux	66
	Quelques valeurs de consommations Consommation à l'intérieur de quelques mailles du réseau. Demande de base pour quelques nœuds du réseau. Facteurs de pointe suggérés pour le design en pourcentage de la consommation moyenne journalière de l'année. Pourcentage de la consommation en fonction de l'heure de la journée Exemple de Saisie de données Extrait des Résultats du dimensionnement Coefficient de ruissellement pour différents secteurs Caractéristiques des sous bassins versants Valeurs de calcul pour la régression linéaire. Coefficients de Montana de Thiès pour t>1h Récapitulatif des calculs des canaux

LISTE DES FIGURES

	page
Figure 1 : Localisation de la Zac	4
Figure 2 : Coupe géologique	5
Figure 3 : Secteurs du réseau	17
Figure 4: Illustration du nœud 42.	21
Figure 5: Fond d'écran	27
Figure 6 : Editeur des propriétés	27
Figure 7: Courbe de variation de la consommation en fonction de l'heure de la journe	ée30
Figure 8 : Dispositif de tête du réseau.	31
Figure 9 : Illustration d'un tronçon d'égout avec les différents débits	42
Figure 10 : Configuration des sous bassins versants topographiques	48
Figure 11 : Configuration des sous bassins versants urbains	49
Figure 12 : Courbes I-D-F expérimentales de Thiès	54
Figure 13 : Courbe isohyètes du Sénégal	55
Figure 14 : Illustration des tronçons F-E6, G-E6 et E6-E12	60
Figure 15: Section canal	62

LISTE DES ABREVIATIONS

A. D. M. : Agence de Développement Municipale

A. E. P. : Alimentation en Eau Potable

A. L. G. : Alimentation du Lac de Guiers

B. E. T. : Bureau d'Etude Topographique et Technique

B. A. U. : Bureau d'Architecture et d'Urbanisme

B. V. : Bassin Versant

C. A.O. : Conception Assistée à l'Ordinateur

C. E. M. : Cours d'Enseignement Moyen

C. I. E. H.: Centre Inter - Etats des Etudes Hydrauliques

D.A.O. : Dessin Assistée à l'Ordinateur

E. S. P. : Ecole Supérieure Polytechnique

E. P. : Eaux Pluviales

E. U. : Eaux usées

H. M. T. : Hauteur Manométrique Totale

I. D. F. : Intensité – Durée - Fréquence

I. G. N. : Institut Géographique Nationale

P. D. U. : Plan Directeur d'Urbanisme

P. U. D. : Plan d'Urbanisme de Détails

S. D. E. : Sénégalaise Des Eaux

Z. A. C. : Zone d'Aménagement Concertée

INTRODUCTION GENERALE

L'éeau est la source principale et originelle de toute vie. Elle se présente dans la nature sous trois états :

- Solide : neige et glace de façon générale
- Liquide : eau chimiquement pure ou chargée en solutés.
- Gazeux : à différents degrés de pression et de saturation.

La distribution quantitative des eaux sur terre fait apparaître que les eaux dites douces ne représentent qu'environ 3% du volume total des eaux du globe. Elles se retrouvent à 99% dans les calottes polaires, les glaciers et les eaux souterraines de grandes profondeurs qui représentent des réserves d'eau douce difficilement accessibles.

Ainsi, la question de la disponibilité et d'accès à l'eau est sans aucun doute un des problèmes majeurs auxquels l'humanité devra faire face durant le siècle à venir. En effet, on estime aujourd'hui qu'un habitant sur cinq de la planète n'a pas accès à l'eau en suffisance et, un sur trois a une eau de qualité [1]. Dans ce contexte, il est utile de rappeler que la prise en compte des aspects quantitatifs et qualitatifs avec la mesure des autres caractéristiques de l'environnement qui influent sur l'eau constitue une base essentielle pour une gestion efficace de l'eau.

Ayant passé le cap des six milliards d'habitants, notre monde connaîtra une profonde mutation en ce début du nouveau millénaire. Plus de la moitié de la population de la Terre habitera les villes. L'urbanisation est devenue un corollaire incontournable du développement socio-économique.

Pour répondre aux besoins des citadins, il est indispensable d'assurer l'accès à l'eau en qualité et en quantité de façon pérenne et concevoir un système d'assainissement performant qui de conserver la santé des populations et assurer la protection des personnes et des biens.

Contexte de l'étude

L'accroissement vertigineux et le développement fulgurant de la ville de Thiès se manifestent principalement dans le domaine de l'habitat et des infrastructures. Cela se traduit par une pénurie d'eau très poussée et une apparition d'agglomérations spontanées dépourvues d'aménagements, de réseaux d'assainissements, affectant ainsi l'orientation et la volonté des autorités à créer un espace urbain sain et adapté aux usages et à la modernité.

Un pareil fléau conduit à la nécessité d'élaborer pour la ville des plans et des programmes à long terme (PDU), à moyen terme (PUD) et à court terme (Plans successifs de la ZAC, des lotissements d'extension et de restructuration), etc. En rapport avec la municipalité, l'état a mis en œuvre la réalisation d'une « Zone d'Aménagement Concertée : ZAC ».

Toutefois, ces plans et stratégies ne sauraient satisfaire les aspirations des populations s'ils ne sont pas complétés par une conception et un dimensionnement appropriés de réseaux d'adduction d'eau potable, de réseaux d'évacuation des eaux usées et pluviales. Telle est l'économie de ce présent projet qui se veut réaliste, applicable et adapté aux exigences des équipements de la ZAC et de ses occupants futurs.

La méthodologie adoptée dans le cadre de ce travail se résume en trois phases : la recherche documentaire, le travail de terrain (visites du site et enquêtes), l'analyse, le traitement et l'exploitation des données pour la conception et le dimensionnement des réseaux.

Dans ce document, nous procédons en premier lieu aux études préliminaires pour aborder en second lieu la conception et le dimensionnement du réseau d'alimentation en eau potable avec l'usage du logiciel Epanet en guise de support. Enfin, nous terminons par les réseaux d'évacuation à l'aide du logiciel MENSURA (pour les eaux usées) et les recommandations.

Avant d'aborder le sujet proprement dit, il est utile de mener des études préliminaires qui nous édifieront sur certains aspects techniques et socio-économiques. A cet effet, nous nous intéresserons aux situations géographique, démographique et hydrologique de la zone occupée par la « ZAC ».

PARTIE I PRESENTATION DE LA ZONE DE PROJET

1.1. La situation géographique

La zone de la ZAC est située dans la ville de Thiès, au Nord du quartier de Nguinth. Elle est limitée :

- à l'Est par la route Nationale 2 Thiès -Tivaouane;
- à l'Ouest par la route départementale Thiès Mont Rolland ;
- au Nord par la conduite du lac de Guiers dénommée ALG.
- au Sud par le canal existant de grande capacité hydraulique.

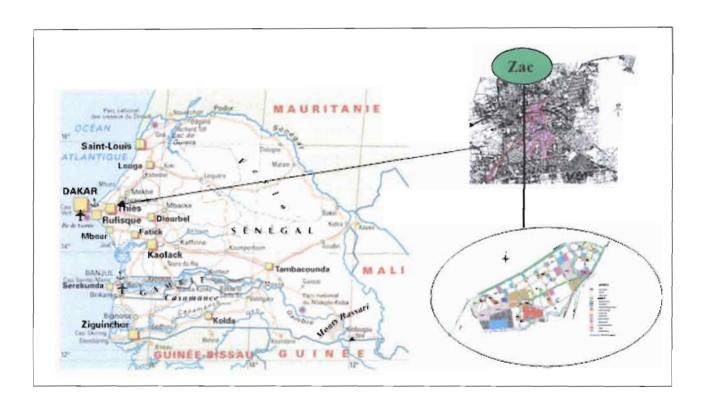


Figure 1 : Localisation de la Zac

Située à 70 km à l'Est de Dakar, Thiès est localisée entre les méridiens 16°53" et 16°58" et les parallèles 14°46" et 14°. Elle est située dans le bassin sédimentaire sénégalo-mauritanien caractérisé par une topographie plane. L'existence d'un plateau culminant à 137 m au Nord-ouest conjugué avec des pentes dominantes orientées vers l'Est et le Sud, fait de la ville un réceptacle privilégié des eaux de pluies. Ces eaux ruissellent vers un thalweg qui limite la zone d'étude au Sud et la traverse du coté Est.

Le climat est dans l'ensemble de type chaud avec des températures maximales d'environ 33 °C pouvant atteindre 15 °C au mois de Décembre.

La pluviométrie tourne autour d'une moyenne de 500mm par an, avec des maxima enregistrés aux mois d'Août et Septembre (cf. carte isohyètes 2001)

Le bassin versant laisse apparaître un sol composé de latérite graveleux de perméabilité faible.

La pédologie présente, selon Desthieux G (2000) [2], des types de sol tels que les sols ferrugineux tropicaux peu ou pas lessivés dénommés « sols dior », les sols ferrugineux tropicaux lessivés sableux en surface et argilo sableux en profondeur caractérisés par une cuirasse ferralitique située entre 50 cm et 1 m de profondeur, les sols squelettiques d'érosion sur cuirasse ferrugineuse fruit de l'érosion en ravine et en nappe importante, les sols hydromorphes « decks » sablo limoneux contenant plus de 10 % d'argile sous lesquels baigne la nappe aquifère, les sols hydromorphes « deck-dior »constitués de sols « dior » recouverts de sols « deck »

Pour une meilleure illustration de la structure géologique du site, nous présentons ci-dessous une coupe verticale.

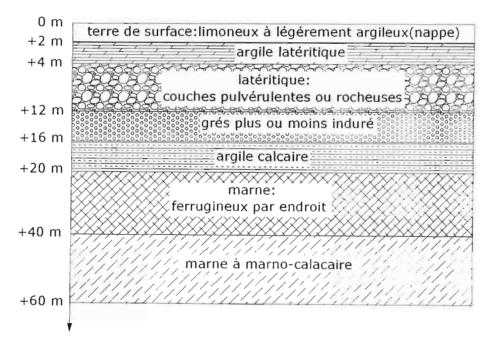


Figure 2 : Coupe géologique

La présente étude requiert l'acquisition de données sur deux autres éléments climatiques, à savoir l'humidité relative et l'évaporation.

L'humidité relative influence fortement le processus des pertes par évaporation des eaux de ruissellement. Elle est comprise entre un minimum de 47 % en saison sèche et un maximum de 77 % en saison humide.

1. 2. Situation hydrologique

La situation hydrologique est quasi identique à celle de la ville de Thiès. Par conséquent, il ne serait pas anormal de l'y assimiler. La zone est pratiquement démunie de réseaux superficiels pérennes. Le réseau hydrographique est presque inexistant. Quelques rares marigots ou mares y sont dispersés. Mais un talweg recueille les eaux de ruissellement dans sa limite sud et sert ainsi d'exutoire au réseau d'évacuation des eaux pluviales.

1.3. Situation démographique

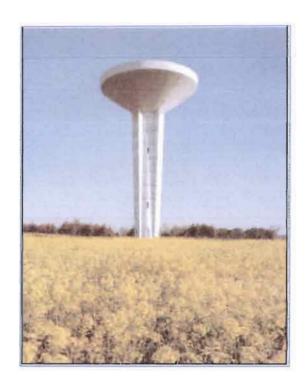
Très diversifiée, la population de Thiès est cosmopolite et multidimensionnelle. Elle est composée de plusieurs ethnies pratiquant plusieurs religions et exerçant diverses activités économiques. La démographie est caractérisée par une population jeune (57% de la population a moins de 20 ans) avec un taux de croissance de l'ordre de 2.8 %.

Le présent projet ambitionne d'abriter une population estimée à terme à 150 000 habitants. Cela contribuerait à décongestionner l'ancienne ville.

1.4. Etat des lieux

La ZAC est une zone en cours d'aménagement. Il n'y a pratiquement pas d'infrastructures existantes. Tout est à créer. Toutefois, il convient de mentionner la traversée de l'ALG qui est fondamentale pour l'alimentation en eau. L'existence d'une voirie bien répartie doublée d'un plan de lotissement bien élaboré participe d'une urbanisation parfaite qui commande la configuration du réseau. Un inventaire de l'ensemble des infrastructures et équipements divers aide considérablement dans l'évaluation des besoins et l'implantation des ouvrages.

On note l'existence d'un réseau d'évacuation des eaux pluviales dans certaines parties de la Zac.


1.5. Etudes socio- économiques

En vertu des aménagements et des infrastructures prévus, nous pouvons affirmer que la ZAC sera peuplée en majorité de personnes ayant au moins un revenu moyen et, par conséquent, un niveau de vie assez appréciable. Ces personnes menant des activités économiques rentables et

rentabilisées, aspirant à un certain confort véhiculé par la modernité, constituent la cible des initiateurs de la ZAC.

L'autre élément qui influence la caractérisation de la ZAC, c'est la nature des emplois et activités économiques qui jouent un rôle prépondérant dans les mécanismes d'insertion dans la vie des citadins. L'emploi généré par les activités économiques en vigueur dans la région dicte les revenus des populations ainsi que leurs habitudes, comportements, et modes de vie. Les activités économiques répertoriées au niveau de la région sont diverses et variées. Elles vont du secteur tertiaire aux secteurs artisanal et industriel, en passant aux secteurs minier et informel.

Des enquêtes menées par l'ADM en 1998 ont révélées que le revenu moyen des populations de la ville de Thiès varie entre 300 000 et 550 000 francs par ménage et par an et, que la population active représente 49 % de la population totale.

PARTIE II

ALIMENTATION EN EAU POTABLE

L'eau est un bien essentiel à la vie et une ressource limitée faisant partie du grand système écologique dans lequel nous vivons et dont notre vie dépend. Toute personne ou organisme qui pourvoit à l'approvisionnement en eau potable ou qui désire le faire devrait donc viser l'utilisation la plus rationnelle possible de cette ressource en essayant de promouvoir la santé publique des usagers, maintenir la salubrité et préserver l'équilibre écologique ainsi que l'esthétique du milieu.

Cela requiert une bonne conception des réseaux d'alimentation et une bonne maîtrise des données d'exploitation.

Le futur réseau ambitionne de desservir correctement une population projetée de 150 000 habitants occupant 15 000 parcelles réparties sur 1300 hectares. Les infrastructures et équipements prévus entre autres sont composés de :

- Des réserves administratives et tertiaires.
- Des banques,
- Des structures sportives et culturelles (centres aérés, centres culturels, terrain de football, piscine),
- Des infrastructures scolaires (cases des tout-petits, écoles primaires, lycées et CEM),
- Des infrastructures sanitaires.
- Des infrastructures commerciales (marchés, centres commerciaux),
- Des infrastructures administratives.
- Des lieux de cultes,
- Des stations service,
- Des espaces verts.

Cette partie a pour objet de faire la conception et le dimensionnement du réseau d'approvisionnement en eau potable incluant le réseau incendie.

Chapitre 1:

ESTIMATION DES BESOINS EN EAU

Les consommations en eau varient beaucoup selon les conditions locales et reflètent, d'une certaine façon, le niveau de vie d'une population. La quantité d'eau nécessaire à une agglomération se détermine non pas dans l'absolu, mais en relation avec le climat, l'hygiène, les circonstances locales, les usages divers que l'on fait de l'eau, etc.

On évalue généralement les besoins correspondants sous l'aspect de la quantité nécessaire par tête d'habitant et par jour. Les estimations varient d'ailleurs dans une mesure notable selon que l'on considère uniquement les besoins privés ou que l'on y inclut les besoins des services publics et ceux d'industries diverses comme c'est le cas dans cette présente étude.

L'estimation des besoins passe nécessairement par la disponibilité de données sur les consommations. Certaines données ont été obtenues au niveau de la SDE alors que d'autres sont disponibles dans la littérature.

Région/thies 2004	1 ^e bimestre	2 ^e bimestre	3 ^e bimestre	4 ^e bimestre	5 ^e bimestre	6 ^e bimestre	Total 2004
	m ³	m ³	m^3	m^3	m ³	m ³	m ³
Petits consommateurs	1 295 505	1 286 229	1 290 402	1 394 007	1 373 905	1 417 080	8 057 128
Gros consommateurs 1	311 836	333 287	289 154	257 071	179 005	272 849	1 643 202
Gros consommateurs 2	305 642	306 209	325 494	220 357	265 071	302 910	1 725 683
Administrations	267 820	248 570	281 544	219 093	239 454	290 446	1 546 927
Cessions	5 595	935	590	5 665	33 552	18 185	64 522
Facturation brute	2 186 398	2 175 230	2 187 184	2 096 193	2 090 987	2 301 470	13 037 462

Tableau 1 : facturation par bimestre de la ville de Thiès (source : SDE - Thiès)

- ✓ Petits consommateurs : consommation du privé avec 53761 abonnés
- ✓ Gros consommateurs : maraîchers, stations d'essence, maisons de commerce etc. avec 1522 abonnés
- ✓ Administrations : polices administratives avec 489 abonnés
- ✓ Cessions : les pertes et les casses

Soit un nombre total de 55 772 abonnés en décembre 2004.

1.1. Consommation domestique

C'est l'eau utilisée dans les résidences, les hôtels et les institutions publiques (hôpitaux, écoles, etc.), pour la préparation des aliments, la boisson, l'hygiène corporelle et les autres usages domestiques. La consommation domestique tient compte de l'eau perdue par usage abusif ou par une plomberie défectueuse.

L'exploitation des données annuelles recueillies au niveau de la SDE de Thiès (tableau 1) donne une valeur de la consommation d'environ 80 l/hbt/j. Celle-ci est obtenue en faisant le rapport entre la consommation journalière moyenne sur l'année des particuliers et la population de la ville. Cependant, eu égard au constat de pénurie quasiment généralisée au niveau de la ville et vu le niveau de standing de la Zac, nous adoptons une valeur de 100 litres/habitant et par jour.

1.2. Consommations des zones commerciales

C'est l'eau qui est consommée dans les commerces, à savoir les marchés et les centres commerciaux entre autres.

Les valeurs considérées dans les calculs sont obtenues à partir de la documentation et des enquêtes effectuées (voir tableau 1 et 2).

1.3. Consommation des zones industrielles

La consommation en eau dans les zones industrielles varie considérablement selon le type d'industries. La meilleure façon de contrôler cette consommation est d'effectuer un relevé des consommations auprès de chaque utilisateur industriel.

En absence de données, nous avons pu obtenir auprès de la SDE une estimation grossière de 0.006 m3/j/ha.

1.4. Réserve administratives

Le tableau 1 donne une consommation de 1546924 m3/an

La consommation moyenne mensuelle est :

$$\frac{1546942}{12*30} = 4297.011 m^3 / j$$

Nombre d'abonnés 489

Consommation moyenne/abonné =
$$\frac{4297.011}{489} \approx 9m^3 / j$$

Cependant, au niveau des réserves administratives le nombre de services n'étant pas connu, nous estimons que chaque service occupe une superficie moyenne de 3 ha. Donc, pour une réserve de superficie S en ha, la consommation journalière moyenne serait de :

$$\frac{S}{3} \times 9m^3 / j$$

Concernant les établissements publics et sportifs, les valeurs des consommations sont consignées dans le tableau des consommations ci-dessous.

Espaces	Consommation (m3/j/hbt)
Habitat	0,1
Espaces	Consommation unitaire (m3/j)
Mosquée	0,13
EP+M	3,16
Centre de santé	4,33
Mairie	19,5
Police	0,97
РМІ	4,33
Poste de santé	4,33
Grande Mosquée	1,4
Sapeur pompier	156
Station de service	17,17
Marché	11
Lycée	58,17
Lycée Technique	58,17
CES	1,83
Sports	142
Centre commercial	11
Centre culturel	1,03
Institut islamique	58,17
Centre social	1,03
Foyer	0,8
Cimetière	0,15
Chapelle	0,13
Concessionnaire	11
Espaces verts et industrie	Consommation unitaire (m³/m²/j)
Espaces verts	0,005
Industrie	0,006
Réserve administrative	0,0003

Tableau 2 : Quelques valeurs de consommations (source : M. Ghislain DIATTA, SDE Dakar)

1.5. Réserve incendie: RI

Afin de lutter contre les incendies, il est nécessaire de prendre en compte dans l'estimation des besoins en eau un volume d'eau représentant la réserve d'incendie. Les informations recueillies au niveau de la Direction Technique de la SDE révèlent que le débit d'incendie est fixé à 17 l/s.

Cependant, dans notre cas, nous l'évaluons à 30 l/s pendant 2 heures et supposons qu'il se produit un seul incendie durant cette période sur tout le réseau.

1.6. Les pertes d'eau

Ce sont les volumes d'eau perdus dans les canalisations par défectuosité ou par manque d'étanchéité au niveau des joints.

Toutefois, les pertes dans les résidences dues à un usage abusif ou à une plomberie défectueuse ne sont pas comptabilisées dans les pertes, mais plutôt dans la consommation domestique. Elles sont estimées à 15 % de la consommation moyenne pour un réseau neuf.

Chapitre 2:

CONCEPTION DU RESEAU DE DISTRIBUTION

C'est l'étape fondamentale dans tout projet d'ingénierie. Ce présent projet ne fait pas l'exception. En effet, la fonctionnalité et la rentabilité d'un réseau mais aussi son optimisation sont corroborées par la pertinence de sa conception.

2.1. Ossature du réseau

L'ossature du réseau de distribution est dictée par le plan de lotissement, c'est-à-dire la configuration des rues. Conséquemment à leur fonction même, les conduites de distribution doivent être établies le long des rues de la localité. Nous distinguons :

- ✓ La conduite d'adduction qui relie le point de piquage sur l'ALG à la bâche
- ✓ La conduite de refoulement qui part de la bâche pour alimenter le château d'eau
- ✓ Les conduites de distribution qui sont composées de :
 - conduites maîtresses ou principales,
 - conduites artérielles ou secondaires raccordées aux conduites maîtresses avec lesquelles elles forment un réseau maillé,
 - conduites mineures à partir desquelles s'alimentent les abonnés.

Ainsi, parmi les différents types de réseaux, nous pouvons identifier :

- ✓ Les réseaux ramifiés ou étoilés
- ✓ Les réseaux maillés

Le réseau ramifié ou étoilé est appelé ainsi parce qu'il a typologiquement une structure d'arbre (ou étoile dans certains cas).

Cette ossature de réseau est caractérisée par une alimentation à sens unique. L'inconvénient est que tout tronçon qui doit être mis hors service entraîne avec lui la mise en hors service de tous les tronçons en aval.

Le réseau maillé offre des avantages hydrauliques particulièrement intéressants puisqu'il permet l'alimentation à un point de plusieurs directions. Ce type de réseau est économique dans la mesure où la topologie de la municipalité est constituée par un maillage de rues bien développé. L'ossature du réseau de distribution projeté dans le cadre de cette étude est composée d'une combinaison des deux ossatures décrites précédemment. Ce qui donne naissance à un réseau appelé <u>réseau mixte</u>.

Ce réseau projeté comprend

- 1 conduite d'adduction,
- 1 conduite de refoulement,
- 217 conduites de distribution,
- 54 mailles,
- 150 nœuds.

Les remarques suivantes ont été considérées :

- Les conduites ne doivent pas se situer aux axes des rues. Elles sont placées à environ 1.5
 à 2 m des extrémités des rues ou 1 à 1.5 m des limites de propriétés.
- Choix systématique du positionnement des conduites par rapport aux rues (gauche ou droite) pour faciliter un repérage rapide.
- Eviter au maximum les traversées des chaussées en installant une conduite sous chaque trottoir de chaque coté des rues importantes.
- Diminuer au minimum autant que possible le nombres de pièces de raccordement par exemple les croix qui contribuer à une augmentation considérable du coût du réseau. Pour cela, nous avons procédé à certaines ramifications en mettant des plaques pleines ou des bouchons aux extrémités.
- Eviter les courbures excessives afin de minimiser les forces exercées par l'eau sur les conduites au niveau de ces zones, mais aussi permettre la pose des conduites de gros diamètres qui épousent difficilement les formes courbes. C'est pourquoi, nous avons procédé à une ramification du réseau au voisinage du canal, vu la forme de ce dernier.

2.2. Les réservoirs

Les fluctuations de la demande en eau consécutives à la variation de la consommation et la demande incendie commandent l'aménagement d'une réserve d'eau potable. Les réservoirs sont conçus à cet effet.

En fait, le réservoir cumule plusieurs fonctions :

- ✓ modulateur du point de vue de la demande en eau,
- ✓ sécurité vis-à-vis des risques d'incendie, de pannes ou de disfonctionnements au niveau de l'adduction.
- √ régulateur de pression,
- ✓ alimentation par gravité.

Il convient de remarquer que la position relative du réservoir par rapport à la conduite de transport et au réseau de distribution conduit à deux fonctionnements fort différents de ce dernier. Dans une première situation, le réservoir, placé à l'amont du réseau, reçoit l'eau par la canalisation d'amenée (refoulement) et la distribue par une conduite distincte appelée conduite de distribution. Le volume d'eau distribué transitant intégralement par la cuve : il est l'ouvrage de tête du réseau.

Dans la seconde, la canalisation de transport traverse l'agglomération en y distribuant de l'eau et aboutit au réservoir. Aux heures de faibles consommations, la fraction non distribuée du débit alimente l'ouvrage, et aux heures de pointes, la pression dans le réseau baisse par le fait du soutirage accru. Ainsi, le réservoir débite dans le réseau, qui continue par ailleurs à être alimenté à l'autre extrémité par le débit total adduit ou refoulé dans la conduite. Il s'agit alors d'un ouvrage d'extrémité équipé d'une canalisation unique dite d'amenée-distribution : C'est le réservoir d'équilibre.

Dans cette présente étude, nous optons pour un réservoir de tête qui donne l'avantage de pouvoir procéder à un traitement avant distribution. Cette solution n'exclue pas la disposition de réservoirs d'équilibre en cas de nécessité. Ce qui justifie l'existence de deux réservoirs d'équilibre en bout de réseau. Le réservoir de tête sera alimenté par pompage à partir d'une bâche, elle-même alimentée par gravité à partir de l'ALG où nous considérons une pression de 1.5 bars suffisante pour sa desserte. En effet, selon le service Technique de la SDE, la pression au

niveau de l'ALG est inférieure à 2 bars aux environs de l'école Polytechnique de Thiès, c'est-àdire à l'approche des réservoirs de stockages situés au nord de l'école.

2.3. Les poteaux d'incendie

Un poteau d'incendie est un équipement du réseau qui fournit le débit pour lutter contre les incendies.

2.3.1. Localisation et espacement

Les bornes d'incendie sont installées aux intersections de rues et en des points intermédiaires entre les intersections. Elles sont suffisamment éloignées de la bordure de rue pour éviter tout accident.

L'espacement entre les bornes d'incendie varie selon le caractère des bâtiments à protéger et les risques de conflagration du secteur. La norme canadienne recommande un espacement compris entre 80 et 180 mètres équivalent à une couverture moyenne de 1.7 ha par borne.

Toutefois, par souci d'optimisation de la ressource et pour des raisons de contraintes économiques, nous prévoyons un poteau pour une superficie de 8 hectares soit environ un nombre de 160.

2.3.2. Raccordement et prises

Chaque borne d'incendie devra être munie de prises apparentes. Un diamètre minimum de 110 mm est fixé pour la conduite de raccordement qui sera équipée d'une vanne de fermeture. Ces bornes d'incendie sont pourvues de blocs de butée conçus pour empêcher tout mouvement.

2.4. Sectorisation

Elle consiste à décomposer le réseau en un ou plusieurs niveaux de sous réseaux afin d'assurer une meilleure exploitation et une maintenance plus efficace (détection des fuites, détermination des consommations etc.)

Ainsi, le réseau est divisé en 3 secteurs à superficies sensiblement égales.

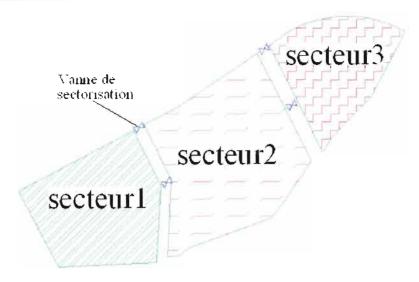


Figure 3 : Secteurs du réseau

L'installation des vannes d'isolement sur les conduites de distribution, ceci à l'intérieur de chaque secteur, a pour but de faciliter l'exploitation du réseau et permet de ce fait d'effectuer des travaux d'inspection, de nettoyage et de réparation tout en privant d'eau le plus petit territoire possible. Il est important de minimiser le nombre de vannes à fermer pour la mise en hors service d'un tronçon (3 ou 4 vannes au maximum).

2.5. Les accessoires du réseau

Pour sa fonctionnalité, le réseau sera doté :

- De vannes de sectionnement pour isoler les tronçons de conduites sujets à des réparations,
- Des ventouses aux points hauts pour purger l'air emprisonné dans les conduites,
- Des vidanges aux points bas pour le nettoyage du réseau,
- De Tés, de cônes et de coudes entre autres tenus par des blocs de butée.

Chapitre 3:

DIMENSIONNEMENT DU RESEAU

Dimensionner un réseau revient à lui conférer une qualité de service irréprochable à tout instant. Cela sous-entend un respect des normes dans la mesure du possible. L'objectif est la détermination des paramètres hydrauliques du réseau :

- ✓ Débits, vitesses et pertes de charge dans les canalisations,
- ✓ Charges piézomètriques et pressions au nœuds du réseau.

A cet effet, il s'avère qu'il est indispensable de posséder certaines données ou supports (plans et autres) pour déterminer certains paramètres de dimensionnement.

Le dimensionnement comportera deux volets :

- Volet1: dimensionnement des conduites pour lequel l'étude partira des débits de base aux noeuds déterminés à partir des consommations pour aboutir à la détermination des paramètres hydrauliques.
- Volet 2 : dimensionnement des ouvrages de stockage et/ou de régulation.

Il sera cependant précéder de la détermination des consommations aux différents nœuds du réseau. La démarche est celle du calcul des consommations dans les mailles et leur répartition aux nœuds.

3.1. Détermination de la consommation à l'intérieur de chaque maille.

La maille est la zone délimitée par trois ou plusieurs conduites. L'exemple de la maille 12 suivant illustre le calcul des consommations.

Maille 12

- ✓ Composition :
 - Centre culturel :

Nombre = 1

Consommation = 1030 1/j

• centre social:

Nombre = 1

Consommation = 1030 l/j

zone d'habitations

Superficie = 6.28 ha

Densité: 100 hbt/ha

Population = $100 \times 6.28 = 628$ habitants.

Consommation domestique = 100 l/hbt/j

Consommation totale = $100 \times 628 = 62 \times 800 \text{ l/j}$

Espace vert

Superficie = 0.11 ha

Consommation = 5000 l/ha/j

Consommation totale = $5000 \times 0.11 = 550 \text{ l/j}$

✓ Consommation totale dans la maille

$$C_T = 1030 + 1030 + 62800 + 550 = 65410$$
 J/j, soit 0.76 J/s

Cette consommation est répartie de manière équitable entre les différents nœuds de la maille.

Nombre de nœuds :

$$n = 4$$

Consommation assurée par chaque nœud

$$C_{1/12} = \frac{C_T}{n} = \frac{0.76}{4} = 0.189 \text{ l/s}.$$

Les résultats sont donnés en annexe 1 (Tableau 1) dont un extrait est présenté au tableau 3

Maille	Superficie(ha)	Nbre nœuds	Composition	Superficie(ha)	Cons. (I/j)	Cons. (I/s)	Cons. Totale	Répartition	
	à desservir	à répartir					(I/s)	par nœud (I/s)	
		·	Espace vert	13,00	65 000,00	0,75		1,028	
	1		Centre culturel	1,60	1 030,00	0,01	6,17		
			EP + Case	0,70	3 160,00	0,04			
	50.01	6	Poste de sante	0,76	4 330,00	0,05			
1	50,01)1 6	Centre artisanal	1,47	73 500,00	0,85	0,17		
			Marché	2,93	58 170,00	0,67			
			Centre commercial	2,79	60 000,00	0,69			
			Habitations	26,76	267 600,00	3,10			
			Chapelle	1,00	130,00	0,00			
2	12,55	5	Terrain sport	3,02	142 000,00	1,64	0,01	0.002	
2	12,55	5	Habitations	8,33	83 300,00	0,96	0,01	0,002	
			Espace jeune	0,20	800,00	0,01			
		4	FF+CSO	0,40	1 830,00	0,02		0,302	
3	11,74		EP + Case	1,40	3 160,00	0,04	1,21		
			Habitations	9,94	99 400,00	1,15			
		4	EP + Case	1,50	3 160,00	0,04			
4	10.71		4	RA	0,17	510,00	0,01	1,39	0.349
4	12,71		E Vert	0,16	8 000,00	0,09	1,55	0,545	
			Habitations	10,88	108 800,00	1,26			
			Chapelle	0,75	130,00	0,00			
5	12,67	4	EP + Case	1,40	3 160,00	0,04	1,24	0,310	
5	12,07	4	RA	0,17	510,00	0,01	1,24		
			Habitations	10,35	103 500,00	1,20			
6	8	8 4	Administration	3,00	9 000,00	0,10	0,68	0,171	
0	0		Habitations	5,00	50 000,00	0,58	0,00	0,171	
7			Prison	2,00	100 000,00	1,16			
	12	4	EP + Case	1,20	3 160,00	0,04	2,20	0,551	
			Habitations	8,65	86 500,00	1,00	2,20	0,331	
			Espace vert	0,15	750,00	0,01			
	7,5	4	EP + Case	1,25	3 160,00	0,04		0,188	
8			Habitations	6,14	61 400,00	0,71	0,75		
			Espace vert	0,11	550,00	0,01			

Tableau 3 : consommation à l'intérieur de quelques mailles du réseau.

3.2. Détermination de la demande de base aux nœuds

Les nœuds sont les points de jonction de deux ou plusieurs conduites. L'extrémité d'une conduite ramifiée constitue également un nœud. Ce sont les points à partir desquels sont effectuées les demandes en eau. Pour la détermination des demandes au niveau des nœuds, prenons comme exemple le nœud 42.

Nœud 42:

✓ Mailles tributaires:

• Maille 12 : $C_{1/12} = 0.189 \text{ J/s}$

De la même manière que la maille 12,

- Maille 13 : $C_{1'13} = 0.155 \text{ l/s}$
- Maille 23 . $C_{1/33} = 0.144 \text{ l/s}$
- Maille 24 $C_{1/34} = 0.208 \text{ l/s}$

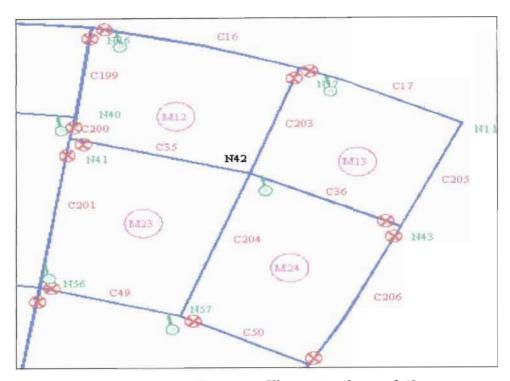


Figure 4: Illustration du nœud 42

- ✓ *Pertes* = 15%
- ✓ Besoins pour incendie au næud = 0.019 l/s

La demande moyenne au niveau du nœud est :

$$C_{m/42} = (0.189 + 0.144 + 0.208) * 1.15 + 0.019 = 0.82 \text{ l/s}$$

NB: La consommation d'une bouche d'incendie est directement assurée par le nœud le plus proche ou par deux nœuds si la bouche se trouve au milieu.

Cependant nous répartirons de manière égale les besoins en incendie au niveau de l'ensemble des nœuds du réseau de manière à assurer une flexibilité au niveau du choix de l'emplacement des poteaux d'incendie.

Les résultats sont donnés en annexe 1 (Tableau 2) dont un extrait est présenté au tableau 4.

		Ма	illes tr	ibutair	es	Consommation	pertes	Consommation	Consommation
Nœuds	Altitudes	1				(1/s)	(%)	inc (I/s)	total (l/s)
Piquage ALG	78,65								
N1	78	M1				1,028			1,201
N2	72,45	0	0	0	0	0,000			0,019
N3	72,3	M1	M2			0,772			0,907
N4	70,75		M2	М3		0,304			0,369
N5	68,96			M3		0,302	3		0,366
N6	68,95	M4				0,349			0,420
N7	69	M4	M5			0,659			0,777
N8	68,2		M5	M6		0,481			0,572
N9	68,8			M6	M7	0,722		,	0,849
N10	65				M7	0,551			0,652
N11	64,5	M8				0,188		[0,235
N12	61,2	M8	M9			0,421			0,503
N13	56,6	1	M9			0,232			0,286
N14	56	M10				0,158			0,201
N15	61,4	M10	M11			0,284			0,346
N16	69	1	M11	M12		0,315			0,381
N17	59		.,,,,		M13	0,345			0,415
N18	60			14112	M13	0,155			0,198
N19	71,8	M1	M2	M25	141 10	1,028			1,201
N20	71,33	1411	M2	M25		0,257			0,315
N21	71,33	-	M2	M25	_	0,343			0,414
N22	70,43	M3	M26	10123		0,552			0,654
N23	70,7	M3	M26			0,552			0,654
N24		M4	10120	M15		0,693			0,815
	70,3		NAG	M15	M16	1,474			1,714
N25	68,2	M4	M5	MID	IVIIO	0,782	15,000	0,019	0,918
N26	67,1	M16	M5				13,000	0,019	0,642
N27	66,4	M6	M17			0,542			0,642
N28	68,9	M6	M17			0,542			0,986
N29	67,8	M7	M18			0,841			0,986
N30	66,3	M7	M18			0,841			
N31	65,9	M8	M19	1400		0,359			0,431
N32	64,5	140	M19	M20		0,745			0,876
N33	64	M8	M9	1400		0,421			0,503
N34_	58	1110	M9	M20		0,808			0,948
N35	55,2	M10	M21			0,278			0,339
N36	58,1	M10	M14			0,167			0,211
N37	58,67	M21	M14			0,129			0,167
N38	58,6	M11	M14			0,135			0,174
N39	59,1		M14			0,102]	0,136
N40	59		M11	M22		0,218			0,270
N41	59,38	M12	M23			0,333			0,402
N42	60,11	M12	M13	M23		0,696			0,819
N43	61,04		M13		M24	0,363			0,436
N44	67,7	M15	M27			0,457			0,544
N45	65,2	M15	M27			1,160			1,353
N46_	63,8	M15		M27		1,631			1,894
N47	62,75	M16	M17	M28	M29	1,767_]	2,051
N48	64,9	M29	M30			0,924			1,082
N49	65,2	M17	M18			0,661			0,779
N50	64,39		M18	M30		0,992			1,159
N51	63,7	M19	M32			4,255]	4,912

Tableau 4 demande de base pour quelques nœuds du réseau.

3.3. Dimensionnement du réservoir de tête

3.3.1. Calcul de la réserve d'équilibre : RE

La réserve d'équilibre est définie comme étant le volume d'eau nécessaire pour répondre à la demande en eau lorsque celle-ci dépasse la consommation journalière maximale. Il existe deux méthodes de calcul de cette réserve :

- la méthode de la courbe de demande cumulative,
- et la méthode graphique.

Cependant, en se référant à Labonté [3], nous l'estimons à 20% de la consommation journalière moyenne (C_{Jmoy}).

$$RE = 0.20 * C_{Jmoy}$$

 $C_{Jmoy} = 14397.26 \text{ m}^3$
 $RE = 0.20 * 14397.26 = 2879 \text{ m}^3$
 $RE = 2879 \text{ m}^3$

Cette réserve est répartie entre les trois réservoirs du réseau.

Soit:

R₁: réserve stockée dans le réservoir de tête

R₂: réserve stockée dans chacun des deux réservoirs d'équilibre.

$$R_2 = \pi \cdot r^2 \cdot h = \pi * 3^2 * 2 = 56.55 \, m^3$$

r : rayon d'un réservoir d'équilibre = 3 m

h: hauteur d'un réservoir d'équilibre = 2 m

$$R_1 = RE - 2 * R_2 = 2766 m^3$$

3.3.2. Calcul de la réserve minimale : R_{min}

$$R_{\min} = R_1 + RI$$

$$RI = 30 \cdot 10^{-3} * 2 * 60 * 60 = 216m^3$$

$$R_{\min} = 2766 + 216 = 2982 m^3$$

$$R_{\min} = 2982 \approx 3000 m^3$$

3.3.3. Détermination des dimensions du réservoir

Nous choisissons un réservoir dont la cuve est cylindrique. Ce choix est le plus économique en terme de quantité de béton comparativement aux cuves parallélépipédique et conique.

Ce réservoir a une capacité V égale à la réserve minimale, soit environ 3000 m 3 et de rayon $R=9~\mathrm{m}$

On en déduit la hauteur h de la cuve :

$$h = \frac{V}{\pi \cdot R^2}$$

$$h = \frac{3000}{\pi \cdot 9^2} = 11.78m$$

$$h = 12 m$$

3.4. Dimensionnement de la bâche

La bâche de rayon R_b égal à 9 m comprend deux parties superposées (voir figure 6) : une partie inférieure de 2.5 m de hauteur qui assure l'immersion de la pompe et une partie supérieure de 12 m de hauteur constituant la réserve utilisable équivalente à la réserve d'équilibre.

$$h_b = 12 + 2.5 = 14.5m$$

$$h_b = 14.5m$$

h_b; hauteur totale de la bâche dont 13 m sont enterrés.

La capacité V_b maximale de la bâche est de :

$$V_b = \pi \cdot R_b^2 \cdot h_b$$

$$V_b = \pi \cdot 9^2 \cdot 14.5 = 3690 \ m^3$$

$$V_b = 3690 \ m^3$$

3.5. Dimensionnement des conduites

Comme mentionner précédemment, le dimensionnement des conduites est fait par simulation à l'aide du logiciel EPANET.

3.5.1. Présentation sommaire du logiciel EPANET

EPANET est un logiciel qui permet d'analyser le comportement hydraulique et la qualité de l'eau sur de longues durées dans les réseaux de distribution d'eau potable sous pression. il a pour objectif une meilleure compréhension de l'écoulement et de l'usage de l'eau dans les systèmes de distribution.

Ce logiciel calcule le débit dans chaque tuyau, la pression à chaque noeud, le niveau de l'eau dans les réservoirs et la concentration en substances chimiques dans les différentes parties du réseau au cours d'une durée de simulation divisée en plusieurs étapes. IL est également capable de calculer les temps de séjour et de suivre l'origine de l'eau. Il fournit un environnement intégré pour l'édition de données de réseau, l'exécution de simulations hydraulique et de qualité et pour l'affichage des résultats sous plusieurs formats (cartes avec codes couleurs, tableaux et graphes).

EPANET a été développé par la division de Ressource et d'Alimentation en Eau du Laboratoire National pour l'investigation sur la Gestion de Risques, de l'Agence d'Environnement des Etats Unis (Water Supply and water Resources Division of National Risk Management Research Laboratory (NRMRL) de l'Environmental Protection Agency des États-Unis (U.S.E.P.A.)).

EPANET contient un moteur de calcul hydraulique moderne ayant les caractéristiques suivantes:

- La taille du réseau étudié est illimitée.
- Pour calculer les pertes de charge dues à la friction, il dispose des formules de Hazen-Williams, Darcy-Weisbach, et Chezy-Manning.
- Il inclut les pertes de charge singulières aux coudes, aux tés, etc.
- Il peut modéliser des pompes à vitesse fixe ou variable.
- Il peut calculer l'énergie consommée par une pompe et son coût.
- Il peut modéliser différents types de vannes, comme des clapets antiretour, des vannes de contrôle de pression ou débit, des vannes d'arrêt, etc.
- Les réservoirs peuvent avoir des formes variées (le diamètre peut varier avec la hauteur).
- Il peut y avoir différentes catégories de demandes aux noeuds, chacune avec une caractéristique propre.

- Il peut modéliser des consommations dépendantes de la pression (buses par exemple).
- Le fonctionnement de station de pompage peut être piloté par des commandes simples, (heures de marche/arrêt en fonction du niveau d'un réservoir) ou des commandes élaborées plus complexes.

En plus des simulations hydrauliques, EPANET permet de modéliser la qualité de l'eau.

3.5.2. Les Étapes de l'Utilisation d' EPANET

Pour modéliser notre système de distribution d'eau, nous avons suivi les étapes suivantes :

3.5.2.1. Dessin du réseau représentant le système de distribution à l'aide d'un fond d'écran.

Epanet peut afficher un fond d'écran derrière le schéma du réseau. Le fond d'écran peut être une carte routière, un plan de services publics, une carte topographique, un plan d'aménagement du territoire ou n'importe quel autre dessin. Il doit être un méta fichier amélioré ou un *bitmap* créé hors EPANET. Ainsi, une fois importé il ne peut être modifié.

Pour l'ajout des tuyaux au réseau, nous avons procédé comme suit :

- ✓ avec srip32 couper le schéma AUTOCAD du réseau et l'enregistrer sous format bitmap.
- ✓ ouvrir Epanet ensuite sélectionner affichage>>Fond d'écran>>Importer et choisir le fichier enregistré.
- ✓ les éléments du réseau (nœuds, conduites, vannes etc.) sont ajoutés directement sur le plan constituant le fond d'écran.

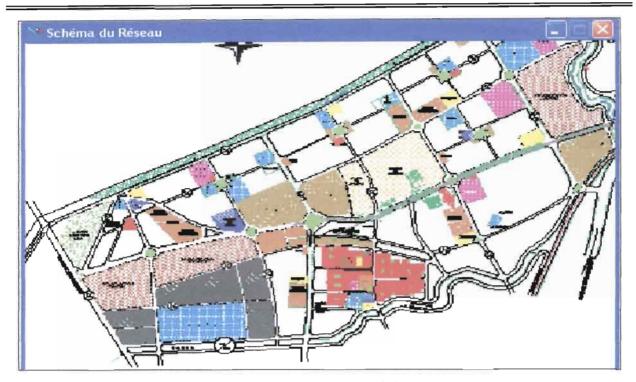
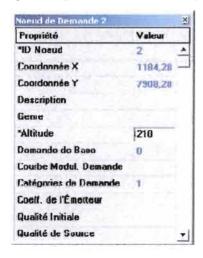
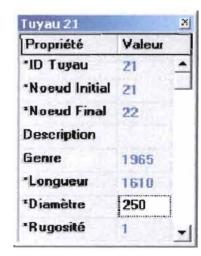


Figure 5 : Fond d'écran


3.5.2.2. Saisie des propriétés des éléments du réseau

les noeuds


Les données introduites pour chaque noeud sont l'altitude et la demande de base (Tableau 3, annexe 1)

les conduites

La longueur en mètres, le diamètre en millimètres et la rugosité sont les données introduites pour chaque conduite (Tableau 4, annexe 1). Les longueurs sont majorées de 10 % pour tenir en compte des pertes de charge singulières.

Propriétés nœuds

Propriétés conduites

Figure 6 : Editeur des propriétés

La bâche (voir figure 8)

La bâche est un réservoir circulaire et semi enterré à grande capacité. Elle est alimentée par gravité à partir de l'ALG où nous considérons une pression de 1.5 bars qui est suffisante pour sa desserte. En effet, selon le service Technique de la SDE, la pression au niveau de l'ALG est inférieure à 2 bars aux environs de l'école Polytechnique de Thiès, c'est-à-dire à l'approche des réservoirs de stockages situés au nord de l'école.

Les réservoirs (voir figure 8)

Comme spécifié dans le paragraphe 2.2, les réservoirs sont constitués du réservoir de tête et des réservoirs d'équilibre. Les données à insérer sont :

- la côte du radier
- le niveau initial
- le niveau minimal
- le niveau maximal
- le rayon (forme circulaire)

Les vannes

Leurs principaux paramètres d'entrée sont: les noeuds d'entrée et de sortie, le diamètre, la consigne de fonctionnement et l'état de la vanne.

3.5.2.3. Sélection des options de simulation

La courbe de modulation ou variation de la consommation

La détermination des pointes de consommation s'avère d'une grande importance dans le dimensionnement des réseaux de distribution ou dans la détermination de la capacité de la station de pompage.

La consommation varie selon les heures du jour, au rythme des activités urbaines. Dans nos villes, le minimum se situe entre 20 et 3 heures du matin. Le maximum se situe généralement entre 6 heures et 8 heures. Selon R. Labonté [3], avec une population de 150 000 habitants, la consommation horaire maximale est prise égale à 250 % de la consommation journalière moyenne de l'année (tableau 5).

	POPULATION						
pointe de consommation	moins de	100 000	plus de 100 000				
	maximum %	minimum %	maximum %	minimum %			
mensuelle	120 - 150	75 - <u>9</u> 0	110 - 130	80 - 90			
journalière	150 - 250	50 - 75	125 - 175	60 - 80			
horaire	300 - 400	25 - 50	200 - 300	50 - 75			

Tableau 5 : Facteurs de pointe suggérés pour le design en pourcentage de la consommation moyenne journalière de l'année.

Le tableau 6 présente les facteurs considérés dans la simulation avec des valeurs de consommation horaire situées en dessous de la valeur moyenne entre 20 heures et 4 heures du matin.

Heure de la journée	% de la consommation
1	0,5
2	0,5
3	0,5
4	0,5
5	1
6_	1,3
7	2,5
8	1,5
9	1,3
10	1,1
11	1,1
12	1,3
13	1,2
14	1,3 1
15	1
16	1,1
17	1,1 1,2
18	1,1
19	1
20	0,8
21	0,7
22	0,5
23	0,5
24	0,5
Total	24,00

Tableau 6 : Pourcentage de la consommation en fonction de l'heure de la journée

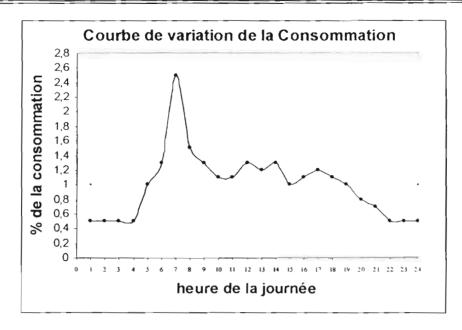


Figure 7 : Courbe de variation de la consommation en fonction de l'heure de la journée.

- L'unité de débit choisie est le litre/secondes : LPS
- La formule des pertes de charge linéaire utilisée est celle de Darcy-Weisbach :

$$h_{fl} = \frac{0.0827 \times f(\varepsilon, D, Q) \times L}{D^{5}}$$

Q : Débit en m³/s

f: facteur de friction

L: longueur de la conduite en m

 ε : coefficient de rugosité de la conduite en m

D : Diamètre de la conduite en m

- Les pertes de charge singulières sont considérées en majorant les longueurs des conduites de 10 %.
- La précision est fixée à 0.001
- Une durée de simulation de 48 heures est fixée. Cependant, les résultats seront donnés pendant la pointe, c'est-à-dire l'intervalle de 6 à 7 heures.

3.6. Dimensionnement de la pompe

Le Schéma du complexe bâche et réservoir de tête est présenté à la figure 8.

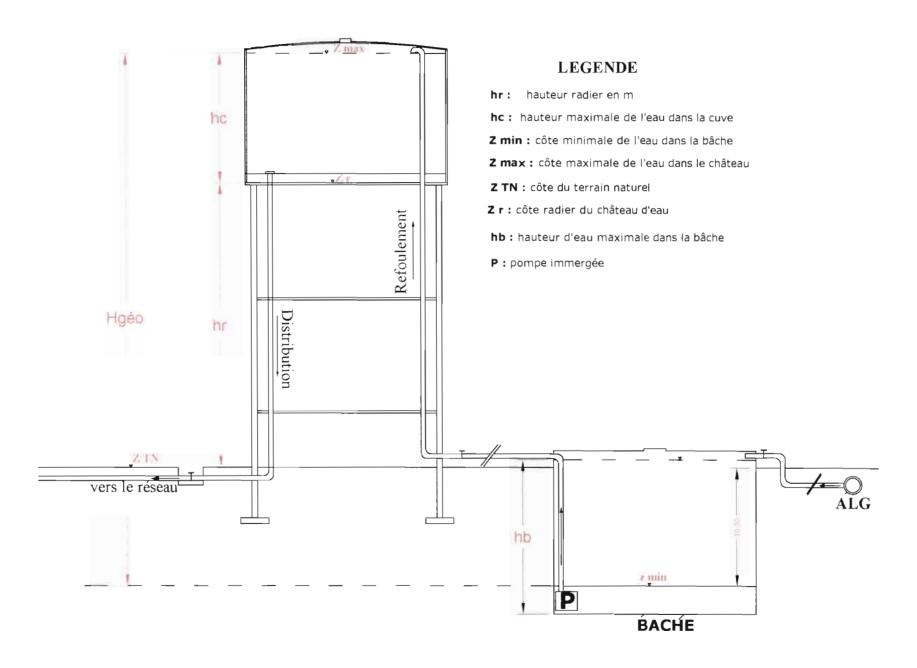


Figure 8: Dispositif de tête du réseau

3.6.1. Calcul du débit : Qp

Nous fixons une durée de fonctionnement de la pompe égale à 22 heures par jour.

$$Q_P = \frac{C_{jmoy} + RI}{22} = \frac{14397 + 216}{22} = 665 \, m^3 / h$$

$$Q_P = 665 \, m^3 / h$$

3.6.2. Calcul de la hauteur manométrique totale : HMT

3.6.2.1. Détermination des pertes de charge

Les pertes de charge peuvent être déterminées par calcul ou par estimation.

✓ Détermination par calcul

Pertes de charge linéaires par la formule de Darcy-Weisbach :

$$h_{ff} = 0.0826 \cdot f \cdot \frac{L}{D^5} \cdot Q^2$$

Calcul du diamètre par la formule de BRESS

$$D = 1.5 \cdot \sqrt{Q} = 1.5 \times \sqrt{\frac{665}{3600}} = 0.645 \ m \approx 700 \ mm$$

Calcul du nombre de Reynolds Re:

$$R_e = \frac{4 \cdot Q}{\pi \cdot D \cdot \nu}$$

 ν étant la viscosité cinématique égale à 0.897. $10^{-6}~{\rm m}^2/{\rm s}$.

$$R_e = \frac{4 \cdot 184.72}{\pi \cdot 0.7 \cdot 0.897 \cdot 10^{-6}} = 3,74 \cdot 10^{-8}$$

 $R_e > 10^5 \implies \text{Régime turbulent pleinement développé}$

Donc,

$$f = \left[-0.869 \cdot \ln \frac{\varepsilon}{3.7 \cdot D} \right]^{-2}$$

 $\varepsilon=1$ mm pour un tuyau neuf en fonte non revêtue

$$f = \left[-0.869 \cdot \ln \frac{0.001}{3.7 \cdot 0.7} \right]^{-2} = 0.021$$

Finalement on a:

$$h_{fl} = 0.0826 \cdot 0.021 \cdot \frac{47.5}{0.7^5} \cdot 184.72^2 = 0.17 \, m$$

Les pertes de charge singulière sont estimée à 10 % de celles linéaires, ce qui donne des pertes de charges totales de :

$$h_{cr} = 1.1 \times 0.17 = 0.19 \approx 0.2 m$$

✓ Détermination des pertes de charge par estimation

Les pertes de charge totales peuvent être estimées à 10 % de la hauteur géométrique, soit :

$$h_{fT} = 0.1 \times 47.5 = 4.75 \, m$$

En comparant les deux méthodes ci-dessus, nous prenons la valeur des pertes de charge de 4.75 m qui est le cas le plus défavorable. Ainsi, la hauteur manométrique est de :

$$HMT = 1.1 \times (Z_{max} - Z_{min})$$

 $HMT = 1.1 \times (115 - 67.5) = 52.25 m$
 $HMT = 52 m$

3.6.3. Choix de la pompe

Premier choix : une seule pompe

$$HMT = 52 m$$

$$Q_P = 665 m^3 / h$$
Série 250-400 ITUR 1450 RPM

La projection sur la courbe caractéristique donne :

o Diamètre
$$\Phi = 390 \text{ mm}$$

$$\circ$$
 $HMT = 52 m$

$$Q = 665 m^3$$

o
$$\eta = 76 \%$$

O Puissance mécanique
$$P_{m} = 168 \ HP = 126 \ kw$$

• Deuxième choix : deux pompes identiques montées en parallèle

$$HMT = 52 m$$

$$Q_P = 332 m^3 / h$$
Série 150-400 ITUR 1450 RPM

La projection sur la courbe caractéristique donne :

$$\odot$$
 Diamètre $\Phi = 408 \text{ mm}$

$$\circ$$
 HMT = 52 m

$$O = 332 m^3$$

$$0 \eta = 82 \%$$

o Puissance mécanique $P_m = 75 HP = 56 kw$

En dépit d'un coût d'investissement plus élevé et d'un coût d'exploitation relativement plus important, nous optons pour le deuxième choix. En effet, ce choix garantit une meilleure sécurité par rapport à la continuité dans la desserte. En outre, les deux pompe offrent chacune un rendement plus élevé et une pointe de démarrage plus faible donc moins éprouvante pour le réseau électrique.

PARTIE III EVACUATION DES EAUX

GENERALITES

L'assainissement constitue une des priorités majeures de nos villes. Les problèmes d'assainissement sont réels et demeurent une préoccupation des populations locales, des autorités municipales et des pouvoirs publics.

L'établissement d'un réseau d'assainissement d'une agglomération doit répondre à deux catégories de préoccupations à savoir :

- ✓ Assurer le transit vers l'épuration des eaux usées et, le cas échéant, les eaux résiduaires industrielles ;
- ✓ Assurer l'évacuation des eaux pluviales, de manière à éviter la submersion des zones urbanisées et éviter toute stagnation dans les points bas après les averses.

La Zac de Nguinth étant une zone urbaine ou d'habitats regroupés, les eaux usées collectées dans le réseau d'assainissement sont traitées en station d'épuration.

Parmi les systèmes de collecte, on distingue entre autre le système séparatif, le système unitaire, le système speudo-séparatif et le système mixte.

Dans le cadre de ce projet, nous optons pour un réseau séparatif à l'instar de la recommandation de l'OMS et vu les avantages qu'il confère. En effet, dans ce système les eaux usées sont séparées des eaux pluviales. Ce qui diminue considérablement le coût de traitement. Car plus une substance est présente en concentration faible dans un liquide, plus elle est difficile à retirer. Donc, plus la dilution est forte, plus le volume d'eau à traiter est grand et plus les coûts de traitement sont élevés. Cela permet également d'éviter les imperfections liées au réseau unitaires surtout en période sèche.

-Présentation sommaire du système séparatif

Le système séparatif consiste à spécialiser chaque réseau selon la nature des effluents. Un réseau est affecté à l'évacuation des eaux usées domestiques (eaux vannes et eaux ménagères) et des effluents industriels. Un autre réseau assure l'évacuation des eaux pluviales directement rejetées dans le milieu récepteur.

-Etat des lieux du réseau d'assainissement de la ville de Thiès

La ville de Thiès serait pourvue d'un système de type séparatif. Selon le bureau d'étude suédois SCANDIACONSULT [1], le réseau d'évacuation des eaux usées de la ville de Thiès se présente dans un état technique satisfaisant. Ies conduites sont en amiante ciment de diamètres variant entre 250 et 700 mm. La longueur est de 14,25 km.

Ce réseau d'assainissement qui date de 1984 [4] n'a jamais été fonctionnel car il est incomplet. En fait, il manque des tronçons et un émissaire de rejet le reliant à la station d'épuration projetée. La station d'épuration de type lagunage est implantée à 5 Km au nord de la ville aux environs du village de Keur Saïb Ndoye. La conception prévoit deux lignes de traitement des eaux usées et quatre bassins.

La commune de Thiès dispose de 13,09 Km de réseau d'évacuation des eaux pluviales. Ce réseau vétuste et insuffisant se situe pour la plupart dans les quartiers centraux. Il est composé de deux parties : un réseau périphérique qui protège la ville des eaux provenant des territoires extérieures et un réseau urbain partiellement réalisé qui assure le drainage des eaux pluviales à l'intérieur de la ville.

Face à cette situation, l'Etat, dans le cadre d'un vaste programme d'assainissement des villes sénégalaises, projette la réalisation de 25 km de réseaux primaires et secondaires, de 3.100 branchements sociaux à l'égout et d'une station d'épuration d'un débit moyen de 3.000 m3/jour. Le projet est financé par le Fonds nordique de développement pour un montant de 7. 385. 641. 309 francs Cfa. [4]

Chapitre1:

EVACUATION DES EAUX USEES

L'assainissement des eaux usées a pour objectif de collecter, puis d'épurer les eaux usées avant de les rejeter dans le milieu naturel afin de les débarrasser de la pollution dont elles sont chargées.

Une grande partie des eaux consommées sont rejetées sous forme d'eaux usées, donc polluées. Non traitées ou mal traitées, elles présentent une menace pour l'équilibre écologique, un risque de contamination des eaux destinées à la consommation et des eaux superficielles ainsi qu'un danger pour la santé des citoyens.

Dans cette présente étude nous nous limiterons seulement au dimensionnement du réseau de collecte et d'évacuation des eaux usées. Nous n'aborderons pas l'aspect épuration.

1.1. Nature des eaux usées

On distingue:

1.1.1. Les eaux usées domestiques

Elles proviennent des différents usages domestiques de l'eau. Elles sont essentiellement porteuses de pollution organique. Elles se répartissent en eaux ménagères, qui ont pour origine les salles de bains et les cuisines, et sont généralement chargées de détergents, de graisses, de solvants, de débris organiques, etc., et en eaux "vannes" : il s'agit des rejets des toilettes chargés de diverses matières organiques azotées et de germes fécaux.

1.1.2. Les eaux industrielles

Elles sont très différentes des eaux usées domestiques. Leurs caractéristiques varient d'une industrie à une autre.

En plus de matières organiques, azotées ou phosphorées, elles peuvent également contenir des produits toxiques, des solvants, des métaux lourds, des micropolluants organiques, des hydrocarbures.

Certaines d'entre elles doivent faire l'objet d'un prétraitement de la part des industriels avant d'être rejetées dans les réseaux de collecte. Elles sont mêlées aux eaux domestiques que

lorsqu'elles ne présentent plus de danger pour les réseaux de collecte et ne perturbent pas le fonctionnement des usines de dépollution.

1.2. Estimation des rejets

Les eaux usées domestiques et industrielles proviennent presque exclusivement des eaux de consommation.

Cependant, il est difficile de faire une corrélation entre la consommation d'eau et les rejets à l'égout.

En effet, une partie seulement des eaux de consommation rejoint l'égout domestique. Les eaux qui servent à l'arrosage des pelouses, à l'extinction des incendies, rejoignent plutôt l'égout pluvial. A cela s'ajoutent les pertes dans le réseau d'alimentation.

Toutefois, le rejet journalier moyen est évalué à 80 % de la consommation journalière moyenne (pertes, arrosage pelouses et débits incendie non compris)

1.3. Conception et Dimensionnement du réseau

Le réseau d'eaux usées doit satisfaire les exigences de captage et d'évacuation de celles-ci. Sa conception devra, par conséquent, intégrer les objectifs ci-après :

- Ecoulement gravitaire autant que possible, sinon recourt à la station de relevage,
- Avoir une pente suffisante de façon à éviter tout dépôt solide,
- Avoir une capacité hydraulique suffisante pour véhiculer les débits de pointe,
- Etre suffisamment profond pour capter les eaux qui lui sont destinées,
- Etre muni des infrastructures nécessaires pour assurer le captage, l'évacuation et l'entretien efficace du système.

La conception du réseau a nécessité la disponibilité des plans topographiques complets de la Zac et du plan de lotissement. L'exploitation de ces documents nous a conduit à déterminer l'ossature et le fonctionnement (sens d'écoulement obtenu à l'aide des courbes de niveau) du réseau.

1.3.1. Composition

Le futur réseau comprend :

- ✓ un réseau d'égouts locaux destiné à véhiculer les eaux usées en provenance d'un secteur très limité.
 - Les eaux usées des secteurs à l'amont ne doivent pas s'y déverser,
- ✓ un réseau de collecteurs destiné à véhiculer les eaux usées en provenance des égouts locaux qui s'y déversent,
- ✓ des intercepteurs qui reçoivent les eaux véhiculées par les collecteurs,
- ✓ des regards qui constituent les points de rencontre ou de changement de direction ou de pente, de diamètre des conduites. Ils permettent l'accès à la conduite pour effectuer les tâches d'entretien, et assure une ventilation dans le réseau permettant ainsi aux gaz nocifs et explosifs de s'échapper. Leur espacement est de 100m.

Ce présent réseau est dimensionné pour desservir une zone d'environ 1300 ha composée entre autres d'habitations et d'industries. La population à terme est estimée à 150 000 habitants.

1.3.2. Débit de design

Le débit pour lequel le réseau est calculé tient compte des eaux usées domestiques, des établissements commerciaux et industriels des diverses institutions sans oublier les infiltrations dans le réseau de collecte et une partie des eaux de surface qui constituent les eaux parasites.

1.3.2.1. Débit d'infiltration

Il est d'origine souterraine et pénètrent dans un réseau d'égout de façon continue à cause de défectuosités comme la mauvaise qualité des joints et les fissures dans les conduites, les regards ou les entrées de service. Pour ces différentes raisons, on pourrait tolérer une certaine infiltration par pondération du débit. Etant en présence d'un nouveau réseau, nous considérons que l'infiltration est nulle

1.3.2.2. Débit de captage

Ce sont les eaux canalisées dans un réseau d'égouts de façon intermittente ou parfois continue, mais surtout en période de pluie, suite à diverses pratiques comme le raccordement des drains de fondation au réseau domestique, l'interception de fossés et de ruisseaux, ainsi que le raccordement d'égouts pluviaux au réseau domestique. Les hypothèses évoquées pour l'infiltration restent valables pour le captage.

1.3.2.3. Rejet moyen: Q_m

Il est évalué à 80% de la consommation moyenne journalière (C_{mj}), excepté l'incendie et l'arrosage des espaces verts.

$$Q_{m} = \frac{80 \times Cmj}{100}$$

Avec:

Cmj = 124 l/hbt/j

$$Qm = \frac{80 \times 124}{100} = 99.2l / hbt / j \approx 99 l/hbt/j$$

1.3.2.4. Débit maximal

Les égouts sont conçus pour écouler la charge de pointe (débit de pointe maximale) et, les installations de traitement des eaux usées être capable de faire face, hydrauliquement, à ces pointes sans déborder.

$$Q_{\text{max}} = FP \times C_{mj} + Q_{\text{infiltration}} + Q_{captage}$$

Avec:

$$Q_{\text{infiltration}} = 0 \text{ et } Q_{\text{capioge}} = 0.$$

FP: facteur de pointe

1.4. Utilisation du logiciel Mensura

1.4.1. Présentation

MENSURA est un logiciel de CAO/DAO, métrés orienté travaux publics. Ce serait la concrétisation de 20 ans de recherche, et de synthèses dans les différents métiers du secteur des travaux publics. Il peut être utilisé aux différents stades de conception d'un projet ou d'une étude.

1.4.2. Paramètres d'entrée

1.4.2.1. Découpage des bassins d'influence et saisie du réseau

Cette fonction permet la saisie des bassins de collectes des eaux usées. On peut au travers de cette fonction renseigner le bassin en lui donnant tous les attributs nécessaires.

Le découpage des bassins eaux usées est une phase essentielle. La méthodologie permet d'affiner la précision des calculs. Il faut tenir compte de la topographie des zones à étudier, la topologie des réseaux et de l'homogénéité des bassins d'eaux usées.

✓ Saisie des tronçons

Cette fonction permet de créer et saisir l'ensemble du réseau en renseignant les regards, piquages, et les différents tronçons de ce réseau.

✓ Caractéristiques des bassins

- 1 Saisie de la densité de logements sur le bassin (dl = Nombre de logements / Ha).
- 2 Saisie de la densité d'habitants par logement (dh).
- 3 Saisie des besoins moyens par habitant et par jour (L en litres).
- 4 Saisie du % de perte (pp.)

1 et 2 peuvent se substituer à la saisie du nombre d'habitants.

- 3 et 4 peuvent se substituer à la saisie d'un débit de rejet.
- 1, 2, 3 et 4 peuvent se substituer à la saisie du débit moyen du bassin.

1.4.2.2. Calcul du facteur de pointe

$$p = a + \frac{b}{\sqrt{Q_m}}$$

a est un paramètre qui exprime la limite inférieure à ne pas dépasser lorsque Qm croît vers l'infini. (a=1.5)

b est paramètre en rapport avec a, qui exprime la valeur croissante lorsque Qm tend vers zéro.

(b=2.5 pouvant être réduit à 1).

Qm : débit moyen journalier des rejets exprimé en l/s.

$$Q_m = \frac{L \cdot pp \cdot dh \cdot dl}{86400}$$

Suivant le type d'étude, le coefficient de pointe ne doit pas être supérieur à 4 pour la partie amont du réseau ni descendre au-dessous de la valeur limite de 1.5 pour la partie aval du réseau.

1.4.3. Démarche de calcul des caractéristiques des tronçons

A partir de L_{Tot} = longueur totale de tronçons du bassin, les débits seront déterminés.

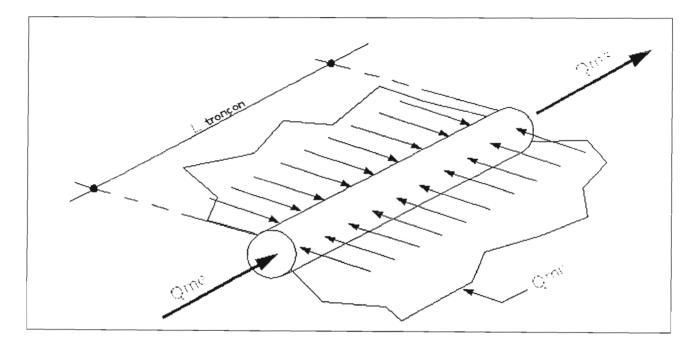


Figure 9 : Illustration d'un tronçon d'égout avec les différents débits

✓ Calcul de Q_{mr} : débit en route

$$Q_{\mathit{mr}} = \frac{L_{\mathit{Troncon}} \cdot Q_{\mathit{m}}}{L_{\mathit{Tot}}}$$

✓ Calcul de Q_{me} : débit entrant

 $Q_{\rm\scriptscriptstyle me}=$ somme des débits à l'amont du tronçon

✓ Calcul de Q_{ms} (débit sortant)

$$Q_{\mathit{ms}} = Q_{\mathit{me}} + Q_{\mathit{mr}}$$

 \checkmark Calcul de Q_{pe} (débit de pointe entrant)

$$Q_{pe} = p \cdot Q_{me}$$

✓ Calcul de Q_{pst} (débit de pointe sortant)

$$Q_{pe} = p \cdot Q_{ms}$$

✓ Calcul de Q_{pf} (débit de pointe moyen)

$$Q_{pf} = \frac{Q_{pe} + Q_{pst}}{2}$$

✓ Calcul du diamètre des canalisations

Le débit considéré pour le calcul est $Q_{\it pf}$. La formule utilisée est celle de Manning-Strickler

$$D_{th} = \left[\frac{nQ_{pf}}{0.312} \cdot \frac{1}{S^{1/2}} \right]^{3/8} \Rightarrow \text{Diamètre commercial Dc.}$$

Dth: Diamètre théorique (m)

Tel que:

$$D_c \geq 250 \, mm$$

$$V = K_s \cdot R^{2/3} \cdot S^{1/2}$$

R: rayon hydraulique

S: pente du tronçon

Ks: coefficient de Manning-Strickler

La canalisation est en PVC avec Ks = 80.

√ Vérification de l'auto curage

Les conditions à respecter sont :

- a À pleine ou demi section un tuyau circulaire doit assurer une vitesse d'écoulement V> 0.70 m/s.
- b Pour un remplissage égal aux 2/10 du diamètre, la vitesse d'écoulement est supérieure à 0.30 m/s.
- c Le remplissage de la conduite au moins égal au 2/10 du diamètre doit être assuré pour le débit moyen actuel.

Nous présentons ci-dessous des extraits des tableaux 1 et 2 joints en annexe 2

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R1	70,90	69,90	1,00
R2	70,60	69,65	0,95
R3	70,29	69,40	0,88
R4	70,33	69,15	1,18
R5	70,42	68,90	1,51
R6	70,66	68,65	2,01
R7	70,90	68,40	2,50
R8	71,19	68,15	3,04
R9	71,40	67,90	3,50
R10	71,17	67,65	3,52
RII	70,93	67,40	3,53
R12	70,62	67,15	3,47
R13	70,16	66,90	3,26
R14	69,77	66,65	3,12
R15	69,29	66,40	2,89
R16	69,56	66,15	3,41
R17	69,67	65,90	3,76
R18	68,54	65,65	2,89
R19	67,59	65,40	2,19
R20	66,73	65,15	1,58
R21	66,14	64,90	1,24
R22	66,08	64,65	1,43
R23	66,08	64,40	1,68
R24	65,99	64,15	1,83
R25	65,32	63,90	1,42
R26	64,84	62,84	2,00
R27	63,86	62,69	1,17
R28	63,31	62,54	0,78
R29	64,28	62,39	1,89
R30	65,37	62,24	3,14
R31	65,50	62,09	3,41
R32	65,45	61,94	3,52
R33	65,91	61,79	4,13
R34	64,97	61,64	3,33
R35	63,48	61,49	2,00
R36	64,36	61,34	3,02
R37	64,62	61,19	3,44
R38	64,53	61,04	3,50
R39	63,91	60,89	3,03
R40	63,51	60,74	2,77
R41	63,04	60,54	2,50
R42	61,13	60,34	0,80
R43	61,14	60,14	1,01
R44	61,11	59,94	1,17
R45	61,38	59,74	1,64

Tableau 7 : Exemple de saisies de données

Transan	D th (mm)	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Tronçon		De (IIIII)		m	l / s	1/s	1 / s	1 / s	l/s	1 / s	1 / s	m/s	m/s	m/s
R1-R2	33	250	0,5%	50	47,633	0,205	-	0,205	-	0,382	0,191	0,89	0,89	0,55
R2-R3	49	250	0,5%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,89	0,89	0,55
R3-R4	60	250	0,5%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	0,89	0,89	0,55
R4-R5	68	250	0,5%	50	47,633	0,205	0,616	0,821	1,146	1,528	1,337	0,89	0,89	0,55
R5-R6	74	250	0,5%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	0,89	0,89	0,55
R6-R7	80	250	0,5%	50	47,633	0,205	1,026	1,231	1,910	2,293	2,102	0,89	0,89	0,55
R7-R8	85	250	0,5%	50	47,633	0,205	1,231	1,436	2,293	2,675	2,484	0,89	0,89	0,55
R8-R9	90	250	0,5%	50	47,633	0,205	1,436	1,641	2,675	3,057	2,866	0,89	0,89	0,55
R9-R10	94	250	0,5%	50	47,633	0,205	1,641	1,847	3,057	3,439	3,248	0,89	0,89	0,55
R10-R11	98	250	0,5%	50	47,633	0,205	1,847	2,052	3,439	3,821	3,630	0,89	0,89	0,55
R11-R12	102	250	0,5%	50	47,633	0,205	2,052	2,257	3,821	4,203	4,012	0,89	0,89	0,55
R12-R13	106	250	0,5%	50	47,633	0,205	2,257	2,462	4,203	4,585	4,394	0,89	0,89	0,55
R13-R14	109	250	0,5%	50	47,633	0,205	2,462	2,667	4,585	4,967	4,776	0,89	0,89	0,55
R14-R15	112	250	0,5%	50	47,633	0,205	2,667	2,873	4,967	5,349	5,158	0,89	0,89	0,55
R15-R16	- 115	250	0,5%	50	47,633	0,205	2,873	3,078	5,349	5,731	5,540	0,89	0,89	0,55
R16-R17	118	250	0,5%	50	47,633	0,205	3,078	3,283	5,731	6,114	5,922	0,89	0,89	0,55
R17-R18	121	250	0,5%	50	47,633	0,205	3,283	3,488	6,114	6,496	6,305	0,89	0,89	0,55
R18-R19	124	250	0,5%	50	47,633	0,205	3,488	3,693	6,496	6,878	6,687	0,89	0,89	0,55
R19-R20	- 126	250	0,5%	50	47,633	0,205	3,693	3,898	6,878	7,260	7,069	0,89	0,89	0,55
R20-R21	129	250	0,5%	50	47,633	0,205	3,898	4,104	7,260	7,642	7,451	0,89	0,89	0,55
R21-R22	131	250	0,5%	50	47,633	0,205	4,104	4,309	7,642	8,024	7,833	0,89	0,89	0,55
R22-R23	134	250	0,5%	50	47,633	0,205	4,309	4,514	8,024	8,406	8,215	0,89	0,89	0,55
R23-R24	136	250	0,5%	50	47,633	0,205	4,514	4,719	8,406	8,788	8,597	0,89	0,89	0,55
R24-R25	138	250	0,5%	50	47,633	0,205	4,719	4,924	8,788	9,170	8,979	0,89	0,89	0,55
R26-R27	155	250	0,3%	50	54,288	0,267	5,006	5,274	9,208	9,700	9,454	0,69	0,69	0,42
R27-R28	158	250	0,3%	50	54,288	0,267	5,274	5,541	9,700	10,191	9,945	0,69	0,69	0,42
R28-R29	161	250	0,3%	50	54,288	0,267	5,541	5,808	10,191	10,683	10,437	0,69	0,69	0,42
R29-R30	164	250	0,3%	50	54,288	0,267	5,808	6,075	10,683	11,174	10,929	0,69	0.69	0,42
R30-R31	166	250	0,3%	50	54,288	0,267	6,075	6,343	11,174	11,666	11,420	0,69	0,69	0,42
R31-R32	- 169	250	0,3%	50	54,288	0,267	6,343	6,610	11,666	12,157	11,912	0,69	0,69	0,42
R32-R33	172	250	0,3%	50	54,288	0,267	6,610	6,877	12,157	12,649	12,403	0,69	0,69	0,42
R33-R34	174	250	0,3%	50	54,288	0,267	6,877	7,144	12,649	13,141	12,895	0,69	0,69	0,42
R34-R35	177	250	0,3%	50	54,288	0,267	7,144	7,412	13,141	13,632	13,386	0,69	0,69	0,42
R35-R36	179	250	0,3%	50	54,288	0,267	7,412	7,679	13,632	14,124	13,878	0,69	0.69	0,42

Tableau 8 : Extrait des résultats du dimensionnement

Chapitre2:

EVACUATION DES EAUX PLUVIALES

L'objectif principal du réseau d'évacuation des eaux pluviales est de drainer rapidement vers le milieu naturel les eaux de ruissellement pour éviter la submersion des voies publiques. Toutefois, des inondations resteront possibles en cas d'orage exceptionnel malgré les prévisions et les calculs sur la probabilité de la période de retour.

1.1. Les précipitations

Les précipitations sont toutes les eaux météoriques qui tombent sur la surface de la terre, tant sous forme liquide (bruine, pluie, averse) que sous forme solide (neige, grésil, grêle) et les précipitations déposées ou occultes (rosée, gelée blanche, givre,...). Elles sont provoquées par un changement de température ou de pression. Elles constituent l'unique « entrée » des principaux systèmes hydrologiques continentaux qui sont les bassins versants. Celles qui intéressent le calcul des réseaux d'eau pluviale sont le plus souvent les précipitations de convexion. Elles sont produites par une instabilité atmosphérique qui entraîne en hauteur des masses d'air chaud et humide qui, par détente se refroidit et forme des nuages de type cumulus.

1.2. Notion de période de retour

En considérant une averse de durée t et d'intensité i. Si au cours d'une période de N années on a enregistré n fois cette averse, la fréquence de cette averse est : $F = \frac{n}{N}$

On appelle période de retour T ou intervalle de récurrence d'une averse, l'inverse de sa fréquence. En d'autres termes, le nombre d'années au cour duquel, en moyenne, l'averse considérée surviendra seulement une fois : $T = \frac{1}{F} = \frac{N}{n}$

L'évacuation des eaux pluviales intervient pour une part prépondérante dans les coûts et les modes d'assainissement d'une agglomération. Leur nature aléatoire (débits et volume ruisselé) conduit au calcul des ouvrages en terme de période de retour de défaillance.

Cette période de retour est nécessairement limitée. Tout d'abord, parce qu'il est impossible actuellement de chiffrer sans approximation très grossière l'importance d'un événement rare (du

type centenaire pour la pluie par exemple). Ensuite, parce qu'un ouvrage d'assainissement surdimensionné, ayant un mauvais fonctionnement hydraulique, entraînerait, en termes de performances, des difficultés d'exploitation.

Enfin, parce que des contraintes économiques interviennent pour limiter la capacité d'évacuation des réseaux. Dans l'approche économique, le principe de choix semble simple: C'est la minimisation du bilan investissements - dommages. Nous adoptons une période de retour de 10 ans, comme pour la plupart des études menées au sénégal.

1.3. Le ruissellement

La quantité d'eau tombée au cours d'une pluie est répartie suivant plusieurs destinations. Une partie retourne dans l'atmosphère : C'est l'évapotranspiration. Une autre ruisselle et\ou infiltre dans le sol dépendamment des caractéristiques de la pluie et du sol.

Le ruissellement est le phénomène par lequel l'eau d'une pluie suit une trajectoire représentée par la ligne de plus grande pente.

On distingue deux types de ruissellement : le ruissellement hypodermique et le ruissellement superficielle objet de cette étude. Son ampleur est fonction de l'intensité et de la durée de la pluie ainsi que de la faculté du sol à absorber cette pluie.

1.4. Bassins versants

1.4.1. Définition

Le bassin versant est une surface élémentaire hydrologiquement close, c'est-à-dire qu'aucuni écoulement n'y pénètre de l'extérieur et que tous les excédents de précipitations s'évaporent ou s'écoulent par une seule section à l'exutoire à partir duquel nous pouvons tracer le point de départ et d'arrivée de la ligne de partage des eaux qui le délimite.

Généralement, la ligne de partage des eaux correspond à la ligne de crête. On parle alors de bassin versant topographique).

En hydrologie urbaine (échelle plus fine : ville), le bassin versant est une surface de ruissellement telle que le réseau qui la draine possède un exutoire. On parle de bassin versant urbain.

and"

Spots

19:25

1.4.2. Délimitation des bassins versants

Elle consiste à répartir la zone d'étude en sous bassins. Chaque sous bassin draine ses eaux vers un point unique : l'exutoire. La limite de chaque sous bassin que nous avons délimité manuellement correspond à la ligne de partage des eaux (ligne de crête) et est obtenue à partir des courbes de niveau et de la configuration des rues. Nous avons ainsi obtenu un nombre de trente trois (33) sous bassins.

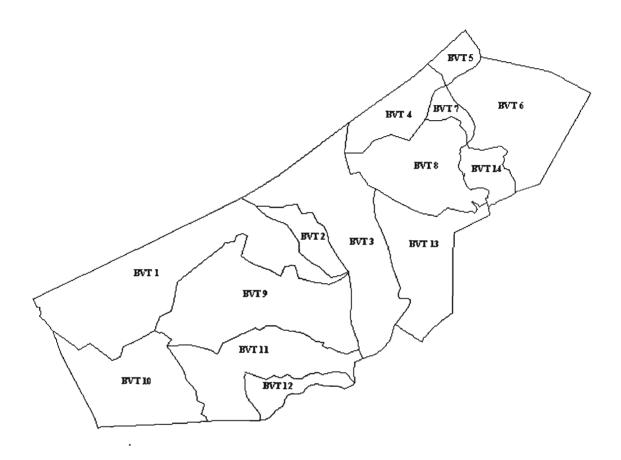


Figure 10: Configuration des sous bassins versants topographiques

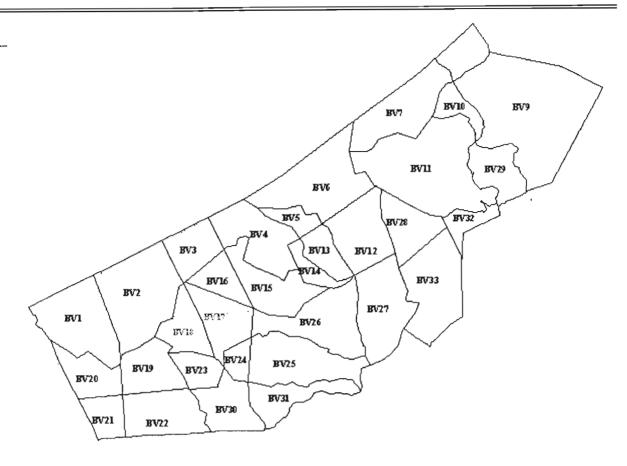


Figure 11 : Configuration des sous bassins versants urbains

1.4.3. Caractéristiques des sous bassins versants

✓ La surface

Le bassin versant étant l'aire de réception des précipitations et d'alimentation des cours d'eau, les débits vont être en partie reliés à sa surface.

La surface du bassin versant peut être mesurée par superposition d'une grille dessinée sur papier transparent, par l'utilisation d'un planimètre ou mieux, par des techniques de digitalisation. Cependant, dans notre cas, nous avons utilisé le logiciel AUTOCAD.

✓ La forme

Le bassin versant étant le lieu de transformation d'une pluie spatialement distribuée en hydrogramme à l'exutoire, sa forme influence l'allure de ce dernier.

Par exemple, une forme allongée favorise, pour une même pluie, les faibles débits de pointe de crue, ceci en raison des temps d'acheminement de l'eau à l'exutoire plus importants. Ce phénomène est lié à la notion de *temps de concentration*.

En revanche, les bassins en forme d'éventail, présentant un temps de concentration plus court, auront les plus forts débits de pointe.

✓ La pente moyenne du bassin versant

La pente moyenne est une caractéristique importante qui renseigne sur la topographie du bassin. Elle est considérée comme une variable indépendante. Elle donne une bonne indication sur le temps de parcours du ruissellement direct - donc sur le temps de concentration t_c - et influence directement le débit de pointe lors d'une averse.

La méthode proposée par Carlier et Leclerc (1964) consiste à calculer la moyenne pondérée des pentes de toutes les surfaces élémentaires comprises entre deux altitudes données. Une valeur approchée de la pente moyenne est alors donnée par la relation suivante :

$$S = \frac{D \cdot \sum L}{A}.$$

Où:

S: pente moyenne [m/km ou $^{0}/_{00}$],

 $\sum L$: longueur totale de courbes de niveau (km),

D : équidistance entre deux courbes de niveau (m),

A: surface du bassin versant (km²).

Cette méthode de calcul donne de bons résultats dans le cas d'un relief modéré et pour des courbes de niveau simples et uniformément espacées. Dans les autres cas, il convient de styliser les courbes de niveau pour que leur longueur totale ait un sens réel vis-à-vis de la pente.

✓ Le temps de concentration

Il se définit comme le maximum de durée nécessaire à une goutte d'eau pour parcourir le chemin hydrologique entre un point du bassin et l'exutoire de ce dernier. Il est composé de trois termes différents:

- t_h: Temps d'humectation. Temps nécessaire à l'imbibition du sol par l'eau qui tombe avant qu'elle ne ruisselle.
- t_r: Temps de ruissellement ou d'écoulement, temps qui correspond à la durée d'écoulement de l'eau à la surface ou dans les premiers horizons de sol jusqu'à un système de collecte (cours d'eau naturel, collecteur).
- t_a: Temps d'acheminement, temps mis par l'eau pour se déplacer dans le système de collecte jusqu'à l'exutoire.

Le temps de concentration t_c est donc égal au maximum des sommes de ces trois termes, soit :

$$t_c = \max\Bigl(\sum \bigl(t_k + t_r + t_a\bigr)\Bigr)$$

Pratiquement, le temps de concentration peut être déduit de mesures sur le terrain ou estimé à l'aide de formules, le plus souvent empiriques comme la formule de Kirpich et celle de Richard.

✓ Coefficient de ruissellement C

Le coefficient de ruissellement est le rapport entre la hauteur d'eau ruisselée et celle précipitée. Il mesure l'importance des pertes à l'écoulement des eaux dans le bassin versant (évaporation, interception par la végétation, infiltration, rétention en surface).

Après soustraction des pertes, la pluie brute (pluie précipitée) devient la pluie nette.

Etant en présence d'une zone urbanisée, nous considérons que le coefficient de ruissellement ne varie pas au cours d'une pluie.

Le tableau 9 ci-dessous donne les valeurs des coefficients de ruissellement pour différents secteurs [3].

Secteur	Coefficient (C)
Secteur commercial	
Centre ville	0.70 à 0.95
banlieue	0.50 à 0.70
Secteur résidentiel	
unifamilial	0.30 à 0.50
Unités multiples, détachés	0.40 à 0.60
Unités multiples en rangée	0.60 à 0.75
Banlieue peu développée	0.10 à 0.25
appartements	0.50 à 0.70
Secteur industriel	
léger	0.50 à 0.80
dense	0.60 à 0.90
Parcs, cimetières, prairies	0.10 à 0.30
Terrains de jeux	0.20 à 0.35
En friche	0.10 à 0.30

Tableau 9 : Coefficient de ruissellement pour différents secteurs

Pour un bassin versant hétérogène :

$$C = \frac{\sum_{i=1}^{n} C_i A_i}{\sum_{i=1}^{n} A_i}$$

BASSIN	Aire(ha)	∑ L(m)	S(%o)	С
1	43,72	5484,85	12,54	0,50
2	54,68	3551,04	6,49	0,74
3	20,10	1639,14	8,16	0,70
4	34,69	5909,88	17,03	0,70
5	8,85	1343,48	15,18	0,70
6	50,89	8296,42	16,30	0,73
7	38,60	5821,79	15,08	0,70
8	14,29	5522,86	38,65	0,70
9	103,38	9610,49	9,30	0,71
10	10,92	2172,14	19,90	0,70
11	79,86	16468,58	20,62	0,60
12	32,22	5153,58	16,00	0,70
13	13,97	3421,57	24,49	0,70
14	9,01	2576,17	28,60	0,70
15	29,54	5722,93	19,37	0,75
16	14,91	1730,29	11,61	0,75
17	25,16	4347,93	17,28	0,80
18	19,46	2234,10	11,48	0,67
19	24,28	5025,33	20,69	0,65
20	20,14	2913,80	14,47	0,65
21	13,90	1502,89	10,81	0,70
22	30,99	3335,02	10,76	0,70
23	12,71	2335,07	18,37	0,70
24	7,96	1212,06	15,22	0,70
25	41,16	10175,29	24,72	0,70
26	41,13	13764,13	33,46	0,70
27	40,20	9251,05	23,01	0,73
28	18,60	3138,89	16,88	0,70
29	21,42	8257,32	38,56	0,70
30	24,13	5192,65	21,52	0,70
31	21,96	7118,81	32,42	0,70
32	13,15	221,97	16,88	0,70
33	82,17	1387,0296	16,88	0,70

Tableau 10 : Caractéristiques des sous bassins versants

1.5. Intensité de la pluie

La méthode superficielle élaborée par Caquot (1949) est utilisée pour le calcul de l'intensité. L'expression de l'intensité, souvent connue sous le nom de loi de Montana, est :

$$i(t,T)=a(T).t^{-b(T)}$$

i(t,T) : intensité maximale moyenne de période de retour T observée sur une durée t.

a(T), b(T): paramètres d'ajustement obtenus à partir des courbes IDF.

Cependant, d'autres formules peuvent être utilisées pour la détermination de l'intensité.

• formule de Talbot : $i = \frac{a}{b+t}$

• Keifferet Chu: $i = \frac{a}{t^b + c}$

1.6. Courbes IDF

Ce sont des courbes traduisant l'évolution de l'intensité moyenne maximale $i_{max}[T,t]$ de la pluie brute en fonction de la durée t et de la période de retour T.

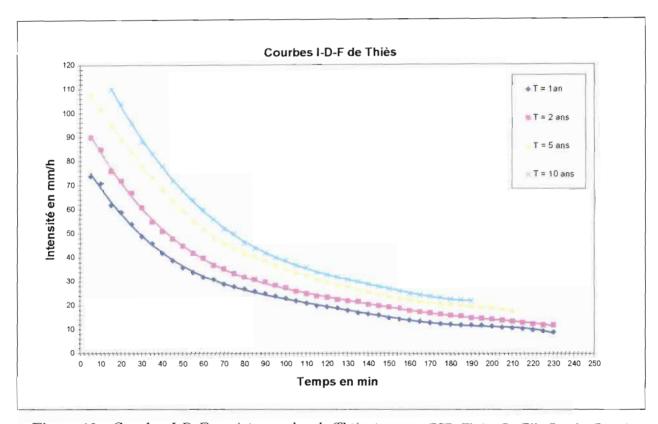


Figure 12 : Courbes I-D-F expérimentales de Thiès (source : ESP_Thiès, Dr Elh. Bamba Diaw)

La figure 10 représente les courbes IDF de Thiès. Les paramètres d'ajustement a et b de la formule de Montana sont obtenus par régression avec la méthode des moindres carrés linéaires discrets.

$$i = a t^{-b} \Rightarrow \log i = \log a - b \log t$$
 (1)

En posant $\log i = Y; \log a = A; \log t = X; b = -B$

L'expression (1) devient : Y = A + B.X

$$A = \frac{\sum X^{2} \cdot \sum Y - \sum X \cdot Y \cdot \sum X}{n \sum X^{2} - (\sum X_{i})^{2}}$$
 $a = 10^{A}$

$$B = \frac{n\sum XY.\sum Y - \sum X.\sum Y}{n\sum X^2 - (\sum X_i)^2}$$
 $b = B$

n : nombre de valeurs prises par la fonction.

L'ajustement à la loi de Montana n'est pas de bonne qualité sur toute plage de durée considérée. La courbe présente un changement de pente aux environs de t=60 min.

Ainsi, nous allons considérer pour l'ajustement deux plages de durée.

Plage 1: $0 < t \le 1$ heure

Plage 2: t > 1heure

La majeure partie (plus de 60%) des pluies enregistrées en zone sahélienne serait constituée de tornades (averses provenant du contact entre la mousson et l'harmattan) [5]. Les tornades sont pratiquement les seules averses que l'on observe au nord de l'isohyète 1000 mm. Or la figure 13 situe Thiès dans cette zone entre les isohyètes 500 et 600 mm.

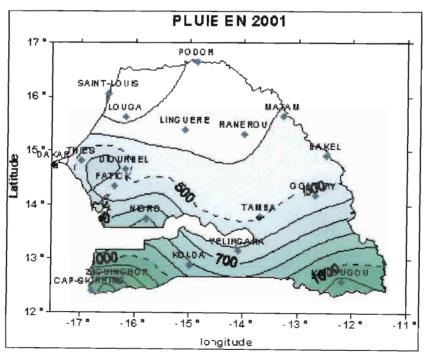


Figure 13 : Courbe isohyètes du Sénégal [6]

La tornade étant caractérisée par une forte intensité et une durée plus ou moins courte, nous considérons pour les calculs la première plage de durée.

1. Pour t<1 heure et T=10 ans, nous avons :

t(min)	i(mm/h)	logt	logi	(logt)^2	logt.logi
15	112	1,176	2,049	1,383	2,410
20	104	1,301	2,017	1,693	2,624
25	96	1,398	1,982	1,954	2,771
30	89	1,477	1,949	2,182	2,879
35	82	1,544	1,914	2,384	2,955
40	77	1,602	1,886	2,567	3,022
45	71	1,653	1,851	2,733	3,061
50	67	1,699	1,826	2,886	3,102
55	62	1,740	1,792	3,029	3,119
60	59	1,778	1,771	3,162	3,149
	Somme	15,369	19,039	23,973	29,093

Tableau 11 : valeurs de calcul pour la régression linéaire

T=10 ans	i(mm/h)	i(mm/min)
а	430,11	7,17
b	0,47	0,47

Tableau 12 : Cæfficients de Montana de Thiès pour $t \le 1h$.

2. Pour t>1 heure et T=10 ans, nous avons après ajustement :

T=10 ans	i (mm/h)	i (mm/min)
а	3430	57
b	0.99	0.99

Tableau 13 : C'afficients de Montana de Thiès pour t 1h.

1.7. DEBIT

. Hit off to

De nombreux modèles de prévision du débit ruisselé existent : les modèles donnant un débit de pointe à l'exutoire (formule rationnelle et méthode de Caquot) et les modèles fournissant un hydrogramme de ruissellement. Nous avons choisi la formule de Caquot exprimée pour le calcul des débits de pointe. Toutefois, nous exposons un résumé sommaire de la méthode rationnelle.

1.7.1. Méthode rationnelle

C'est une méthode qui est encore très utilisée pour les villes africaines. Elle est basée sur une approximation pondérée par les temps de parcours du débit de pointe de l'hydrogramme.

Cette approximation donne l'ordre de grandeur des débits à véhiculer, mais ne peut pas prévoir toutes les situations critiques.

Malgré ses limites, elle permet de calculer sur la base d'hypothèses chaque débit de dimensionnement du réseau de drainage en commençant en tête du bassin versant.

La formule se présente comme suit :

$$Q_P(T) = \frac{1}{360} \cdot C \cdot I(t_c, T) \cdot A$$

 $Q_P(T)$: Débit de pointe en m^3/s observé à l'exutoire ;

C : Coefficient de ruissellement ;

 $I(t_c, T)$: Intensité de l'averse en mm/h

A: Superficie du bassin versant en m^2 .

1.7.2. Modèle de Caquot

La formule de Caquot permet de déterminer explicitement le débit de pointe de période de retour donnée en tout point d'un réseau. Le principe de base du modèle repose sur la conservation des volumes mis en jeu dans le ruissellement durant l'intervalle de temps séparant le début de l'averse et l'instant où l'on observe le débit maximum Q_p à l'exutoire du bassin.

$$Q_p(T) = K \cdot S^u \cdot C^v \cdot A^w$$

$$t_c = \mu \cdot S^c \cdot A^d \cdot Q_p^f$$

 $Q_P(T)$: Débit de pointe en m^3/s ;

S: la pente moyenne du sous bassin selon le plus long chemin hydraulique en %.

C: le coefficient de ruissellement pondéré $C = \frac{\sum_{i} C_{i} A_{i}}{\sum_{i} A_{i}}$

A: Aire du sous bassin en ha

K, u, v, w varie selon la fréquence et la région pluviométrique considérée

$$K = \left[\frac{a \cdot \mu^b}{6(\beta + \delta)}\right]^{\frac{5}{1-b \cdot f}}$$

$$u = \frac{1}{1 - b \cdot f}$$

$$v = \frac{bc}{1 - b \cdot f}$$

$$w = \frac{b \cdot d + 1 - \varepsilon}{1 - b \cdot f}$$

a et b coefficient d'ajustement déjà déterminés.

Ajustement des paramètres pour l'Afrique tropicale subsaharienne [5]

- √ δ+β=1.4 : β et δ sont des paramètres représentant respectivement les effets de stockage et
 d'écrêtements.
- ✓ $\varepsilon = 0.05$: Coefficient d'ajustement statistique.
- \checkmark μ =0.34 : Coefficient d'ajustement fonction de la forme du bassin versant.
- \checkmark f = -0.287, c=-0.41 et d=0.51 [Desbordes 1974]

On en déduit :

$$K = 1.496$$

 $u=0.223$
 $v=1.156$
 $w=0.821$

Finalement on a:

$$Q_p = 1.496 \cdot S^{0.223} \cdot C^{1.156} \cdot A^{0.821}$$

1.8. Conception du réseau d'évacuation des eaux pluviales

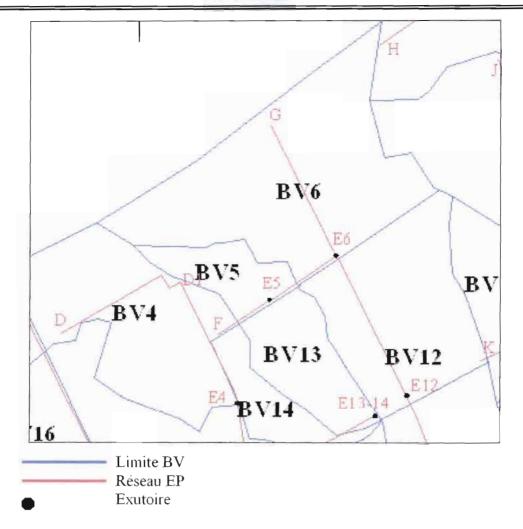
L'accroissement des débits de pointe d'eau pluviale généré par le développement de la construction, l'exode rural, la concentration urbaine, les nouvelles activités, l'urbanisation, l'étanchéisation des villes et l'éloignement de l'urbanisation par rapport au milieu naturel pose des problèmes techniques et économiques difficiles à surmonter. La conception d'un réseau d'évacuation des eaux usées commande la satisfaction de deux conditionnalités : la fonctionnalité au meilleur coût et la facilité d'entretien.

La fonctionnalité d'un réseau s'apprécie par l'absence de flaques d'eau, de zones d'inondation ainsi que la minimisation des dommages après une averse.

Quant à sa facilité d'entretien, elle impose le respect des conditions d'autocurage et l'existence d'un dispositif de visite et d'inspection approprié. La conjonction de toutes ces fonctions pour un coût optimal exige du concepteur l'adoption de techniques et l'implantation d'ouvrages de régulation pour différer voire supprimer la pointe des débits d'eau pluviale.

En outre, des dispositions pratiques sont à imposer particulièrement en ce qui concerne le tracé du profil en long des canaux primaires. Ce tracé est élaboré en tenant compte de la capacité desdits canaux, de la nature et de la topographie des terrains susceptibles d'être rencontrés et des hydrogrammes qu'elles génèrent sur leur partie aval.

Dans l'objectif d'accroître la probabilité de disposer d'un réseau à fonctionnement gravitaire respectant les conditions d'autocurage, la pente minimale est fixée à 0.2 % et la vitesse minimale à 0.6 m/s. Dans les collecteurs où la vitesse dépasse 4 m/s, nous prévoyons des décrochements de radier pour diminuer cette vitesse.


Pour capter les eaux de ruissellement des chaussées, il sera disposé tout au long de ces dernières à intervalle de 100 m, des grilles avaloirs de 40 cm x 40 cm.

1.9. Dimensionnement des canaux d'évacuation des eaux pluviales

Le dimensionnement est l'étape par laquelle les caractéristiques d'un réseau sont déterminées. Il obéit à des normes et des critères avec un soubassement fondé sur des hypothèses, des constats et des observations.

1.9.1. Démarche de calcul

Nous allons présenter un modèle de calcul sur une partie du réseau représentée par les tronçons F-E6, G-E6 et E6-E12. Les bassins BV5 et BV6 sont en parallèles et en série avec le bassin BV12.

Figure 14 : Illustration des tronçons F-E6, G-E6 et E6-E12

✓ Détermination des débits

Bassin BV5

A5 = 8.85 ha

C5 = 0.70

S = 0.0152

$$Q_p = 1.496 \times 0.0152^{0.223} \times 0.7^{1.156} \times 8.85^{0.821} = 2.33 m^3 / s$$

 $Q_p = 2.332 \text{ m}3/\text{s}$

Bassin BV6

A6 = 50.86 ha

C6 = 0.73

S = 0.0163

$$Q_p = 1.496 \times 0.0163^{0.223} \times 0.73^{1.156} \times 50.86^{0.821} = 10.457 m^3 / s$$

 $Q_p = 10.457 \text{ m}^3/\text{s}$

Bassins en parallèle BV5 et BV6

Aeq₁ = A5 + A6 = 59.71 ha
$$Seq_1 = \frac{S5 \times A5 + S6 \times A6}{A5 + A6} = 0.01614$$

$$Ceq_1 = \frac{C5 \times A5 + C6 \times A6}{A5 + A6} = 0.725$$

$$Q_p = 1.496 \times 0.01614^{0.223} \times 0.725^{1.156} \times 59.71^{0.821} = 11.80m^3 / s$$

$$Q_p = 11.80 \text{ m3/s}$$

Bassins en série (BV5 // BV6) et BV12

Aeq₂ = Aeq₁ + A12 = 91.93 ha

$$Seq_2 = \frac{Seq_1 \times Aeq_1 + S12 \times A12}{Aeq_1 + A12} = 0.01609$$

$$Ceq_2 = \frac{Ceq_1 \times Aeq_1 + C12 \times A12}{Aeq_1 + A12} = 0.72$$

$$Q_p = 1.496 \times 0.01609^{-0.223} \times 0.72^{-1.156} \times 91.93^{-0.821} = 16.57 \, \text{m}^{-3} / \text{s}$$

$$Q_p = 16.57 \, \text{m}^{-3} / \text{s}$$

✓ Détermination des sections des caniveaux

Nous allons choisir des sections rectangulaires et économiques (hydrauliquement favorable).

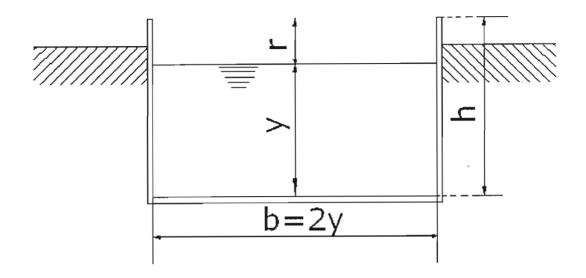


Figure 15: Section canal

- tirant d'eau y selon la formule de Manning :

$$y = \left[\frac{Q_p}{2^{1/3} \cdot K_s \cdot I^{1/2}} \right]^{3/8}$$

 K_s : coefficient de Mannig-Strickler = $\frac{1}{n} = \frac{1}{0.014} = 71.43$ (n = 0.014 valeur utilisée pour les canaux en bon état et revêtus de béton selon R. E. HORTON 1916).

I : pente du canal (pente proche du terrain naturel).

- la largeur b du canal

$$b = 2y$$

- la profondeur h du canal en m

$$h = y + r$$

r est la revanche en m. C'est la distance verticale entre la surface libre et la côte supérieure du canal (voir figure 15). Elle est déterminée par la formule de Lancey :

$$r = 0.2 + 0.15 \cdot Q^{1/3}$$

Q est le débit en m³/s

- la vitesse U

$$U = K_{s} \cdot R_{H}^{2/3} \cdot I^{1/2} = K_{s} \cdot \left[\frac{y}{2}\right]^{2/3} \cdot I^{1/2}$$

 R_H = rayon hydraulique en m

Tronçon F-E6

$$Q_{P} = 2.332 \text{ m}^{3}/\text{s}$$

$$y = \left[\frac{2.332}{2^{1/3} \cdot 71.43 \cdot 0.002^{1/2}}\right]^{3/8} = 0.81 \text{ m}$$

$$b = 2 \cdot y = 2 \times 0.81 = 1.62 \text{ m}$$

$$r = 0.2 + 0.15 \cdot 2.332^{1/3} = 0.4$$

$$h = 0.81 + 0.40 = 1.21 \text{ m}$$

$$U = 71.43 \cdot \left[\frac{0.81}{2}\right]^{2/3} \cdot 0.002^{-1/2} = 1.76 \text{ m/s}$$

• Tronçon E6-E12

$$Q_{P} = 16.68 \text{ m}^{3}/\text{s}$$

$$y = \left[\frac{16.68}{2^{1/3} \cdot 71.43} \cdot 0.008^{1/2}\right]^{3/8} = 1.31 \text{ m}$$

$$b = 2 \cdot y = 2 \times 1.31 = 2.62 \text{ m}$$

$$r = 0.2 + 0.15 \cdot 16.68^{1/3} = 0.58$$

$$h = 1.31 + 0.58 = 1.89 \text{ m}$$

$$U = 71.43 \cdot \left[\frac{1.31}{2}\right]^{2/3} \cdot 0.008^{-1/2} = 4.8 \text{ m} / \text{s}$$

Les résultats de calcul sont consignés dans le tableau 14.

Tronçon	Bassins	Pente S(%0)	Coef (C)	Aire(ha)	Q (m3/s)	I(m/m)	y (m)	Prof.(m)	Larg.(m)	Vitesse (m/s)
A-E1	BV1	12,54	0,50	43,72	5,62	0,005	0,95	1,42	1,91	3,08
A1-E1	BV1	12,54	0,50	43,72	5,62	0,006	0,92	1,39	1,85	3,30
E1-A2	BV1	12,54	0,50	43,72	5,62	0,002	1,13	1,60	2,27	2,19
A2-P	BV1	12,54	0,50	43,72	5,62	0.005	0,95	1,42	1,91	3,08
P1-P	BV20	14,47	0,65	20,14	4,16	0,006	0,82	1,27	1,65	3,06
P-Q	BV1-BV20	13,15	0,55	63,86	8,61	0,005	1,12	1,63	.2,24	3,43
Q1-Q	BV21	10,81	0,70	13,90	3,13	0,002	0,91	1,33	1,82	1,89
S-E22	BV22	10,76	0,70	30,99	6,04	0,002	1,16	1,64	2,33	2,23
B-E2	BV2	6,49	0,74	54,68	9,18	0,003	1,26	1,78	2,52	2,88
E2-E18	BV2-BV18	7,80	0,72	74,15	11,92	0,002	1,50	2,05	3,01	2,64
E18-E23	BV2-BV18	7,80	0,72	74,15	11,92	0,002	1,50	2,05	3,01	2,64
O-E18	BV18	11,48	0,67	19,46	3,98	0,002	1,00	1,43	1,99	2,01
R-E19	BV19	20,69	0,65	24,28	5,25	0,002	1,11	1,57	2,21	2,15
E19-E23	BV19-BV23	14,42	0,79	37,00	8,57	0,002	1,33	1,83	2,66	2,43
E23-E30	BV2-BV18-BV23-BV19-BV30	10,86	0,74	135,27	21,64	0,004	1,65	2,27	3,30	3,97
C-E3	BV3	8,16	0,70	20,10	3,98	0,010	0,74	1,17	1,47	3,67
E3-E16	BV3-BV16	9,63	0,72	35,00	6,74	0,006	0,99	1,47	1,98	3,46
E16-E17	BV3-BV16-BV17	12,83	0,75	60,17	11,81	0,006	1,22	1,76	2,44	3,98
E17-E24	BV3-BV16-BV17-BV24	10,88	0,83	68,13	14,01	0,004	1,40	1,96	2,80	3,56
E24-E31	BV3-BV16-BV17-BV24-BV30	21,35	0,88	92,26	22,53	0,004	1,68	2,30	3,35	4,01
D-D1	BV4	17,03	0,70	34,69	7,35	0,008	0,97	1,46	1,93	3,93
D1-E4	BV5	17,03	0,70	34,69	7,35	0,008	0,97	1,46	1,93	3,93
E4-E15	BV4	17,03	0,70	34,69	7,35	0,008	0,97	1,46	1,93	3,93
M-E15	BV15	19,37	0,75	29,54	7,17	0,002	1,24	1,73	2,48	2,33
T-W	BV26	33,46	0,70	41,13	9,82	0,002	1,40	1.92	2,79	2,52
E15-W	BV4-BV15-BV26	11,11	0,82	105,37	20.09	0,004	1,60	2,21	3,21	3,90
W-E26	BV4-BV15-BV26	11,11	0,82	105,37	20,09	0,004	1,60	2,21	3,21	3,90
(E13-14)-E2	BV13-BV14	26,10	0,70	22,98	5,76	0,002	1,14	1,61	2,29	2,20
E26-C2	BV4-BV13-BV14-BV15-BV26	19,54	0,72	128,35	22,86	0,003	1,78	2,40	3,56	3,62
		,2	-,	120,00	0,00	0,002	0,00	0,20	3,50	3,02
U-C5	BV25	24,72	0,70	41,16	9,18	0,002	1,36	1,88	2,73	2,47
G-E6	BV6	16,30	0,73	50,89	10,46	0,008	1,10	1,63	2.21	4.20
F-E6	BV5	15,18	0,70	8,85	2,33	0.002	0,81	1,03	2,21	4,30
E6-E12	BV5-BV6-BV12	16,09	0,72	91,96	16,68	0,002	1,31	1,21	1,63	1,76
E12-E27	BV5-BV6-BV12-BV27	18,20	0,72	132,16	23,20	0,007	1,53	2,15	2,63 3,05	4,83
E27-C3	BV5-BV6-BV12-BV27	18,20	0,72	132,16	23,20	0,007	1,53	2,15	3,05	4,99
		10,20	0,72	132,10	25,20	0,007	1,55	0,20	3,03	4,99
H-E7-8	BV7	15,08	0,70	38,60	7,80	0,002	1,28	1,78	2,56	2.37
J-E11	BV11	20,62	0,60	79,86	12,72	0,002	1,16	1,71	2,32	4,72
E11-E28	BV28-BV11	19,91	0,62	98,46	15,53	0,009	1,25	1,83	2,50	4,72
K-E28	BV28	16,88	0,70	18,60	4,39	0,009	1,03	1,48	2,30	2,06
E28-E33	BV11-BV28-BV33	18,53	0,66	180,63	26,90	0,002	2,04	2,69	4,08	3,24
L-E32	BV32	16,88	0,70	13,15	3,31	0.000	0.00	,,,,		
		10,00	0,70	13,13	3,31	0,002	0,93	0,20	1,86	1,92
I-E9	BV9	9,30	0,71	103,38	15,99	0,002	1,68	2,26	3,35	2,84

Tableau 14 : Récapitulatif des calculs des canaux

Tronçon	Distances	Distances	Côte TN	(y) canal	pente canal		adier(m)
A1-Q	partielles(m)	Cumulées(m)	m	m		amont	aval
A1			72,32				71,77
	173,91	173,91		1,07	0,006		
E1			71,8			70,72	70,72
	176,93	350,84		1,28	0,002		
A2			72	_		70,37	70,37
	506,3	857,14		1,10	0,005		
Р			69			67,84	67,84
	351,61	1208,75		1,27	0,005		
Q			67,35			66,08	
7	Di-4	Distance	Oât- TN	(4)		Cât- D	a di a z (ma)
Tronçon	Distances	Distances	Côte TN	(y) canal	pente canal		adier(m)
B1-E30	partielles(m)	Cumulées(m)		m		amont	aval
B1	2112	-	70,8		0.000		69,39
	214,36	214,36	70 11	1,41	0,003	00.75	00.75
E2			70,44			68,75	68,75
	528,1	742,46		1,65	0,003		
E18			69,29			67,16	67,16
	672,07	1414,53		1,65	0,003		
E23			67			65,15	63,15
	363,8	1778,33		1,80	0,004		
E30			62,5			61,69	
Tronçon	Distances	Distances	Côte TN	(y) canal	pente canal	Côte R	adier(m)
C-E31	partielles(m)	Cumulées(m)	m	m	ponto ouna	amont	aval
C	particular		69,9			amone	69,00
	101,91	101,91		0,89	0,01		00,00
E3	101,01	101,01	68,8	0,00	0,01	67,98	67,74
	796,6	898,51		1,14	0,006	07,00	01,14
E16	700,0	000,01	65,6	1,14	0,000	62,96	62,96
	150,72	1049,23	00,0	1,37	0,006	02,30	02,30
E17	100,12	1043,20	62,7	1,51	0,000	62,06	62,06
	289,56	1338,79	02,1	1,55	0,004	02,00	02,00
E24	203,30	1330,78	65,5	1,55	0,004	60.00	60.00
<u> </u>	629,45	1968,24	00,0	1 02	0.004	60,90	60,90
E31	023,40	1900,24	50.05	1,83	0,004	50.00	
LJI			59,95			58,38	
Troppen	Distance	D: 4	001 711				

Tronçon	Distances	Distances	Côte TN	(y) canal	pente canal	Côte R	adier(m)
D-C2	partielles(m)	Cumulées(m)	m	m		amont	aval
D			70,33				69,21
	532,38	532,38		1,12	0,008		
D1			67,7			64,95	63,95
	493,24	1025,62		1,12	0,008		
E4			61,81			60,01	59,01
	317,51	1343,13		1,12	0,008		
E15			58,5			56,47	55,47
	210,09	1553,22		1,75	0,004		
W			56,5			54,63	53,63
	435,94	1989,16		1,75	0,004		
E26		E	51,5			51,88	51,38
	333,89	2323,05		1,93	0,003		
C2	====1		50,4			50,38	

Tronçon	Distances	Distances	Côte TN	(y) canal	pente canal	Côte R	adier(m)
G-C3	partielles(m)	Cumulées(m)	m	m		amont	aval
G			68,15				64,09
	528,85	528,85		1,25	0,008		
E6			62,5			59,86	59,86
	564,89	1093,74		1,46	0,008		
E12			58,92			55,34	55,09
	613,9	1707,64		1,68	0,007		
E27			55			50,79	50,29
	439,2	2146,84		1,68	0,007		
C3			48			47,22	

Tronçon	Distances	Distances	Côte TN	(y) canal	pente canal	Côte R	adier(m)
J-E33	partielles(m)	Cumulées(m)	m	m		amont	aval
J			66,3				62,48
	829,86	829,86		1,31	0,009		
E11			58,8			55,01	54,01
	139,38	969,24		1,40	0,009		
E28			54,2			52,76	52,26
	322,43	1291,67		2,19	0,002		
E33			53,8			51,61	

Tableau 15 : Tableau des profils en long des canaux principaux

CONCLUSIONS ET RECOMMANDATIONS

Cette présente étude qui se veut exhaustive embrasse l'ensemble des disciplines intimement liées qui composent l'hydraulique urbaine : l'alimentation en eau potable, l'évacuation des eaux usées et l'évacuation des eaux pluviales.

L'alimentation en eau potable a revêtu une importance toute particulière eu égard à la place prépondérante qu'elle occupe dans ce projet. Son étude obéit à une démarche consistant à la recherche, à l'analyse et à l'exploitation des données; à la détermination des paramètres de calcul et à l'usage du logiciel EPANET pour le dimensionnement et la modélisation du réseau après sa conception. Les résultats obtenus ont dans leur grande majorité donné des satisfactions par rapport aux exigences de fonctionnalité notamment vis-à-vis de la vitesse dans les conduites et de la pression aux nœuds.

En effet, les pressions sont partout supérieures à 15m de colonne d'eau alors que plus de 75% des vitesses restent supérieures à 0.5 m/s pendant la pointe pour des diamètres compris entre 350mm et 63mm exceptées la conduite d'adduction dont le diamètre est de 500mm et la conduite de refoulement évaluée par la formule de Bress à 700 mm.

Ces résultats sont rendus possibles par l'implantation, outre du réservoir de tête, de deux réservoirs d'équilibre en bout de réseau particulièrement au niveau des nœuds où la pression en heure de pointe est la plus défavorable (inférieure à 10mce).

Ces réservoirs d'équilibre sont adduits directement par le réseau pendant les heures de faibles consommations (fortes pressions) alors que le réservoir de tête est alimenté par refoulement à partir de la bâche.

L'un des paramètres de dimensionnement du réseau d'AEP est la consommation moyenne journalière. Cette valeur est fondamentale pour le dimensionnement du réseau d'évacuation des eaux usées pour lequel le débit de rejet est estimé à 80%.

Ce réseau, après conception puis dimensionnement avec le logiciel Mensura, où la formule de Manning-Strickler est retenue, présente des résultats satisfaisant les conditions d'autocurage et de pentes moyennes. Dans ce réseau à écoulement gravitaire, les diamètres varient de 250 à 400 mm.

Le dimensionnement du réseau d'évacuation des eaux pluviales a nécessité des études topographiques et hydrologiques aboutissant à la délimitation des bassins versants et la détermination des débits correspondants. En effet, la détermination des paramètres de Montana à partir des courbes IDF a permis l'élaboration de la formule de Caquot pour la ville de Thiès.

La formule utilisée pour le calcul des dimensions des canaux est celle de Manning avec l'hypothèse d'une section rectangulaire et hydrauliquement favorable. Ceci donne des canaux de profondeur comprises entre 1 et 3 m environ et, de largeurs allant jusqu'à 4 m pour des vitesses supérieures à 0.6 m/s.

Pour un fonctionnement optimal du réseau, nous recommandons :

- De refroidir la pompe entre 13 heures et 15 heures, correspondant aux heures de fortes chaleurs
- De disposer d'une pompe de réserve et d'un groupe en normal secours.
- De positionner dans la mesure du possible la conduite d'AEP au dessus de celle d'évacuation aux intersections de ces dernières en respectant des écartements minimaux de 30 cm aussi bien dans le sens vertical que horizontal. Au cas échéant, éviter de positionner les joints de la conduite d'AEP en dessous de l'axe de celle des eaux usées et prévoir une plaque de protection étanche entre les deux. (figure 1, annexe 1)
- Chercher à améliorer la formule de Caquot en trouvant des paramètres d'ajustement beaucoup plus adaptés pour le Sénégal.
- Procéder à l'automatisation du remplissage et de la vidange des réservoirs.
- D'augmenter la capacité des réservoirs d'équilibre (en augmentant le rayon) pour assurer une desserte continue en cas de disfonctionnement au niveau du dispositif de tête.

Il convient de signaler que l'étude financière n'a pas été abordée dans ce document. Aussi, seraitil intéressant de procéder à une évaluation économique des différentes solutions proposées avant de prendre une décision définitive.

REFERENCES BIBLIOGRAPHIQUES

- [1] http://hydram-epfl.ch/e-drologie
- [2] BA, P. D. Dynamique urbaine et dysfonctionnement des réseaux d'assainissement dans la ville de Thiès, mémoire de maîtrise, UGB 2003, 123p.
- [3] LABONTE, R., PATRY, G. Distribution et collecte des eaux en milieu urbain, 2ème Edition, EPM 1983, 349p.
- [4] KASSE, M. Assainissement : les grands chantiers de Thiès lancés aujourd'hui, Quotidien le Soleil, 8 Avril 2005.
- [5] MOREL A, L'HUISSIER A. L'Assainissement des Eaux Pluviales en Milieu Urbain Tropical Subsaharien, 1996, 167p.
- [6] http://www.gouv.sn/meteo/precipitations
- [7] BET-PRESTIGE-BAU. Plan d'urbanisation de détails (PUD) de nord Nguinth à Thiès Rapport de présentation, novembre 2004, 16 p.
- [8] GOMELA, C., GUERREE, H. La distribution d'eau dans les agglomérations urbaines et rurales, Editions EYROLLES, 1974, 287p.
- [9] KOCH, P. L'Alimentation en eau des agglomérations, 2^{ième} édition, DUNOD paris, 1969.
- [10] SATIN, M., SELMI, B. Guide Technique de l'Assainissement; Editions Le Moniteur 1999, 680p.
- [11] FOUQUET, P., COSTE, C. Association Amicale des Ingénieurs Anciens Elèves de l'Ecole Nationale des Ponts et Chaussées, Evacuation des Eaux Pluviales Urbaines, Octobre 1978, 166p.
- [12] CAMARA, O., DIABY, M. Projet de fin d'études : Etude diagnostique et mise en place d'un système d'informations géographiques pour le réseau d'assainissement de la ville de Louga, 2004, 95p.
- [13] GAYE, C. M., MBAYE, M. Projet de fin d'études: Conception d'un réseau d'assainissement pour la ville de Touba, 2003, 139p.
- [14] DIAW, El. H. B. Notes de Cours d'hydraulique générale, Ecole Supérieure Polytechnique Thiès, 2002.
- [15] SARR, A. Notes de Cours d'hydrologie, Ecole Supérieure Polytechnique Thiès, 2004.
- [16] SARR, A. Notes de cours d'écoulement à surface libre, Ecole Supérieure Polytechnique Thiès, 2004.

- [17] TAMBA, S. Notes de Cours de machines hydrauliques, Ecole Supérieure Polytechnique Thiès, 2005.
- [18] TAMBA, S. Notes de Cours d'hydraulique urbaine, Ecole Supérieure Polytechnique Thiès, 2002.
- [19] NDOYE, Seyni. Notes de Cours d'hydraulique urbaine, Ecole Supérieure Polytechnique Thiès, 2005.
- [20] VALIRON, F. Gestion des eaux : Alimentation en eau assainissement, Cours de l'Ecole Nationale des Ponts et Chaussées, 1989, 505p.
- [21] OKUN, D. A., PONGHIS, G. Collecte et évacuation des eaux usées des collectivités, Organisation Mondiale de la Santé, 1976, 315p.
- [22] Tecsult International. Projet du lac Artificiel de Thiès, 2003.
- [23] CRAENENBROECK, W. V. L'unité dans la diversité, La Bruxelloise des châteaux d'eau, 1991,191p.

ANNEXES

ANNEXE 1:

- Plan d'ensemble du réseau AEP
- o Tableau 1 : Consommation dans les mailles du réseau
- o Tableau 2 : Répartition de la Consommation aux nœuds
- o Tableau 3 : Etat des nœuds du réseau à 6 : 00 heures
- o Tableau 4 : Etat des arcs du réseau à 6 : 00 heures
- o Figure 1 : Position relative des conduites EU et AEP
- o Figure 2: Evolution de la pression pour le nœud 127
- o Figure 3: Evolution de la vitesse pour l'arc 40
- o Figure 4 : Evolution du niveau d'eau aux réservoirs d'équilibre

Tableau 1 : Consommations dans les mailles du réseau

Maille	Superficie(ha)	Nbre nœuds	Composition	Superficie(ha)	Cons. (1/j)	Cons. (1/s)	Cons. Totale	Répartition		
	à desservir	à répartir					(l/s)	par nœud (l/s)		
			Espace vert	13,00	65 000,00	0,75				
			Centre culturel	1,60	1 030,00	0,01				
		1	EP + Case	0,70	3 160,00	0,04				
1	50,01	6	Poste de sante	0,76	4 330,00	0,05	6 17	1.020		
•	50,01	ľ	Centre artisanal	1,47 73 500,00 0,85		0,85	0,17	1,028		
			Marché	2,93	58 170,00	0,67	(1/s) par nœt 6,17 1,0 0,01 0,0 1,21 0,3 1,39 0,3 1,24 0,3 0,68 0,1 2,20 0,5			
		1	Centre commercial	2,79	60 000,00	0,69				
			Habitations	26,76	267 600,00	3,10				
			Chapelle	1,00	130,00	0,00				
2	12,55	5	Terrain sport	3,02	142 000,00	1,64	0.01	0.002		
2	12,55	3	Habitations	8,33	83 300,00	0,96	0,01	0,002		
			Espace jeune	0,20	800,00	0,01				
	3 11,74		FF+CSO	0,40	1 830,00	0,02				
3		4	EP + Case	1,40	3 160,00	0,04	1,21	0,302		
_			Habitations	9,94	99 400,00	1,15				
			EP + Case	1,50	3 160,00	0,04				
4	12.71	1971 1 4 6	4	4	RA	0,17	510,00	0,01	1.20	0.240
4	12,/1		E Vert	0,16	8 000,00	0,09	1,39	0,349		
			Habitations	10,88	108 800,00	1,26		1		
			Chapelle	0,75	130,00	0,00				
5	12,67		EP + Case	1,40	3 160,00	0,04	1.04	0.210		
3	12,67	4	RA	0,17	510,00	0,01	1,24	0,310		
			Habitations	10,35	103 500,00	1,20		1		
6	0	4	Administration	3,00	9 000,00	0,10	0.60	<u> </u>		
6	8	4	Habitations	5,00	50 000,00	0,58	0,68	0,171		
			Prison	2,00	100 000,00	1,16				
7	12	1	EP + Case	1,20	3 160,00	0,04	2.20	0.551		
,	7 12	4	Habitations	8,65	86 500,00	1,00	2,20	0,551		
			Espace vert	0,15	750,00	0,01				
			EP + Case	1,25	3 160,00	0,04		,		
8	7,5		Habitations	6,14	61 400,00	9,71	0,75	0,188		
	,,,,		Espace vert	0,11	5.50,00	0,01		0,100		

Maille	Superficie(ha) à desservir	Nbre nœuds à répartir	Composition	Superficie(ha)	Cons. (1/j)	Cons. (l/s)	Cons. Totale (l/s)	Répartition par nœud (l/s)
			Habitations	7,96	79 600,00	0,92		par nætid (1/s)
9	8,1	4	Espace vert	0,14	700,00	0,01	0,93	0,232
	<u>"</u>		Administration	0,46	1 380,00	0,02		
10	7,5	5	Habitations	6,69	66 900,00	0,77	0,79	0,158
	,		Chapelle	0,35	130,00	0,00	,,,,,,	
			Poste de santé	0,50	4 330,00	0,05		
11	6,4	5	Habitations	5,00	50 000,00	0,58	0,63	0,126
			Centre Culturel	0,50	1 030,00	0,01		
10	7.11	_	Centre social	0,22	1 030,00	0,01	0.76	0.100
12	7,11	4	Habitations	6,28	62 800,00	0,73	0,76	0,189
			Espace vert	0,11	550,00	0,01		
			EP + Case	1,25	3 160,00	0,04		
13	3 6,38	4	Habitations	4,98	49 800,00	0,58	0,62	0,155
			Espace vert	0,15	750,00	0,01		1
14	0,62	4	Espace vert	0,62	3 100,00	0,04	0,04	0,009
			Administration	0,20 600,00	0,01			
		5	Station	0,33	20 000,00	0,23		
15	13,81		Centre culturel	0,50	1 030,00	0,01	1,72	0,344
			Espace vert	0,17	850,00	0,01		ĺ
			Habitations	12,61	126 100,00	1,46		
			Administration	0,20	600,00	0,01		
16	14,05	4	Marché	3,32	58 170,00	0,67	1,88	0,471
10	14,03	4	Espace vert	0,25	1 250,00	0,01	1,00	0,471
			Habitations	10,28	102 800,00	1,19	_	
			Centre Commercial	3,30	58 170,00	0,67		
17	12,02	4	Mosquée	1,60	130,00	0,00	1,48	0,371
1 /	12,02	7	Habitations	6,85	68 500,00	0,79	1,40	0,371
			Espace vert	0,27	1 350,00	0,02		
			Centre Social	0,19	1 030,00	0,01		
18	10,32	4	Foyer Femme	0,19	800,00	0,01	1,16	0,290
10	10,32	7	Habitations	9,74	97 400,00	1,13	1,10	0,290
			Espace vert	0,20	1 000,00	0,01		

Alimentation en eau potable et évacuation des eaux usées et pluviales de la Zac de Nguinth / Thiès

Maille	Superficie(ha)	Nbre nœuds	Composition	Superficie(ha)	Cons. (1/j)	Cons. (l/s)	Cons. Totale	Répartition
	à desservir	à répartir					(l/s)	par nœud (l/s)
19	7,125	4	Lycée	7,00	58 170,00	0,67	0,68	0,170
	7,125	<u>'</u>	Espace vert	0,13	625,00	0,01	0,08	0,170
			Espace jeunes	0,33	800,00	0,01		
20	9,47	4	Terrains de sports	3,35	142 000,00	1,64	2,30	0,575
20	2,47	7	Habitations	5,41	54 100,00	0,63	2,30	0,575
			Espace vert	0,38	1 900,00	0,02		
21	5,18	5	Habitations	5,18	51 800,00	0,60	0,60	0,120
			EP + Case	0,91	3 160,00	0,04		
22	7,5	5	CEM	2,65	1 830,00	0,02	0,46	0,093
			Habitations	3,50	35 000,00	0,41		
			Administration	0,23	690,00	0,01		
23	7.10		Mosquée	2,00	130,00	0,00	0.57	
23	23 7,19	4	Habitations	4,80	48 000,00	0,56	0,57	0,144
		Espace vert	0,16	800,00	0,01			
		Foyer Femme	0,23	800,00	0,01			
24	24 7,42	4	Habitations	7,00	70 000,00	0,81	0,83	0,208
			Espace vert	0,19	950,00	0,01	,	
			Centre de santé	3,70	4 330,00	0,05		
25	15.0	_	Espace Vert	0,32	1 600,00	0,02	1.26	0.241
25	15,9	4	EP + Case	1,00	3 160,00	0,04	1,36	0,341
			Habitations	10,88	108 800,00	1,26		
			CEM	2,74	1 830,00	0,02		
26	25.11		Mosquée	1,00	130,00	0,00	1.05	
26	25,11	5	Réserve admin	15,37	46 110,00	0,53	1,25	0,250
			Habitations	6,00	60 000,00	0,69		
22	11.06		Réserve admin	11,50	34 500,00	0,40		
27	11,96	4	Habitations	0,46	4 600,00	0,05	0,45	0,113
			E vert	1,00	5 000,00	0,06		
28	28 43	7	habitation	42,00	420 000,00	4,86	4,92	0,703
						0,00	- ,	0,703
	354		Poste de santé	0,53	4 330,00	0,05	_	0,223
29	7,63	4 C	CEM	2,33	1 600,00	0,02	0,89	
	,		Habitations	7,10	71 000,00	0,32	-,	

Maille	Superficie(ha)	Nbre nœuds	Composition	Superficie(ha)	Cons. (l/j)	Cons. (l/s)	Cons. Totale	Répartition
	à desservir	à répartir					(1/s)	par nœud (l/s)
30	13,5	4	Stade	7,00	177 500,00	2,05	2,81	0,702
30	13,3	4	Habitations	6,50	65 000,00	0,75	2,61	0,702
			Administration	0,55	1 650,00	0,02		
	,		Station	0,51	20 000,00	0,23		
31	23,8	6	Centre paroissal	2,27	130,00	0,00	2,59	0,431
			Habitations	19,85	198 500,00	2,30		1
			Espace vert	0,62	3 100,00	0,04		
32	29,41	5	Artisanat-Industrie	29,41	1 764 600,00	20,42		
22		7	Marché ·	2,50	58 170,00	0,67	2,37	0,338
33	33		Habitations	14,63	146 300,00	1,69	2,37	0,338
			Ecole Primaire + Case	1,30	3 160,00	0,04		
34		5	Centre Commercial	1,60	58 170,00	0,67	2,12	0,423
	_		Habitations	12,15	121 500,00	1,41		
35	19,5	5	Artis-industrie PME-PMI	19,50	975 000,00	11,28	11,28	2,257
2.6	36 47 8	0	Artis-industrie	21,00	1 050 000,00	12,15	14,56	1,820
36		8	Zone à restructurer	26,00	208 000,00	2,41	14,50	1,820
37	3,83	4	activités tertiaire	3,83	11 490,00	0,13	0,13	0,033
2.0	2.20	4	centre commercial	1,38	99 400,00	1,15	1,27	0,317
38	2,38	4	habitation	1,00	10 000,00	0,12	1,27	0,517
			mosquée	1,00	130,00	0,00		
39	21.2	7	village artisanal	3,00	4 330,00	0,05	2,25	0,322
39	21,2	/	Station	0,20	20 000,00	0,23	2,23	0,322
			habitation	17,00	170 000,00	1,97		
40	10,22	4	Réserve admin	10,22	30 660,00	0,35	0,35	0,089
41	9,5	4	habitation	9,50	95 000,00	1,10	1,10	0,275
			E vert	1,01	5 050,00	0,06	_	
			cimetière	2,87	150,00	0,00		
42	21,58	7	marché	4,18	58 170,00	0,67	2,15	0,306
			mosquée	1,40	800,00	0,01		
			habitation	12,12	121 200,00	1,40		
			Espace jeunes	0,16	800,00	0,01		
			Ecole Primaire	0,78	2 780,00	0,03		
43	63,465	5	Habitations	58,76	587 600,00	6,80	8,49	1,697
			Sports	3,74	142 000,00	1,64		
			Eglise	0,03	130,00	0,00		

Maille	Superficie(ha)	Nbre nœuds	Composition	Superficie(ha)	Cons. (l/j)	Cons. (l/s)	Cons. Totale	Répartition
	à desservir	à répartir				1	(l/s)	par nœud (l/s)
			Sapeurs pompiers	4,42	156 000,00	1,81		
44	11,22	4	Gendarmerie	2,66	920 500,00	10,65	14,13	3,532
			zone socio-culturelle	4,14	2 060,00	0,02		
45	2,55	3	Espace vert	2,55	12 750,00	0,15	0,15	0,049
46	9,5	4	Habitations	9,50	95 000,00	1,10	1,10	0,275
			pp	0,22	12 750,00	0,15		
47	9,01	5	cimetière	0,60	3 000,00	0,03	1,13	0,226
			habitation	8,19	81 900,00	0,95		
48	10,16	5	Habitations	10,16	101 600,00	1,18	1,18	0,235
49	7,15	5	habitation	7,15	71 500,00	0,83	0,83	0,166
50	13,25	4	Habitations	13,25	132 500,00	1,53	1,53	0,383
51	6,82	4	Habitations	6,82	68 200,00	0,79	0,79	0,197
			ecole primaire	1,72	2 780,00	0,03		
50	2	4	poste santé	0,36	4 330,00	0,05	10.74	2.694
52	3		cem	0,37	920 500,00	10,65	10,74	2,684
		1	eglise	0,55	130,00	0,00		
53	6	4	zone à restructurer	6,00	48 000,00	0,56	0,56	0,139
54	4	4	zone à restructurer	4,00	32 000,00	0,37	0,37	0,093
55	22,28	5	Lycée tehnique	pud	58 170,00	0,67	0,67	0,135
56	6,44	4	zone à restructurer	6,44	51 520,00	0,60	0,60	0,149
57	6,52	4	Habitations	6,52	65 200,00	0,75	0,75	0,189
50	6.16	4	Gare routière	5,65	16 950,00	0,20	0,43	0,107
38	58 6,16	4	Station	0,51	20 000,00	0,23	0,43	0,107
							144,83	
						total	l/j	12513125,00
							1/j/pers	125,13

Tableau 2 : Répartition de la consommation aux noeuds

•		Ма	illes tri	butair	es	Consommation	pertes	Consommation	Consommation
Nœuds	Altitudes	1				(I/s)	(%)	inc (I/s)	total (l/s)
Piquage ALG	78,65								
N1	78	M1				1,028			1,201
N2	72,45	.0	0	0	0	0,000			0,019
N3	72,3	M1_	M2			0,772			0,907
N4	70,75		M2	МЗ		0,304			0,369
N5	68,96			МЗ		0,302			0,366
N6	68,95	M4				0,349			0,420
N7	69	M4	M5			0,659			0,777
N8	68,2		M5_	M6		0,481			0,572
N9	68,8			M6	M7	0,722			0,849
N10	65				M7	0,551			0,652
N11 ·	64,5	M8				0,188			0,235
N12	61,2	M8	M9			0,421			0,503
N13	56,6		M9			0,232			0,286
N14	56	M10				0,158	15,000	0,019	0,201
N15	61,4	M10	M11			0,284	10,000	0,010	0,346
N16	69		M11	M12		0,315			0,381
N17	59			M12	M13	0,345			0,415
N18	60				M13	0,155			0,198
N19	71,8	_M1	M2	M25		1,028			1,201
N20	71,33		M2	M25		0,257			0,315
N21	70,45		M2	M25		0,343			0,414
N22	70,7	МЗ	M26			0,552			0,654
N23	70	M3	M26			0,552			0,654
N24	70,3	M4		M15	_	0,693			0,815
N25	68,2	M4	M5	M15	M16	1,474		J	1,714
N26	67,1	M16	M5			0,782			0,918
N27	66,4	M6	M17			0,542			0,642
N28	68,9	M6	M17			0,542			0,642
N29	67,8	M7	M18			0,841			0,986

Nœuds	Altitudes	Ma	illes tr	ibutair	es	Consommation	pertes	Consommation	Consommation
	·			ibatan		(l/s)	(%)	inc (l/s)	total (l/s)
N30	66,3	M7	M18			0,841			0,986
N31	65,9	M8	M19			0,359			0,431
N32	64,5		M19	M20		0,745			0,876
N33	64	_M8	M9			0,421			0,503
N34	58		M9	M20		0,808			0,948
N35 ¹	55,2	M10	M21			0,278			0,339
N36	58,1	M10	M14			0,167			0,211
N37	58,67	M21	M14			0,129			0,167
N38	58,6	M11	M14			0,135			0,174
N39	59,1		M14	M22		0,102			0,136
N40	59		M11	M22		0,218		1	0,270
N41	59,38	M12	M23			0,333			0,402
N42	60,11	M12	M13	M23	M24	0,696			0,819
N43 ±	61,04		M13		M24	0,363			0,436
N44	67,7	M15	M27			0,457	15,000	0,019	0,544
N45	65,2	M15	M27	M28		1,160	13,000	0,019	1,353
N46	63,8	M15	M16	M27	M28	1,631			1,894
N47	62,75	M16	M17	M28	M29	1,767			2,051
N48	64,9	M29	M30			0,924			1,082
N49	65,2	M17	M18			0,661			0,779
N50	64,39		M18	M30		0,992			1,159
N51	63,7	M19	M32			4,255			4,912
N52	61,55	M19	M20	M32		4,830			5,573
N53	57		M20	M32		4,660			5,378
N54 .	54,9	M21	M33			0,458			0,545
N55	58,2	M21	M22	M33		0,551			0,652
N56	58,8	M22	M23	M33	M34	0,997			1,166
N57	60,05	M23	M24	M34		0,774			0,909
N58	61		M24	M34		0,631			0,744
N59	60,5	M28	M29	M31		1,356			1,578

Nœuds	Altitudes	Ma	illes tr	ibutair	·es	Consommation	pertes	Consommation	Consommation
		IVIA				(l/s)	(%)	inc (l/s)	total (l/s)
N60	61,8		M29	M31		0,436			0,520
N61	62,25		M30			0,702			0,826
N62	60,7		M30	M31		1,133			1,321
N63	60	M32				4,085			4,716
N64	56	M33				0,338			0,408
N65	54	M33	M58			0,445			0,531
N66	57,95	M33	M34	M58		0,868			1,017
N67	57,4			M58	M34	0,530			0,628
N68	75,24	M1				0,771			0,905
N69	74	M1				1,028			1,201
N70	71,7	M1	M25			1,369			1,593
N71	70	0	0						0,000
N72	69,4		M25	M26		0,591			0,699
N73	66,6			M26		0,250			0,306
N74	64,5			M26		0,250	15,000	0.040	0,306
N75	63,7	M27				0,113	15,000	0,019	0,149
N76	60,5	M27	M28			0,816			0,957
N77	59		M28			0,527			0,625
N78	58,5		M28	M31		1,134			1,322
N79	59,3			M31		0,431			0,514
N80	54,2	M31				0,431			0,514
N81	54,4	M32				4,085			4,716
N82	52,2	M32				1,751			2,032
N83	57,05	M58				0,107			0,142
N84	75,2	M35				2,257			2,614
N85	72	M35	M36			4,077			4,707
N86	70,05		M36	M37		1,853	*		2,150
N87	66			M37	M38	0,350			0,421
N88	65,5				M38	0,317		'	3
N89	61,8	M40		-		0.089			0,121

	- XX - 1 - 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.363
0.089	0.121

Alimentation en eau potable et évacuation des eaux usées et pluviales de la Zac de Nguinth / Thiès

Nœuds	Altitudes	Ma	illes tri	butair	es	Consommation	pertes	Consommation	Consommation
Nœuus	Ailitudes	IVIA	mes tri		C 3	(l/s)	(%)	inc (l/s)	total (I/s)
N90	58,5	M40	M41			0,364			0,437
N91	55		M41	M42		0,581			0,687
N92	59			M42	M43	2,004			2,323
N93	54,85				M43	1,697			1,971
N94	54,85	M44				3,532			4,081
N95	50,95	M44	M45			3,581			4,137
N96	56		M45			0,049			0,075
N97	72,1	M35	M36			4,077			4,707
N98	70,4	0	0	0	0	0,000			0,000
N99	68,8		M37	M39		0,266			0,325
N100	66,5		M37	M38	M39	0,671			0,791
N101	65,35			M38	M39	0,638			0,753
N102	65,53	M40	M46			0,364			0,437
N103	57,6	M40	M41	M46	M47	0,865			1,013
N104	51,67	M47	M50			0,609	15,000	0.010	0,720
N105	50,8	M41	M42			0,581	15,000	0,019	0,687
N106	52		M42			0,306			0,371
N107	55,3		M42	M43		1,503			1,747
N108 ·	53,8			M43		1,132			1,320
N109	54	M44				3,532			4,081
N110	50	M44	M45			3,581			4,137
N111	65	M46	M48			0,510			0,605
N112	57,6	M46	M48			0,510			0,605
N113	56,4	M47	M48	M49		0,627			0,740
N114	52,1	M47	M49	M50		0,775			0,910
N115 *	50,47	M42	M50			0,690			0,812
N116	49,6	M42	M43			0,668			0,787
N117	72	M35	M55			2,392			2,769
N118	69	M35	M36	M55	M53	4,351			5,022
N119	68,7		M36		M55	1 57 3		'	.833

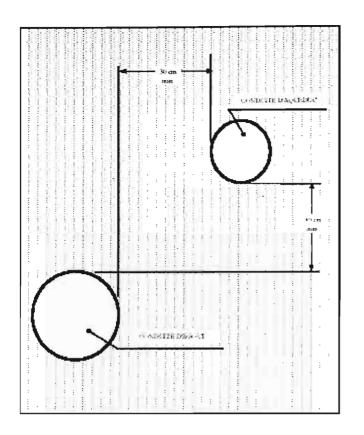
Nœuds	Altitudes	Ma	illes tri	ibutair	es	Consommation	pertes	Consommation	Consommatio
Nocada	Ailitades	1714				(l/s)	(%)	inc (l/s)	total (l/s)
N120	67,1			M39	M56	2,291			2,653
N121	64,1		M39			0,322			0,389
N122	64,1	M48	<u>M</u> 51			0,433			0,516
N123	60,4	M48	M51	M52		3,117			3,603
N124	57,9	M48	M49	M52		3,085		,	3,567
N125	61,9	M51	M57			0,386			0,463
N126	59,95	M51	M52	M57		3,070			3,550
N127	56	M49	M52	M57		1,519			1,766
N128 _	53,8	M49	M50			0,549			0,650
N129	69,11	M53	M54			0,231			0,285
N130	67,5	M53	M54	M55		0,366			0,440
N131	68,4		M54			0,093			0,125
N132	67,35		M54	M55		0,227			0,280
N133	64,3			M55	M56	0,284			0,345
N134	62,5	M39	M56			0,471			0,560
N135	60,6	M39				0,322	15,000	0,019	0,389
N136	60	M57				0,189			0,236
N'1	74,6					0,398			0,477
N'2	71,8					0,484			0,575
N'3	72					0,399			0,477
N'4	71,23					0,227			0,280
N'5	59,2					0,317			0,383
N'6	61,36					0,359			0,432
N'7	53,6					1,503			1,747
N'8	69					0,230			0,283
N'9	69					0,667			0,786
N'10	53					0,642		b.	0,757
N'11	50					0,707			0,832
N'12	58,5					0,901			1,055
N'13	56					0,901			1,055
N'14	49,3					0,475			0,565
	Assessment of the second		7	OTAL		144.900 l/s	and the second second second		189,417

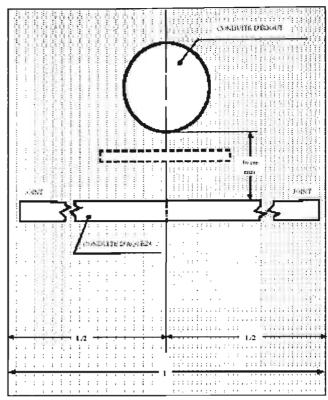
Tableau 3: Etat des nœuds du réseau à 6:00 heures

	Altitude	Demande de base	Demande actuelle	Pression
ID Noeud		l/s	l/s	m
Noeud 1	78	1,26	3,15	21,72
Noeud 2	72,45	0	0,00	29,55
Noeud 3	72,3	1,26	3,15	29,95
loeud 4	70,75	0,39	0,98	23,4
Noeud 5	68,96	0,39	0,98	18,83
Noeud 6	68,95	0,44	1,10	18,38
Noeud 7	69	0,81	2,03	16,55
Noeud 8	68,2	0,6	1,50	16,1
Noeud 9	68,8	0,89	2,23	14,77
Noeud 10	65	0,68	1,70	17,7
Noeud 11	64,5	0,25	0,63	18,11
Voeud 12	61,2	0,53	1,33	20,78
Noeud 13	56,6	0,3	0,75	25,1
Noeud 14	56	0,21	0,53	25,69
Noeud 15	61,4	0,36	0,90	20,07
Noeud 16	60	0,4	1,00	21,46
Noeud 17	59	0,44	1,10	22,52
Noeud 18	60	0,21	0,53	22,69
Noeud 19	71,8	1,67	4,18	25,38
Noeud 20	71,33	0,43	1,08	24,6
Noeud 21	70,45	0,43	1,08	22,62
Noeud 22	70,7	0,76	1,90	21,45
Noeud 23	70	0,76	1,90	18,17
Noeud 24	70,3	0,85	2,13	15,96
Noeud 25	68,2	1,79	4,48	16,84
Noeud 26	67,1	0,96	2,40	16,7
Noeud 27	66,4	0,67		
Noeud 28			1,68	17,33
Noeud 28	68,9	0,67	1,68	14,59
Noeud 30	67,8	1,01	2,53	15,63
Noeud 30	66,3	1,01	2,53	16,96
Noeud 31	65,9	0,45	1,13	16,34
	64,5	0,92	2,30	16,34
Noeud 33	64	0,53	1,33	17,71
Noeud 34	58	0,99	2,48	22,62
Noeud 35	55,2	0,36	0,90	26,12
Noeud 36	58,1	0,22	0,55	23,11
Noeud 37	58,67	0,18	0,45	22,23
Noeud 38	58,6	0,18	0,45	22,73
Noeud 39	59,1	0,14	0,35	21,84
Noeud 40	59	0,28	0,70	21,78
Noeud 41	59,38	0,42	1,05	21,39
Noeud 42	60,11	0,86	2,15	21,79
Noeud 43	61,04	0,46	1,15	21,94
Noeud 44	67,7	0,57	1,43	18,03
Noeud 45	65,2	1,55	3,88	19,93
Noeud 46	63,8	2,12	5,30	21,07
loeud 47	62,75	2,28	5,70	20,67
loeud 48	64,9	1,13	2,83	17,66
Noeud 49	65,2	0,82	2,05	18,17

	Altitude	Demande de base	Demande actuelle	Pression
ID Noeud	m	l/s	l/s	m
Noeud 50	64,39	1,21	3,03	16,35
Noeud 51	63,7	5,13	12,83	17,13
Noeud 52	61,55	5,61	14,03	18,73
Noeud 53	57	5,61	14,03	23,21
Noeud 54	54,9	0,64	1,60	25,27
Noeud 55	58,2	0,75	1,88	21,91
Noeud 56	58,8	1,29	3,23	21
Noeud 57	60,05	0,95	2,38	20,36
Noeud 58	61	0,78	1,95	20,51
Noeud 59	60,5	1,79	4,48	22,04
Noeud 60	61,8	0,81	2,03	20,01
Noeud 61	62,25	0,86	2,15	19,5
Noeud 62	60,7	0,86	2,15	19,63
Noeud 63	60	4,92	12,30	19,03
Noeud 64	56	0,5	1,25	23
Noeud 65	54	0,7	1,75	24,41
Noeud 66	57,95	1,21	3,03	20,12
Noeud 67	57,4	0,73	1,83	20,66
Noeud 68	75,24	1,26	3,15	22,68
Noeud 69	74	1,26	3,15	22,46
Noeud 70	71,7	1,67	4,18	23,46
Noeud 70	70	0	0,00	21,25
Noeud 72	69,4	0,81	2,03	21,48
Noeud 72	66,6	0,4	1,00	23,54
Noeud 74	64,5	0,381	0,95	22,04
Noeud 75	63,7	0,361	0,93	22,55
Noeud 75	60,5	1,14	2,85	23,94
Noeud 77	59	1,01	2,53	24,3
Noeud 78	58,5	1,52	3,80	23,54
Noeud 79	59,3	0,54	1,35	
Noeud 80	54,2	0,54	1,35	21,28
Noeud 81	54,4	4,92	12,30	25,08 24,15
Noeud 82	52,2	4,92		
Noeud 83	57,05	0,22	12,30 0,55	20,59
Noeud 84	75,2	2,73		19,91
Noeud 85	72	5,23	6,83 13,08	22,62
Noeud 86	70,05	2,56	6,40	23,12
Noeud 87	66	0,44	1,10	20,63
Noeud 88	65,5	0,44	1,00	24,21
Noeud 89	61,8	0,13	0,33	24,94 19,97
Noeud 90	58,5	0,13		
Noeud 91	55	0,72	1,15	24,48
Noeud 92	59	2,43	1,80 6,08	27,5
Noeud 93	54,85	2,43	5,15	22,96
Noeud 94	54,85	4,26	10,65	24,46
Noeud 95	50,95	4,32	10,80	22,39
Noeud 96	56	0,08	0,20	23,22
Noeud 97	72,1	5,23	13,08	20,39
Noeud 98	70,4	0		23,04
Noeud 99	68,8	0,45	0,00	17,87
Noeud 100	66,5	0,83	1,13	22,05
Noeud 100	65,35	0,83	2,08	24,27
110000 101	00,00	0,78	1,98	25,36

	Altitude	Demande de base	Demande actuelle	Pression
ID Noeud	m	l/s	l/s	m
Noeud 102	65,53	0,46	1,15	15,36
Noeud 103	57,6	1,13	2,83	24,65
Noeud 104	51,67	0,82	2,05	27,72
Noeud 105	50,8	0,72	1,80	28,62
Noeud 106	52	0,39	0,98	28,62
Noeud 107	55,3	2,43	6,08	20,98
Noeud 108	53,8	2,06	5,15	23,4
Noeud 109	54	4,26	10,65	17,24
Noeud 110	50	4,32	10,80	20,96
Noeud 111	65	0,63	1,58	14,93
Noeud 112	57,6	0,63	1,58	20,86
Noeud 113	56,4	0,84	2,10	21,79
Noeud 114	52,1	1,02	2,55	26,33
Noeud 115	50,47	0,85	2,13	26,93
Noeud 116	49,6	2,43	6,08	24,41
Noeud 117	72	2,97	7,43	25,26
Noeud 118	69	5,63	14,08	27,15
Noeud 119	68,7	2,8	7,00	20,64
Noeud 120	67,1	3,02	7,55	25,22
Noeud 121	64,1	2,52	6,30	28,6
Noeud 122	64,1	0,54	1,35	15,25
Noeud 123	60,4	3,76	9,40	16,56
Noeud 124	57,9	3,72	9,30	20,04
Noeud 125	61,9	0,49	1,23	16,88
Noeud 126	59,95	3,71	9,28	16,96
Noeud 127	56	3,44	8,60	22
Noeud 128	53,8	0,68	1,70	23,6
Noeud 129	69,11	0,3	0,75	27,89
Noeud 130	67,5	0,5	1,25	29,08
Noeud 131	68,4	0,13	0,33	
Noeud 132	67,35	0,13	0,85	28,49
Noeud 133	64,3	0,34		29,17
Noeud 134	62,5	0,59	1,00	31,02
Noeud 135	60,6	0,39	1,48	31,91
Noeud 136	60	0,25	1,03	33,16
Noeud 137	70	0,32	0,63	17,96
Noeud 138	71,8	0,32	0,80	30,71
Noeud 139	71,0	0,32	1,05	23,29
Noeud 140	71,23	0,32	0,80	23,56
Noeud 141	59,2	0,11		19,85
Noeud 142	61,36		0,63	25,06
Noeud 143	53,6	0,27 1,65	0,68	18,96
Noeud 144	69	0,11	4,13	22,35
Noeud 145	69	0,11	0,28	19,22
Noeud 145	53	0,61	1,75	16,75
Noeud 147	50	0,69	1,53	25,51
Noeud 147	: 58,5	0,89	1,73	20,52
Noeud 149	56	0,87	2,18	15,77
Noeud 150	49,3	0,87	2,18	19,22
Bâche 152	103		1,03	25,5
Réservoir 151	81	Sans Valeur Sans Valeur		0
Réservoir 153	76			2
17030140111113	70	Sans Valeur		2


Tableau 4 : Etat des arcs du réseau à 6 :00 heures


	Longueur	Diamètre	Débit	Vitesse
ID Arc	m	mm	l/s	m/s
Tuyau 1	656,70	350	-115,70	1,2
Tuyau 2	68,67	350	-116,50	1,21
Tuyau 3	806,50	350	200,39	2,08
Tuyau 4	545,60	300	144,47	2,04
Tuyau 5	50,05	350	190,30	1,98
Tuyau 6	572,58	350	109,24	1,14
Tuyau 7	619,96	350	87,18	0,91
Tuyau 8	416,10	350	80,91	0,84
Tuyau 9	532,86	350	77,77	0,81
Tuyau 10	46,32	350	85,58	0,89
Tuyau 11	290,11	250	37,27	0,76
Tuyau 12	343,62	250	21,98	0,45
Tuyau 13	138,24	250	8,18	0,17
Tuyau 14	398,70	150	4,54	0,26
Tuyau 15	432,95	200	1,28	0,04
Tuyau 16	383,57	110	-0,94	0,1
Tuyau 17	320,01	63	-1,25	0,4
Tuyau 18	794,20	63	0,80	0,26
Tuyau 19	512,60	63	1,05	0,34
Tuyau 20	242,81	250	58,62	1,19
Tuyau 21	225,50	63	0,80	0,26
Tuyau 22	588,68	250	56,74	1,16
Tuyau 23	546,45	250	70,08	1,43
Tuyau 24	575,30	300	59,58	0,84
Tuyau 25	613,75	300	58,06	0,82
Tuyau 26	439,11	300	28,72	0,41
Tuyau 27	501,19	250	14,04	0,29
Tuyau 28	292,76	150	14,58	0,83
Tuyau 29	50,23	90	-7,39	1,16
Tuyau 30	329,87	110	5,25	0,55
Tuyau 31	255,89	90	0,98	0,15
Tuyau 32	105,52	63	1,12	0,36
Tuyau 33	108,33	63	1,22	0,39
Tuyau 34	277,18	63	0,46	0,15
Tuyau 35	332,70	63	-1,20	0,38
Tuyau 36	296,96	110	-5,54	0,58
Tuyau 37	682,66	63	0,28	0,09
Tuyau 38	363,74	250	32,19	0,66
Tuyau 39	211,06	250	27,62	0,56
Tuyau 40	619,71	250	38,79	0,79
Tuyau 41	390,92	200	20,79	0,66
Tuyau 42	90,20	90	-5,23	0,82
Tuyau 43	459,80	90	4,11	0,65
Tuyau 44	318,09	110	3,68	0,39
Tuyau 45	414,94	250	9,33	0,19
Tuyau 46	150,18	200	7,00	0,22
Tuyau 47	167,82	110	1,56	0,16
Tuyau 48	203,68	63	0,77	0,25
Tuyau 49	261,22	90	-2,54	0,4

	Longueur	Diamètre	Débit	Vitesse
ID Arc	m	mm	1/s	m/s
Tuyau 50	256,74	90	-3,52	0,55
Tuyau 51	406,86	110	3,79	0,4
Tuyau 52	542,85	200	22,81	0,73
Tuyau 53	211,53	90	2,08	0,33
Tuyau 54	345,19	90	0,26	0,04
Tuyau 55	255,44	150	16,03	0,91
Tuyau 56	402,97	150	11,83	0,67
Tuyau 57	725,32	250	59,96	1,22
Tuyau 58	172,60	300	59,69	0,84
Tuyau 59	292,71	300	65,38	0,92
Tuyau 60	266,13	250	96,59	1,97
Tuyau 61	37,12	300	117,01	1,66
Tuyau 62	309,44	300	101,25	1,43
Tuyau 63	201,26	300	99,08	1,4
Tuyau 64	752,51	250	32,43	0,66
Tuyau 65	456,79	200	25,37	0,81
Tuyau 66	471,90	200	23,34	0,74
Tuyau 67	46,20	200	58,14	1,85
Tuyau 68	486,56	110	10,31	1,08
Tuyau 69	477,88	63	-1,99	0,64
Tuyau 70	640,82	150	13,63	0,77
Tuyau 71	909,17	110	6,47	0,68
Tuyau 72	298,49	250	31,48	0,64
Tuyau 73	150,92	63	-0,77	0,25
Tuyau 74	397,05	200	-24,69	0,79
Tuyau 75	347,82	200	16,20	0,52
Tuyau 76	425,42	90	1,83	0,29
Tuyau 77	933,35	200	23,72	0,76
Tuyau 78	482,77	150	16,95	0,96
Tuyau 79	388,74	63	-1,59	0,51
Tuyau 80	761,55	63	2,02	0,65
Tuyau 81	209,58	63	0,28	0,09
Tuyau 82	258,39	150	3,44	0,19
Tuyau 83	172,41	63	0,32	0,1
Tuyau 84	522,99	110	-4,62	0,49
Tuyau 85	470,07	110	7,27	0,76
Tuyau 86	98,56	110	-1,64	0,17
Tuyau 87	396,16	63	1,52	0,49
Tuyau 88	860,42	63	1,73	0,55
Tuyau 89	521,89	110	4,83	0,51
Tuyau 90	450,12	63	-0,43	0,14
Tuyau 91	501,05	90	4,51	0,71
Tuyau 92	458,04	200	21,86	0,7
Tuyau 93	783,79	63	1,98	0,64
Tuyau 94	240,00	63	-2,40	0,77
Tuyau 95	299,64	110	8,37	0,88
Tuyau 96	232,22	63	-1,34	0,43
Tuyau 97	275,67	110	7,69	0,81
Tuyau 98 Tuyau 99	285,18	63	-1,27	0,41
Tuyau 99 Tuyau 100	369,82	200	14,41	0,46
Tuyau 100	291,61 788,81	250 250	28,14	0,57
Tuyau 101	246,68	200	30,87	0,63
Tuyau 103	241,18	150	27,25 10,75	0,87
Tuyau 104	357,30	63	2,18	0,61
	357,30		۷, 10	0,7

	Longueur	Diamètre	Débit	Vitesse
ID Arc	m	mm	1/s	m/s
Tuyau 105	210,76	63	2,18	0,7
Tuyau 106	548,35	350	112,55	1,17
Tuyau 107	43,01	350	93,37	0,97
Tuyau 108	390,06	350	72,92	0,76
Tuyau 109	222,55	300	43,63	0,62
Tuyau 110	191,74	300	28,47	0,4
Tuyau 111	242,47	250	120,73	2,46
Tuyau 112	400,40	250	57,93	1,18
Tuyau 113	44,61	150	5,62	0,32
Tuyau 114	353,65	90	-0,29	0,05
Tuyau 115	189,37	150	-15,39	0,87
Tuyau 116	202,62	150	-9,59	0,54
Tuyau 117	182,82	150	3,57	0,2
Tuyau 118	366,41	63	1,75	0,56
Tuyau 119	407,66	63	-2,62	0,84
Tuyau 120	236,61	250	54,94	1,12
Tuyau 121	52,36	250	110,61	2,25
Tuyau 122	544,67	250	38,63	0,79
Tuyau 123	42,90	200	30,91	0,98
Tuyau 124	238,92	63	-0,51	0,16
Tuyau 125	473,22	110	-5,07	0,53
Tuyau 126	413,82	150	-15,02	0,85
Tuyau 127	41,80	250	-32,20	0,66
Tuyau 128	209,38	63	-1,05	0,34
Tuyau 129	288,71	300	-46,81	0,66
Tuyau 130	703,29	200	21,37	0,68
Tuyau 131	227,15	90	-1,77	0,28
Tuyau 132	490,38	90	-3,43	0,54
Tuyau 133	476,60	150	-9,73	0,55
Tuyau 134	286,75	300	79,96	1,13
Tuyau 135	306,35	200	18,25	0,58
Tuyau 136	413,05	200	-15,36	0,49
Tuyau 137	295,39	200	24,37	0,78
Tuyau 138	249,10	200	27,84	0,89
Tuyau 139	248,99	200	21,44	0,68
Tuyau 140	179,99	150	11,72	0,66
Tuyau 141	295,54	90	2,80	0,44
Tuyau 142	564,12	63	0,69	0,22
Tuyau 143	182,35	63	0,31	0,1
Tuyau 144	247,17	200	20,04	0,64
Tuyau 145	332,76	250	17,09	0,35
Tuyau 146	588,35	63	0,62	0,2
Tuyau 147	52,80	250	64,13	1,31
Tuyau 148	296,76	200	22,08	0,7
Tuyau 149	220,00	90	7,37	1,16
Tuyau 150	102,70	150	10,62	0,6
Tuyau 151	131,10	150	8,95	0,51
Tuyau 152	144,66	110	-1,69	0,18
Tuyau 153	175,45	110	6,86	0,72
Tuyau 154	202,00	90	3,88	0,61
Tuyau 155	520,61	150	12,58	0,71
Tuyau 156	105,45	110	10,08	1,06
Tuyau 157	143,30	90	6,63	1,04
Tuyau 150	206,06	110	4,77	0,5
Tuyau 159	66,50	250	-25,63	0,52

ID Arc		Longueur	Diamètre	Débit	Vitesse
Tuyau 160	ID Arc	1	1	1	
Tuyau 161 Tuyau 162 Tuyau 162 Tuyau 163 Tuyau 164 Tuyau 165 Tuyau 165 Tuyau 165 Tuyau 165 Tuyau 165 Tuyau 166 Tuyau 166 Tuyau 166 Tuyau 167 Tuyau 166 Tuyau 167 Tuyau 166 Tuyau 167 Tuyau 167 Tuyau 168 Tuyau 168 Tuyau 168 Tuyau 169 Tuyau 170 Tuyau 169 Tuyau 170 Tuyau 170 Tuyau 171 Tuyau 172 Tuyau 172 Tuyau 173 Tuyau 174 Tuyau 175 Tuyau 175 Tuyau 176 Tuyau 177 Tuyau 177 Tuyau 178 Tuyau 178 Tuyau 179 Tuyau 179 Tuyau 179 Tuyau 170 Tuyau 170 Tuyau 171 Tuyau 171 Tuyau 172 Tuyau 173 Tuyau 174 Tuyau 175 Tuyau 176 Tuyau 177 Tuyau 177 Tuyau 178 Tuyau 178 Tuyau 179 Tuyau 180 Tuyau 181 Tuyau 181 Tuyau 181 Tuyau 183 Tuyau 183 Tuyau 184 Tuyau 185 Tuyau 186 Tuyau 187 Tuyau 188 Tuyau 188 Tuyau 188 Tuyau 189 Tuyau 199 Tuyau					
Tuyau 162					
Tuyau 163					
Tuyau 164					
Tuyau 165					
Tuyau 166					
Tuyau 167					
Tuyau 168 206,50 90 0,92 0,14 Tuyau 170 282,20 250 27,97 0,57 Tuyau 170 282,20 250 11,40 0,23 Tuyau 171 215,15 63 0,68 0,22 Tuyau 172 259,60 150 -9,51 0,54 Tuyau 173 282,79 63 2,01 0,64 Tuyau 174 336,01 110 3,10 0,33 Tuyau 175 368,35 200 23,76 0,76 Tuyau 176 42,40 200 -12,40 0,39 Tuyau 177 473,15 110 6,17 0,65 Tuyau 178 266,91 300 47,68 0,67 Tuyau 179 282,79 200 31,98 1,02 Tuyau 180 336,10 150 15,47 0,88 Tuyau 181 372,00 110 3,17 0,33 Tuyau 182 42,00 150 38,70 2,19					
Tuyau 169					
Tuyau 170				<u> </u>	
Tuyau 171					
Tuyau 172					
Tuyau 173					
Tuyau 176					
Tuyau 175					
Tuyau 176 42,40 200 -12,40 0,39 Tuyau 177 473,15 110 6,17 0,65 Tuyau 178 266,91 300 47,68 0,67 Tuyau 179 282,79 200 31,98 1,02 Tuyau 180 336,10 150 15,47 0,88 Tuyau 181 372,00 110 3,17 0,33 Tuyau 182 42,00 150 38,70 2,19 Tuyau 183 441,00 110 11,10 1,17 Tuyau 184 258,79 200 13,96 0,44 Tuyau 185 280,57 200 19,67 0,63 Tuyau 186 279,60 150 13,05 0,74 Tuyau 187 306,92 200 15,83 0,5 Tuyau 188 743,00 90 4,13 0,65 Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22					
Tuyau 177					
Tuyau 178					
Tuyau 179 282,79 200 31,98 1,02 Tuyau 180 336,10 150 15,47 0,88 Tuyau 181 372,00 110 3,17 0,33 Tuyau 182 42,00 150 38,70 2,19 Tuyau 183 441,00 110 11,10 1,17 Tuyau 184 258,79 200 13,96 0,44 Tuyau 185 280,57 200 19,67 0,63 Tuyau 186 279,60 150 13,05 0,74 Tuyau 187 306,92 200 15,83 0,5 Tuyau 188 743,00 90 4,13 0,65 Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53					
Tuyau 180 336,10 150 15,47 0,88 Tuyau 181 372,00 110 3,17 0,33 Tuyau 182 42,00 150 38,70 2,19 Tuyau 183 441,00 110 11,10 1,17 Tuyau 184 258,79 200 13,96 0,44 Tuyau 185 280,57 200 19,67 0,63 Tuyau 186 279,60 150 13,05 0,74 Tuyau 187 306,92 200 15,83 0,5 Tuyau 188 743,00 90 4,13 0,65 Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 <					
Tuyau 181 372,00 110 3,17 0,33 Tuyau 182 42,00 150 38,70 2,19 Tuyau 183 441,00 110 11,10 1,17 Tuyau 184 258,79 200 13,96 0,44 Tuyau 185 280,57 200 19,67 0,63 Tuyau 186 279,60 150 13,05 0,74 Tuyau 187 306,92 200 15,83 0,5 Tuyau 188 743,00 90 4,13 0,65 Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Tuyau 182					
Tuyau 183 441,00 110 11,10 1,17 Tuyau 184 258,79 200 13,96 0,44 Tuyau 185 280,57 200 19,67 0,63 Tuyau 186 279,60 150 13,05 0,74 Tuyau 187 306,92 200 15,83 0,5 Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tu				· · · · · · · · · · · · · · · · · · ·	
Tuyau 184 258,79 200 13,96 0,44 Tuyau 185 280,57 200 19,67 0,63 Tuyau 186 279,60 150 13,05 0,74 Tuyau 187 306,92 200 15,83 0,5 Tuyau 188 743,00 90 4,13 0,65 Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuya					
Tuyau 186 280,57 200 19,67 0,63 Tuyau 186 279,60 150 13,05 0,74 Tuyau 187 306,92 200 15,83 0,5 Tuyau 188 743,00 90 4,13 0,65 Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau					
Tuyau 186 279,60 150 13,05 0,74 Tuyau 187 306,92 200 15,83 0,5 Tuyau 188 743,00 90 4,13 0,65 Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201					
Tuyau 187 306,92 200 15,83 0,5 Tuyau 188 743,00 90 4,13 0,65 Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,21 0,39 Tuyau 202 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Tuyau 188 743,00 90 4,13 0,65 Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,21 0,39 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 <td></td> <td></td> <td></td> <td></td> <td></td>					
Tuyau 189 100,00 350 22,43 0,23 Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,21 0,39 Tuyau 201 323,68 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Tuyau 190 169,76 90 7,74 1,22 Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,12 0,36 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 <td></td> <td></td> <td></td> <td></td> <td></td>					
Tuyau 191 291,31 110 3,12 0,33 Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,12 0,36 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 <td></td> <td></td> <td></td> <td></td> <td></td>					
Tuyau 192 316,50 63 1,24 0,4 Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,21 0,39 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Tuyau 193 377,32 110 5,08 0,53 Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,21 0,39 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 1,21 0,39 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208<					
Tuyau 194 316,60 110 3,83 0,4 Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,21 0,39 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 210					
Tuyau 195 185,75 110 2,36 0,25 Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,12 0,36 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211					
Tuyau 196 94,00 63 0,69 0,22 Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,12 0,36 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 213					
Tuyau 197 93,85 63 0,42 0,13 Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,12 0,36 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 213					-
Tuyau 198 278,72 63 1,08 0,35 Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,12 0,36 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 21					
Tuyau 199 196,32 63 1,21 0,39 Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,12 0,36 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne	Tuyau 198	278,72	63		
Tuyau 200 46,00 110 0,97 0,1 Tuyau 201 323,68 63 1,12 0,36 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 <	Tuyau 199	196,32	63		
Tuyau 201 323,68 63 1,12 0,36 Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 216 Sans Valeur 350 85,58 0,89	Tuyau 200				
Tuyau 202 502,85 63 1,21 0,39 Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 350 85,58 0,89 Vanne 216 Sans Valeur 200 58,14 1,85 <td>Tuyau 201</td> <td></td> <td></td> <td></td> <td></td>	Tuyau 201				
Tuyau 203 240,50 63 -0,79 0,25 Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 350 85,58 0,89 Vanne 216 Sans Valeur 200 58,14 1,85					
Tuyau 204 328,50 63 1,40 0,45 Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 350 85,58 0,89 Vanne 216 Sans Valeur 350 85,58 0,89 Vanne 217 Sans Valeur 200 58,14 1,85			63		
Tuyau 205 243,75 90 -1,77 0,28 Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 350 85,58 0,89 Vanne 216 Sans Valeur 200 58,14 1,85		328,50	63		
Tuyau 206 335,50 150 13,97 0,79 Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 350 85,58 0,89 Vanne 217 Sans Valeur 200 58,14 1,85			90		
Tuyau 207 420,55 110 8,50 0,89 Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 350 85,58 0,89 Vanne 216 Sans Valeur 200 58,14 1,85	Tuyau 206		150		
Tuyau 208 196,60 110 6,94 0,73 Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 350 85,58 0,89 Vanne 216 Sans Valeur 200 58,14 1,85	Tuyau 207	420,55	110		
Tuyau 209 88,65 90 4,40 0,69 Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 300 117,01 1,66 Vanne 216 Sans Valeur 350 85,58 0,89 Vanne 217 Sans Valeur 200 58,14 1,85		196,60	110		
Tuyau 210 371,79 63 2,62 0,84 Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 300 117,01 1,66 Vanne 216 Sans Valeur 350 85,58 0,89 Vanne 217 Sans Valeur 200 58,14 1,85		88,65	90		
Tuyau 211 489,00 63 -0,45 0,14 Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 300 117,01 1,66 Vanne 216 Sans Valeur 350 85,58 0,89 Vanne 217 Sans Valeur 200 58,14 1,85		371,79	63		
Tuyau 212 937,60 63 1,02 0,33 Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 300 117,01 1,66 Vanne 216 Sans Valeur 350 85,58 0,89 Vanne 217 Sans Valeur 200 58,14 1,85			63		
Tuyau 213 100,00 500 440,76 2,24 Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 300 117,01 1,66 Vanne 216 Sans Valeur 350 85,58 0,89 Vanne 217 Sans Valeur 200 58,14 1,85					
Vanne 214 Sans Valeur 350 190,30 1,98 Vanne 215 Sans Valeur 300 117,01 1,66 Vanne 216 Sans Valeur 350 85,58 0,89 Vanne 217 Sans Valeur 200 58,14 1,85			500		
Vanne 215 Sans Valeur 300 117,01 1,66 Vanne 216 Sans Valeur 350 85,58 0,89 Vanne 217 Sans Valeur 200 58,14 1,85		Sans Valeur	350		
Vanne 216 Sans Valeur 350 85,58 0,89 Vanne 217 Sans Valeur 200 58,14 1,85	Vanne 215				
Vanne 217 Sans Valeur 200 58,14 1,85	Vanne 216				
	Vanne 217				1,85
	Tuyau 218	100,00	350	-11,56	0,12

L. Lommour d'une section de conduite d'angedia

Figure 1 : Position relative des conduite EU et AE

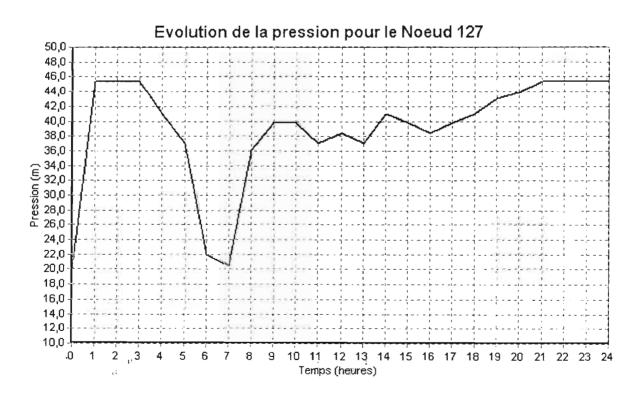


Figure 2 : Evolution de la pression pour le nœud 127

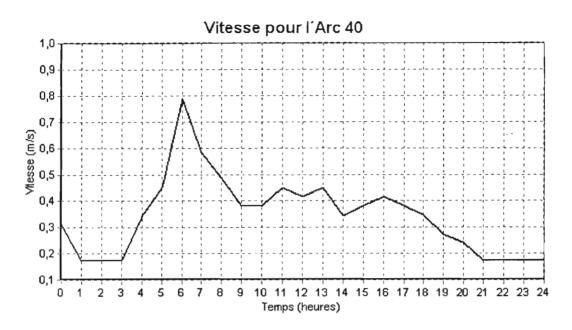


Figure 3 : Evolution de la vitesse pour l'arc 40

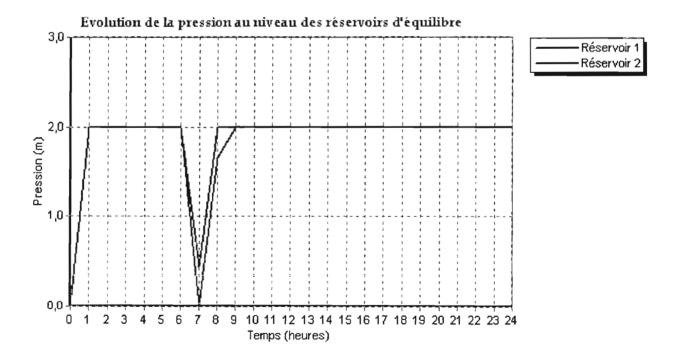


Figure 4 : Evolution du niveau d'eau aux réservoirs d'équilibre.

ANNEXE 2:

- o Plan d'ensemble du réseau EU
- O Tableau 1 : Récapitulatif de la saisie des réseaux
- Tableau 2 : Récapitulatif des résultats du dimensionnement du réseau eaux usées
- o Profils en long

Tableau 1 : Récapitulatif de la saisie des réseaux

23/05/2005 Affaire : PFE Valeurs en m

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R1	70,90	69,90	1,00
R2	70,60	69,65	0,95
R3	70,29	69,40	0,88
R4	70,33	69,15	1,18
R5	70,42	68,90	1,51
R6	70,42	68,65	2,01
R7	70,90	68,40	2,50
R8	71,19	68,15	3,04
R9	71,19	67,90	3,50
R10	71,17	67,65	3,52
R11	70,93	67,40	3,52
R12	70,62	67,15	3,47
R13	70,02	66,90	3,26
R14	69,77	66,65	3,12
R15	69,77	66,40	
R16	69,56	66,15	2,89 3,41
R17	69,67	65,90	3,41
R18	68,54	65,65	
R19	67,59		2,89
		65,40	2,19
R20 R21	66,73	65,15	1,58
R21	66,14	64,90	1,24
	66,08	64,65	1,43
R23	66,08	64,40	1,68
R24	65,99	64,15	1,83
R25	65,32	63,90	1,42
R26	64,84	62,84	2,00
R27	63,86	62,69	1,17
R28 R29	63,31	62,54	0,78
	64,28	62,39	1,89
R30	65,37	62,24	3,14
R31	65,50	62,09	3,41
R32	65,45	61,94	3,52
R33	65,91	61,79	4,13
R34	64,97	61,64	3,33
R35	63,48	61,49	2,00
R36	64,36	61,34	3,02
R37	64,62	61,19	3,44
R38	64,53	61,04	3,50
R39	63,91	60,89	3,03
R40	63,51	60,74	2,77
R41	63,04	60,54	2,50
R42	61,13	60,34	0,80
R43	61,14	60,14	1,01
R44	61,11	59,94	1,17
R45	61,38	59,74	1,64
R46	60,46	59,54	0,92
R47	72,42	71,30	1,12

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R48	71,94	71,15	0,79
R49	71,82	71,00	0,83
R50	71,70	70,85	0,86
R51	71,75	70,70	1,05
R52	71,51	70,55	0,97
R53	71,59	70,40	1,19
R54	71,65	70,25	1,41
R55	71,53	70,10	1,43
R56	71,71	69,95	1,76
R57	71,95	69,80	2,15
R58	72,31	69,65	2,66
R59	72,46	69,50	2,96
R60	72,29	69,35	2,95
R61	72,09	69,20	2,90
R62	72,06	69,05	3,02
R63	71,19	68,90	2,30
R64	72,25	68,75	3,50
R65	70,21	68,60	1,61
R66	69,49	68,45	1,04
R67	71,27	68,20	3,06
R68	70,92	68,05	2,87
R69	70,77	67,90	2,86
R70	70,49	67,75	2,74
R71	70,08	67,60	2,48
R72	69,95	67,45	2,50
R73	69,35	67,30	2,04
R74	68,97	67,15	1,82
R75	68,90	67,00	1,90
R76	69,09	66,85	2,23
R77	68,87	66,70	2,16
R78	67,78	66,55	1,23
R79	67,20	66,40	0,80
R80	67,74	66,25	1,49
R81	67,80	66,10	1,70
R82	67,67	65,95	1,71
R83	67,84	65,80	2,03
R84	68,03	65,65	2,37
R85	68,38	65,50	2,88
R86	69,12	65,35	3,77
R87	69,67	65,20	4,47
R88	69,17	65,05	4,12
R89	68,36	64,90	3,46
R90	68,40	64,75	3,64
R91	68,18	64,60	3,57
R92	67,58	64,45	3,13
R93	67,30	64,30	2,99
R94	67,04	64,15	2,89
R95	67,04	64,00	3,03
R96	66,40	63,85	2,54
R97	65,32	63,70	
R98	64,11	62,22	1,62
R99	63,40	62,07	1,89
X77	03,40	02,07	1,33

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R100	62,72	61,92	0,80
R101	68,88	66,93	1,95
R102	63,89	62,02	1,87
R103	63,77	61,72	2,05
R104	63,27	61,42	1,84
R105	63,30	61,12	2,18
R106	62,51	60,82	1,68
R107	61,67	60,52	1,14
R108	61,83	60,22	1,60
R109	61,08	59,92	1,15
R110	60,72	59,62	1,10
R111	60,26	59,32	0,94
R112	59,95	59,02	0,93
			1,29
R113	60,01	58,72	
R114	60,73	58,42	2,31
R115	61,40	58,12	3,28
R116	59,08	57,82	1,26
R117	58,99	57,52	1,46_
R118	59,11	56,03	3,08
R119	58,64	55,88	2,76
R120	58,21	55,73	2,47
R121	57,10	55,58	1,52
R122	56,90	55,43	1,47
R123	56,61	55,28	1,33
R124	55,93	55,13	0,80
R125	57,62	54,98	2,64
R126	57,97	54,83	3,14
R127	57,70	54,68	3,02
R128	58,22	54,53	3,68
R129	57,77	54,38	3,39
R130	56,35	54,31	2,04
R131	55,86	54,16	1,71
R132	55,58	54,01	1,58
R133	54,04	52,33	1,71
R134	53,43	52,08	1,34
R135	53,83	51,83	1,99
R136	52,77	51,58	1,19
R137	53,35	51,33	2,02
R138	52,09	51,08	1,01
R139	52,41	50,83	1,57
R140	52,84	50,58	2,26
R141	51,69	50,33	1,36
R151	58,79	55,54	3,24
R152	58,50	55,39	3,10
R154	57,72	55,24	2,48
R155	57,44	55,09	2,48
R155			
	57,52	54;94	2,58
R157	30,00	54,79	1,87
R158	55,87	54,64	1,23
R159	55,52	54,49	1,02
R160	55,16	52,12	3,04
R161	54,82	51,97	2,84

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R162	55,13	51,82	3,30
R163	52,30	51,50	0,80
R164	52,15	51,35	0,80
R165	52,24	51,20	1,04
R166	53,65	51,05	2,60
R167	53,63	50,90	2,73
R168	52,50	50,75	1,75
R169	52,27	50,60	1,67
R170	51,51	50,45	1,06
R173	68,93	68,13	0,80
R174	68,84	67,98	0,87
R175	68,84	67,83	1,01
R176	69,32	67,68	1,65
R177	69,90	67,53	2,37
R178	70,52	67,38	3,15
R179	69,88	67,23	2,65
R180	69,12	67,08	2,04
R181	68,43	66,93	1,50
R182	67,94	66,78	1,16
R184	51,44	50,13	1,31
R185	51,68	50,77	0,91
R186	51,74	50,92	0,82
R187	52,74	51,07	1,67
R188	53,59	51,22	2,37
R189	54,46	51,37	3,09
R190	54,98	52,74	2,24
R191	56,40	53,64	2,76
R192	57,57	54,54	3,03
R193	57,30	55,44	1,86
R194	58,34	56,34	2,00
R195	59,27	58,12	1,14
R196	59,72	58,72	1,00
R197	60,11	59,32	0,79
R198	60,58	59,92	0,66
R199	61,05	60,52	0,53
R200	62,02	61,12	0,90
R201	63,72	61,72	2,00
R202	64,32	62,32	2,00
R203	51,51	50,67	0,84
R204	51,62	50,82	0,80
R205	51,83	50,97	0,85
R206	52,15	51,12	1,03
R207	52,62	51,27	1,35
R208	52,80	51,42	1,38
R209	54,47	51,57	2,90
R210	53,48	51,72	1,76
R211	53,67	51,87	1,80
R212	53,79	52,02	1,77
R213	54,14	52,17	1,97
R215	67,33	65,69	1,63
R216	67,71	65,84	1,87
R217	68,18	65,99	2,19

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R218	67,52	66,14	1,38
R219	67,57	66,29	1,28
R220	68,70	66,44	2,26
R221	69,03	66,59	2,44
R222	69,03	66,74	2,28
R223	68,88	66,89	1,99
R224	69,18	67,04	2,13
R225	69,76	67,19	2,57
R226	69,89	67,34	2,55
R227	53,91	51,65	2,26
R228	67,76	66,63	1,14
R229	67,53	66,48	1,05
R230	67,27	66,33	0,94
R231	66,84	63,37	3,46
R232	66,46	62,87	3,59
R233	65,88	62,37	3,51
R234	65,20	61,87	3,32
R235	64,36	61,37	2,99
R236	63,43	60,83	2,60
R237	62,54	60,33	2,22
R238	61,89	59,83	2,06
R239	61,41	59,33	2,09
R240	61,02	58,83	2,19
R241	60,53	58,33	2,20
R242	60,37	57,83	2,55
R243	59,58	57,33	2,25
R244	59,09	56,83	2,27
R245	59,15	56,33	2,82
R246	59,28	57,85	1,43
R247	59,57	58,00	1,57
R248	59,97	58,15	1,82
R249	60,48	58,30	2,18
R250	61,02	58,45	2,57
R251	61,34	58,60	2,74
R252	61,44	58,75	2,69
R253	60,34	58,90	1,44
R254	61,05	59,05	2,00
R255	62,19	60,80	1,40
R256	63,01	61,35	1,66
R257	64,90	61,90	3,00
R258	63,66	62,45	1,21
R259	64,15	63,00	1,15
R260	65,48	63,55	1,93
R261	67,29	64,10	3,20
R262	68,71	64,65	4,06
R263	68,36	65,20	3,16
R264	67,97	65,75	2,22
R265	67,65	66,30	1,36
R266	67,92	66,85	1,07
R267	69,23	67,40	1,83
R268	59,21	55,83	3,39
R269	57,68	55,33	2,36

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R270	57,42	54,83	2,59
R271	56,20	54,33	1,87
R272	54,96	53,83	1,14
R279	59,07	56,64	2,42
R280	59,06	56,91	2,15
R281	59,52	57,31	2,21
R282	59,84	57,71	2,13
R283	60,09	58,11	1,99
R284	60,20	58,51	1,69
R285	60,50	58,91	1,59
R286	60,72	59,31	1,41
R287	60,97	59,71	1,26
R288	61,28	60,11	1,17
R289	61,59	60,51	
R290			1,09
	61,89	60,91	0,98
R291	62,57	61,31	1,26
R292	63,07	61,71	1,36
R293	63,64	62,11	1,53
R294	63,98	62,51	1,47
R295	64,87	62,91	1,96
R296	66,37	63,31	3,06
R297	66,86	63,71	3,15
R298_	66,20	64,11	2,09
R299	66,36	64,51	1,85
R300	66,41	64,91	1,50
R301	67,35	65,31	2,04
R302	58,96	56,34	2,62
R303	64,52	63,72	0,80
R304	65,17	63,57	1,60
R305	65,48	63,42	2,07
R306	65,81	63,27	2,54
R307	66,29	63,12	3,17
R308	66,29	62,97	3,32
R309	66,13	62,82	3,32
R310	65,69	62,67	3,03
R311	65,32	62,52	2,81
R312	65,92	62,37	3,56
R313	64,83	62,22	2,61
R314	64,05	62,07	1,99
R315	63,22	61,92	1,30
R316	62,65	61,77	0,88
R317	62,18	60,28	1,90
R318	61,63	59,68	1,94
R319	60,82	59,08	1,73
R320	60,33	58,48	1,85
R321	60,46	57,88	2,58
R322	59,41	57,28	2,13
R323	58,48	56,68	1,80
R324	58,76	56,08	
R325			2,67
	58,11	55,48	2,63
R326	.56,61	54,88	1,73
R327	55,03	54,15	0,88

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R328	54,35	53,55	0,80
R330	54,30	53,30	1,00
R331	54,32	53,09	1,23
R332	54,52	52,84	1,69
R333	54,60	52,59	2,02
R334	54,52	52,34	2,18
R335	53,95	52,09	1,86
R336	52,73	51,84	0,89
R337	51,78	51,59	0,19.
R338	49,85	51,34	- 1,49
R339	51,46	51,09	0,37
R340	52,07	50,84	1,23
R352	63,68	61,76	1,91
R353	63,97	62,26	1,71
R354	64,78	62,76	2,02
R355			
	65,81	63,26	2,54
R356	65,18	63,76	1,42
R357	65,33	64,26	1,07
R358	65,81	64,76	1,04
R359	66,29	65,26	1,03
R360	66,73	65,76	0,97
R361	67,15	66,26	0,89
R362_	68,28	65,46	2,81
R363	68,42	65,61	2,81
R364	68,29	65,76	2,52
R365	66,71	65,91	0,80
R366	67,73	66,06	1,66
R367_	67,59	66,21	1,38
R368_	68,23	66,36	1,86
R369	69,12	66,51	2,60
R370	70,10	66,66	3,44
R371	53,45	51,79	1,65
R372	54,30	52,29	2,00
R373	53,69	52,79	0,89
R374	55,25	53,29	1,96
R375	57,64	53,79	3,84
R376	57,48	54,29	3,19
R377	58,31	54,79	3,52
R378	58,94	55,29	3,65
R379	59,29	55,79	3,50
R380	59,13	55,94	3,18
R381	58,44	56,09	2,34
R382	58,20	56,24	1,96
R383	58,24	56,39	1,84
R384	58,45	56,54	1,91
R385	58,86	56,69	2,16
R386	58,87	56,84	2,10
R387	59,21 .	, 50,00	2,02
R388	59,00	57,14	1,86
R389	59,00	57,14	1,70
R390	59,11	57,44	
R391	59,22	57,59	1,66
1(3))	37,22	31,39	1,62

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R392	59,22	57,74	1,47
R393	59,22	57,89	1,32
R394	59,22	58,04	1,17
R395	59,22	58,19	1,02
R396	57,83	53,94	3,88
R397	57,65	54,09	3,56
R398	57,24	54,24	2,99
R399	56,89	54,39	2,49
R400	56,63	54,54	2,08
R401	57,14	54,69	2,44
R402	58,96	56,84	2,11
R403	59,20	56,99	2,20
R404	59,70	57,14	2,56
R405	59,94	57,29	2,65
R406	60,05	57,44	2,61
R407	60,12	57,59	2,52
R408	60,72	57,74	2,97
R409	61,09	57,89	3,20
R410	59,96	58,04	1,92
R411	59,15	57,96	1,19
R412	59,13	58,11	1,02
R413	59,41	58,26	1,15
R414	59,91	58,41	1,13
R415	60,02	58,56	1,45
R416	60,17	58,71	1,46
R417	60,34	58,86	1,40
R418	60,59	59,01	1,58
R419	60,87	59,16	1,71
R420	60,62	59,31	1,31
R421	58,90	56,84	
R422	58,78	56,99	2,06
R423	59,05	57,14	1,78
R424	58,64	57,14	1,91 1,38
R425	59,03	57,41	
R426	58,84	57,56	1,62
R427	59,02	57,71	1,28
R428	59,52	57,86	1,31
R429	59,18	58,01	1,66
R430	59,26	58,16	1,16
R431	59,10	58,31	1,09
R433	51,14	49,77	0,79
R434	52,28	50,02	1,37
R435	53,05	50,27	2,26
R436	53,30	50,52	2,79
R437	52,55	50,77	2,78
R438	52,54	51,02	1,78
R439	52,72	51,02	1,52
R440	52,60	51,52	1,45
R441	52,73	51,77	1,08 0,97
R442	54,05	52,02	
R443	54,53	52,02	2,04
R444	55,04	52,52	2,26
^3111	33,04	32,34	2,52

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R445	55,11	52,77	2,34
R446	55,95	53,02	2,93
R447	54,69	53,27	1,42
R448	55,70	53,52	2,18
R449	57,19	53,77	3,42
R450	57,52	54,02	3,50
R451	55,07	54,17	0,90
R452	55,09	54,32	0,77
R453	55,21	54,47	0,74
R454	55,52	54,62	0,90
R455	56,64	54,77	1,88
R456	57,48	54,92	2,57
R457	56,71	55,07	1,64
R458	56,64	55,22	1,42
R459	56,52	55,37	1,15
R462	49,85	49,63	0,22
R463	50,14	49,41	0,73
R464	52,26	49,41	3,09
R465	62,76	61,06	1,70
R466	63,87	61,21	2,66
R467	64,45	61,36	3,09
R468	65,22	61,51	
R469			3,71
	64,88	61,66	3,22
R470	64,89	61,81	3,08
R471	64,91	61,96	2,95
R472 R473	64,77	62,11	2,67
	64,99	62,26	2,73
R474	64,48	62,41	2,08
R475 R476	64,20	62,56	1,64
	63,84	62,71	1,13
R477	64,02	62,86	1,16
R478	64,41	63,01	1,40
R479	60,48	58,63	1,85
R480	60,54	58,78	1,76
R481	60,66	58,93	1,74
R482	60,61	59,08	1,53
R483	60,81	59,23	1,58
R484	61,23	59,38	1,85
R485	61,69	59,53	2,16
R486	61,83	59,65	2,18
R487	62,18	59,80	2,38
R488	62,09	59,95	2,14
R489	62,04	60,10	1,93
R490	66,47	63,12	3,35
R491	66,74	63,27	3,47
R492	67,01	63,42	3,59
R493	67,27	63,57	3,70
R494	67,40	63,72	3,68
R495	67,56	63,87	3,69
R496	67,61	64,02	3,59
R497	67,79	64,17	3,63
R498	67,80	64,23	3,57

Numéro regard	Z tampon	Z fil d'eau	Profondeur regard
R499	68,49	64,37	4,12
R500	68,87	64,52	4,35
R501	69,02	64,67	4,35
R502	68,45	64,82	3,63
R503	67,97	64,97	3,01
R504	67,40	65,12	2,28
R505	67,20	65,27	1,93
R506	67,15	65,42	1,73
R507	69,31	67,04	2,26
R508	69,97	67,19	2,78
R509	70,23	67,34	2,89
R510	70,46	67,49	2,97
R511	71,04	67,64	3,40
R512	70,53	67,79	2,74
R513	71,16	67,94	3,22
R514	71,36	68,09	3,26
R515	71,24	68,24	3,00
R516	71,13	68,39	2,74
R517	70,85	68,54	2,31
R518	70,55	68,69	1,86
R519	70,05	68,84	1,21
R520	56,69	54,91	1,78
R521	57,20	55,51	1,69
R522	58,26	56,11	2,15
R523	59,04	56,71	2,33
R524	58,84	57,31	1,53
R525	59,42	57,91	1,51
R526	60,36	58,51	1,86
R527	61,50	59,11	2,40
R528	61,94	59,71	2,24
R529	62,91	60,31	2,60
R530	64,61	60,91	3,70
R532	62,05	61,19	0,86
R533	62,08	61,34	0,74
R534	62,17	61,50	0,67
R535	62,31	61,65	0,65
R536	62,43	61,81	0,62
R539	62,47	61,80	0,67
R540	64,04	61,65	2,39
R541	65,55	61,50	4,06
R542	54,38	53,33	1,06

Tableau 2 : Récapitulatif des résultats de dimensionnement du réseau eaux usées

23/05/2005

Méthode de dimensionnement Manning & Strickler K (coeff. de Manning) = 80.00 (PVC pour eaux usées)

			Pente	Longueur	Qm	Omr	Qme	Omst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Tronçon	D th (mm)	Dc (mm)		m	1/s	1/s	1 / s	1 / s	1/s	1 / s	1 / s	m/s	m/s	m/s
									173					ш/з
R1-R2	33	250	0,5%	50	47,633	0,205	-	0,205	-	0,382	0,191	0,89	0,89	0,55
R2-R3	49	250	0,5%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,89	0,89	0,55
R3-R4	60	250	0,5%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	0,89	0,89	0,55
R4-R5	68	250	0,5%	50	<u>47,6</u> 33	0,205	0,616	0,821	1,146	1,528	1,337	0,89	0,89	0,55
R5-R6	74	250	0,5%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	0,89	0,89	0,55
R6-R7	80	250	0,5%	50	47,633	0,205	1,026	1,231	1,910	2,293	2,102	0,89	0,89	0,55
R7-R8	85	250	0,5%	50	47,633	0,205	1,231	1,436	2,293	2,675	2,484	0,89	0,89	0,55
R8-R9	90	250	0,5%	50	47,633	0,205	1,436	1,641	2,675	3,057	2,866	0,89	0,89	0,55
R9-R10	94	250	0,5%	50	47,633	0,205	1,641	1,847	3,057	3,439	3,248	0,89	0,89	0,55
R10-R11	98	250	0,5%	50	47,633	0,205	1,847	2,052	3,439	3,821	3,630	0,89	0,89	0,55
R11-R12	102	250	0,5%	50	47,633	0,205	2,052	2,257	3,821	4,203	4,012	0,89	0,89	0,55
R12-R13	106	250	0,5%	50	47,633	0,205	2,257	2,462	4,203	4,585	4,394	0,89	0,89	0,55
R13-R14	109	250	0,5%	50	47,633	0,205	2,462	2,667	4,585	4,967	4,776	0,89	0,89	0,55
R14-R15	112	250	0,5%	50	47,633	0,205	2,667	2,873	4,967	5,349	5,158	0,89	0,89	0,55
R15-R16	115	250	0,5%	50	47,633	0,205	2,873	3,078	5,349	5,731	5,540	0,89	0,89	0,55
R16-R17	118	250	0,5%	50	47,633	0,205	3,078	3,283	5,731	6,114	5,922	0,89	0,89	0,55
R17-R18	121	250	0,5%	50	47,633	0,205	3,283	3,488	6,114	6,496	6,305	0,89	0,89	0,55
R18-R19	124	250	0,5%	50	47,633	0,205	3,488	3,693	6,496	6,878	6,687	0,89	0,89	0,55
R19-R20	126	250	0,5%	50	47,633	0,205	3,693	3,898	6,878	7,260	7,069	0,89	0,89	0,55
R20-R21	129	250	0,5%	50	47,633	0,205	3,898	4,104	7,260	7,642	7,451	0,89	0,89	0,55
R21-R22	131	250	0,5%	50	47,633	0,205	4,104	4,309	7,642	8,024	7,833	0,89	0,89	0,55
R22-R23	134	250	0,5%	50	47,633	0,205	4,309	4,514	8,024	8,406	8,215	0,89	0,89	0,55
R23-R24	136	250	0,5%	50	47,633	0,205	4,514	4,719	8,406	8,788	8,597	0,89	0,89	0,55
R24-R25	138	250	0,5%	50	47,633	0,205	4,719	4,924	8,788	9,170	8,979	0,89	0,89	0,55
R26-R27	155	250	0,3%	50	54,288	0,267	5,006	5,274	9,208	9,700	9,454	0,69	0,69	0,42
R27-R28	158	250	0,3%	50	54,288	0,267	5,274	5,541	9,700	10,191	9,945	. 0,69	0,69	0,42
R28-R29	161	250	0,3%	50	54,288	0,267	5,541	5,808	10,191	10,683	10,437	0,69	0,69	0,42
R29-R30	164	250	0,3%	50	54,288	0,267	5,808	6,075	10,683	11,174	10,929	0,69	0,69	0,42
R30-R31	166	250	0,3%	50	54,288	0,267	6,075	6,343	11,174	11,666	11,420	0,69	0,69	0,42
R31-R32	169	250	0,3%	50	54,288	0,267	6,343	6,610	11,666	12,157	11,912	0,69	0,69	0,42
R32-R33	172	250	0,3%	50	54,288	0,267	6,610	6,877	12,157	12,649	12,403	0,69	0,69	0,42
R33-R34	174	250	0,3%	50	54,288	0,267	6,877	7,144	12,649	13,141	12,895	0,69	0,69	0,42
R34-R35	177	250	0,3%	50	54,288	0,267	7,144	7,412	13,141	13,632	13,386	0,69	0,69	0,42
R35-R36	179	250	0,3%	50	54,288	0,267	7,412	7,679	13,632	14,124	13,878	0,69	0,69	0,42

Alimentation en eau et évacuation des eaux usées et pluviales de la Zac de Guinth / Thiès

Tronçon	D th (mm)	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Honçon	D in (inin)			m	1/s	1/s	1 / s	1/s	1 / s	1 / s	l / s	m/s	m/s	m/s
R36-R37	181	250	0,3%	50	54,288	0,267	7,679	7,946	14,124	14,615	14,369	0,69	0,69	0,42
R37-R38	184	250	0,3%	50	54,288	0,267	7,946	8,213	14,615	15,107	14,861	0,69	0,69	0,42
R38-R39	186	250	0,3%	50	54,288	0,267	8,213	8,481	15,107	15,598	15,353	0,69	0,69	0,42
R39-R40	188	250	0,3%	50	54,288	0,267	8,481	8,748	15,598	16,090	15,844	0,69	0,69	0,42
R40-R41	190	250	0,3%	50	54,288	0,267	8,748	9,015	16,090	16,582	16,336	0,69	0,69	0,42
R41-R42	182	250	0,4%	50	54,288	0,267	9,015	9,282	16,582	17,073	16,827	0,80	0,80	0,49
R42-R43	184	250	0,4%	50	54,288	0,267	9,282	9,550	17,073	17,565	17,319	0,80	0,80	0,49
R43-R44	186	250	0,4%	50	54,288	0,267	9,550	9,817	17,565	18,056	17,810	0,80	0,80	0,49
R44-R45	188	250	0,4%	50	54,288	0,267	9,817	10,084	18,056	18,548	18,302	0,80	0,80	0,49
R45-R46	190	250	0,4%	50	54,288	0,267	10,084	10,351	18,548	19,039	18,794	0,80	0,80	0,49
R25-R26	140	250	0,5%	55	47,633	0,082	4,924	5,006	9,170	9,323	9,247	0,89	0,89	0,55
R47-R48	_39	250	0,3%	50	54,288	0,267	•	0,267	-	0,492	0,246	0,69	0,69	0,42
R48-R49	60	250	0,3%	50	54,288	0,267	0,267	0,535	0,492	0,983	0,737	0,69	0,69	0,42
R49-R50	72	250	0,3%	50	54,288	0,267	0,535	0,802	0,983	1,475	1,229	0,69	0,69	0,42
R50-R51	82	250	0,3%	50	54,288	0,267	0,802	1,069	1,475	1,966	1,720	0,69	0,69	0,42
R51-R52	90	250	0,3%	50	54,288	0,267	1,069	1,336	1,966	2,458	2,212	0,69	0,69	0,42
R52-R53	97	250	0,3%	50	54,288	0,267	1,336	1,604	2,458	2,949	2,704	0,69	0,69	0,42
R53-R54	103	250	0,3%	50	54,288	0,267	1,604	1,871	2,949	3,441	3,195	0,69	0,69	0,42
R54-R55	109	250	0,3%	50	54,288	0,267	1,871	2,138	3,441	3,932	3,687	0,69	0,69	0,42
R55-R56	114	250	0,3%	50	54,288	0,267	2,138	2,405	3,932	4,424	4,178	0,69	0,69	0,42
R56-R57	119	250	0,3%	50	54,288	0,267	2,405	2,673	4,424	4,916	4,670	0,69	0,69	0,42
R57-R58	123	250	0,3%	50	54,288	0,267	2,673	2,940	4,916	5,407	5,161	0,69	0,69	0,42
R58-R59	128	250	0,3%	50	54,288	0,267	2,940	3,207	5,407	5,899	5,653	0,69	0,69	0,42
R59-R60	132	250	0,3%	50	54,288	0,267	3,207	3,474	5,899	6,390	6,145	0,69	0,69	0,42
R60-R61	136	250	0,3%	50	54,288	0,267	3,474	3,742	6,390	6,882	6,636	0,69	0,69	0,42
R61-R62	139	250	0,3%	50	54,288	0,267	3,742	4,009	6,882	7,373	7,128	0,69	0,69	0,42
R62-R63	143	250	0,3%	50	54,288	0,267	4,009	4,276	7,373	7,865	7,619	0,69	0,69	0,42
R63-R64	146	250	0,3%	50	54,288	0,267	4,276	4,543	7,865	8,357	8,111	0,69	0,69	0,42
R64-R65	150	250	0,3%	50	54,288	0,267	4,543	4,811	8,357	8,848	8,602	0,69	0,69	0,42
R65-R66	153	250	0,3%	50	54,288	0,267	4,811	5,078	8,848	9,340	9,094	0,69	0,69	0,42
R67-R68	39	250	0,3%	50	54,288	0,267	-	0,267	-	0,492	0,246	0,69	0,69	0,42
R68-R69	60	250	0,3%	50	54,288	0,267	0,267	0,535	0,492	0,983	0,737	0,69	0,69	0,42
R69-R70	72	250	0,3%	50	54,288	0,267	0,535	0,802	0,983	1,475	1,229	0,69	0,69	0,42
R70-R71	82	250	0,3%	50	54,288	0,267	0,802	1,069	1,475	1,966	1,720	0,69	0,69	0,42
R71-R72	90	250	0,3%	50	54,288	0,267	1,069	1,336	1,966	2,458	2,212	0,69	0,69	0,42
R72-R73	97	250	0,3%	50	54,288	0,267	1,336	1,604	2,458	2,949	2,704	0,69	0,69	0,42
R73-R74	103	250	0,3%	50	54,288	0,267	1,604	1,871	2,949	3,441	3,195	0,69	0,69	0,42
R74-R75	109	250	0,3%	50	54,288	0,267	1,871	2,138	3,441	3,932	3,687	0,69	0,69	0,42
R76-R77	183	250	0,3%	50	54,288	0,267	7,865	8,132	14,466	14,957	14,711	0,69	0,69	0,42
R77-R78	185	250	0,3%	50	54,288	0,267	8,132	8,399	14,957	15,449	15,203	0,69	0,69	0,42
R78-R79	187	250	0,3%	50	54,288	0,267	8,399	8,666	15,449	15,940	15,695	0,69	0,69	0,42

Alimentation en eau et évacuation des eaux usées et pluviales de la Zac de Guinth / Thiès

Transon	D th (mm)	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Tronçon	D iii (iiiiii)			m	1/s	1/s	l / s	1 / s	1/s	1 / s	1 / s	m/s	m/s	m/s
R79-R80	189	250	0,3%	50	54,288	0,267	8,666	8,934	15,940	16,432	16,186	0,69	0,69	0,42
R80-R81	192	250	0,3%	50	54,288	0,267	8,934	9,201	16,432	16,923	16,678	0,69	0,69	0,42
R81-R82	194	250	0,3%	50	54,288	0,267	9,201	9,468	16,923	17,415	17,169	0,69	0,69	0,42
R82-R83	196	250	0,3%	50	54,288	0,267	9,468	9,736	17,415	17,907	17,661	0,69	0,69	0,42
R83-R84	198	250	0,3%	50	54,288	0,267	9,736	10,003	17,907	18,398	18,152	0,69	0,69	0,42
R84-R85	200 -	250	0,3%	50	54,288	0,267	10,003	10,270	18,398	18,890	18,644	0,69	0,69	0,42
R85-R86	202	250	0,3%	50	54,288	0,267	10,270	10,537	18,890	19,381	19,135	0,69	0,69	0,42
R86-R87	204	250	0,3%	50	54,288	0,267	10,537	10,805	19,381	19,873	19,627	0,69	0,69	0,42
R87-R88	206	250	0,3%	50	54,288	0,267	10,805	11,072	19,873	20,364	20,119	0,69	0,69	0,42
R88-R89	207	250	0,3%	50	54,288	0,267	11,072	11,339	20,364	20,856	20,610	0,69	0,69	0,42
R89-R90	209	250	0,3%	50	54,288	0,267	11,339	11,606	20,856	21,347	21,102	0,69	0,69	0,42
R90-R91	211	250	0,3%	50	54,288	0,267	11,606	11,874	21,347	21,839	21,593	0,69	0,69	0,42
R91-R92	213	250	0,3%	50	54,288	0,267	11,874	12,141	21,839	22,331	22,085	0,69	0,69	0,42
R92-R93	215	250	0,3%	50	54,288	0,267	12,141	12,408	22,331	22,822	22,576	0,69	0,69	0,42
R93-R94	216	250	0,3%	50	54,288	0,267	12,408	12,675	22,822	23,314	23,068	0,69	0,69	0,42
R94-R95	255	315	0,3%	50	54,288	0,267	19,357	19,624	35,603	36,094	35,849	0,81	0,81	0,50
R95-R96	257	315	0,3%	50	54,288	0,267	19,624	19,891	36,094	36,586	36,340	0,81	0,81	0,50
R96-R97	258	315	0,3%	50	54,288	0,267	19,891	20,158	36,586	37,077	36,832	0,81	0,81	0,50
R97-R98	259	315	0,3%	50	54,288	0,267	20,158	20,426	37,077	37,569	37,323	0,81	0,81	0,50
R98-R99	260	315	0,3%	50	54,288	0,267	20,426	20,693	37,569	38,061	37,815	0,81	0,81	0,50
R99-R100	262	315	0,3%	50	54,288	0,267	20,693	20,960	38,061	38,552	38,306	0,81	0,81	0,50
R75-R101	113	250	0,3%	25	54,288	0,134	2,138	2,272	3,932	4,178	4,055	0,69	0,69	0,42
R101-R76	181	250	0,3%	25	54,288	0,134	7,731	7,865	14,220	14,466	14,343	0.69	0,69	0,42
R66-R101	156	250	0,3%	71	54,288	0,382	5,078	5,459	9,340	10,042	9,691	0,69	0,69	0,42
R102-R103	35	250	0,6%	50	54,288	0,267		0,267	-	0,492	0,246	0,98	0,98	0,60
R103-R104	52	250	0,6%	50	54,288	0,267	0,267	0,535	0,492	0,983	0,737	0,98	0,98	0,60
R104-R105	63	250	0,6%	50	54,288	0,267	0,535	0,802	0,983	1,475	1,229	0,98	0,98	0,60
R105-R106	72	250	0,6%	50	54,288	0,267	0,802	1,069	1,475	1,966	1,720	0,98	0,98	0,60
R106-R107	79	250	0,6%	50	54,288	0,267	1,069	1,336	1,966	2,458	2,212	0,98	0,98	0,60
R107-R108	238	315	0,6%	50	54,288	0,267	22,657	22,924	41,673	42,165	41,919	1,14	1,13	0,71
R108-R109	239	315	0,6%	50	54,288	0,267	22,924	23,192	42,165	42,657	42,411	1,14	1,13	0,71
R109-R110	240	315	0,6%	50	54,288	0,267	23,192	23,459	42,657	43,148	42,902	1,14	1,13	0,71
R110-R111	241	315	0,6%	50	54,288	0,267	23,459	23,726	43,148	43,640	43,394	1,14	1,13	0,71
R111-R112	242	315	0,6%	50	54,288	0,267	23,726	23,993	43,640	44,131	43,885	1,14	1,13	0,71
R112-R113	279	315	0,6%	50	54,288	0,267	34,738	35,005	63,893	64,385	64,139	1,14	1,14	0,70
R113-R114	280	315	0,6%	50	54,288	0,267	35,005	35,272	64,385	64,876	64,631	1,14	1,14	0,70
R114-R115	281	315	0,6%	50	54,288	0,267	35,272	35,540	64,876	65,368	65,122	1,14	1,14	0,70
R115-R116	281	315	0,6%	50	54,288	0,267	35,540	35,807	65,368	65,860	65,614	1,14	1,14	0,70
R116-R117	282	315	0,6%	50	54,288	0,267	35,807	36,074	65,860	66,351	66,105	1,14	1,14	0,70
R117-R118	283	315	0,6%	50	54,288	0,267	36,074	36,341	66,351	66,843	66,597	1,14	1,14	0,70
R118-R119	323	400	0,3%	50	54,288	0,267	36,341	36,609	66,843	67,334	67,088	0,94	0,94	0,58

Tronçon	D th (mm)	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Honçon	D iii (iiiiii)			m	1/s	1 / s	1 / s	1/s	1/s	1 / s	1 / s	m/s	m/s	m/s
R119-R120	324	400	0,3%	50	54,288	0,267	36,609	36,876	67,334	67,826	67,580	0.94	0.94	0,58
R120-R121	325	400	0,3%	50	54,288	0,267	36,876	37,143	67,826	68,317	68,072	0,94	0,94	0,58
R121-R122	326	400	0,3%	50	54,288	0,267	37,143	37,410	68,317	68,809	68,563	0.94	0,94	0,58
R122-R123	327	400	0,3%	50	54,288	0,267	37,410	37,678	68,809	69,300	69,055	0,94	0,94	0,58
R123-R124	327	400	0,3%	50	54,288	0,267	37,678	37,945	69,300	69,792	69,546	0,94	0.94	0,58
R124-R125	328	400	0,3%	50	54,288	0,267	37,945	38,212	69,792	70,284	70,038	0,94	0,94	0,58
R125-R126	329	400	0,3%	50	54,288	0,267	38,212	38,479	70,284	70,775	70,529	0,94	0,94	0,58
R126-R127	330-	400	0,3%	50	54,288	0,267	38,479	38,747	70,775	71,267	71,021	0.94	0,94	0,58
R127-R128	331	400	0,3%	50	54,288	0,267	38,747	39,014	71,267	71,758	71,512	0,94	0.94	0,58
R128-R129	332	400	0,3%	50	54,288	0,267	39,014	39,281	71,758	72,250	72,004	0,94	0,94	0,58
R129-R130	332	400	0,3%	25	54,288	0,134	39,281	39,415	72,250	72,496	72,373	0,94	0.94	0,58
R130-R131	342	400	0,3%	50	54,288	0,267	42,355	42,622	77,903	78,394	78,149	0,94	0,94	0,58
R131-R132	343	400	0,3%	50	54,288	0,267	42,622	42,889	78,394	78,886	78,640	0,94	0,94	0,58
R132-R133	312	400	0,5%	50	54,288	0,267	42,889	43,156	78,886	79,377	79,132	1,22	1,21	0,76
R133-R134	313	400	0,5%	50	54,288	0,267	43,156	43,424	79,377	79,869	79,623	1,22	1,21	0,76
R134-R135	314	400	0,5%	50	54,288	0,267	43,424	43,691	79,869	80,361	80,115	1,22	1,21	0,76
R135-R136	314	400	0,5%	50	54,288	0,267	43,691	43,958	80,361	80,852	80,606	1,22	1,21	0,76
R136-R137	315	400	0,5%	50	54,288	0,267	43,958	44,225	80,852	81,344	81,098	1,22	1,21	0,76
R137-R138	316	400	0,5%	50	54,288	0,267	44,225	44,493	81,344	81,835	81,590	1,22	1,21	0,76
R138-R139	317	400	0,5%	50	54,288	0,267	44,493	44,760	81,835	82,327	82,081	1,22	1,22	0,75
R139-R140	317	400	0,5%	50	54,288	0,267	44,760	45,027	82,327	82,818	82,573	1,22	1,22	0,75
R140-R141	318	400	0,5%	50	54,288	0,267	45,027	45,294	82,818	83,310	83,064	1,22	1,22	0,75
R100-R107	199	315	1,3%	67	54,288	0,361	20,960	21,321	38,552	39,216	38,884	1,69	1,68	1,05
R46-R112	192	250	0,4%	74	54,288	0,393	10,351	10,744	19,039	19,762	19,401	0,80	0,80	0,49
R151-R152	207	250	0,3%	50	54,288	0,267	11,006	11,273	20,243	20,735	20,489	0,69	0,69	0,42
R152-R154	209	250	0,3%	50	54,288	0,267	11,273	11,540	20,735	21,226	20,981	0,69	0,69	0,42
R154-R155	211	250	0,3%	50	54,288	0,267	11,540	11,808	21,226	21,718	21,472	0,69	0,69	0,42
R155-R156	212	250	0,3%	50	54,288	0,267	11,808	12,075	21,718	22,210	21,964	0,69	0.69	0,42
R156-R157	214	250	0,3%	50	54,288	0,267	12,075	12,342	22,210	22,701	22,455	0,69	0,69	0,42
R157-R158	216	250	0,3%	50	54,288	0,267	12,342	12,610	22,701	23,193	22,947	0,69	0,69	0,42
R158-R159	218	250	0,3%	50	54,288	0,267	12,610	12,877	23,193	23,684	23,438	0,69	0,69	0,42
R159-R160	219	250	0,3%	50	54,288	0,267	12,877	13,144	23,684	24,176	23,930	0,69	0,69	0,42
R160-R161	221	250	0,3%	50	54,288	0,267	13,144	13,411	24,176	24,667	24,422	0,69	0,69	0,42
R161-R162	223	250	0,3%	50	54,288	0,267	13,411	13,679	24,667	25,159	24,913	0,69	0,69	0,42
R141-R184	319	400	0,5%	40	54,288	0,214	45,294	45,508	83,310	83,703	83,507	1,22	1,22	0,75
R185-R184	150	250	0,3%	50	54,288	0,267	4,543	4,811	8,357	8,848	8,602	0,69	0,69	0,42
R186-R185	146	250	0,3%	50	54,288	0,267	4,276	4,543	7,865	8,357	8,111	0,69	0,69	0,42
R187-R186	143	250	0,3%	50	54,288	0,267	4,009	4,276	7,373	7,865	7,619	0,69	0,69	0,42
R188-R187	139	250	0,3%	50	54,288	0,267	3,742	4,009	6,882	7,373	7,128	0,69	0,69	0,42
R189-R188	136	250	0,3%	50	54,288	0,267	3,474	3,742	6,390	6,882	6,636	0,69	0,69	0,42
R190-R189	94	250	1,8%	50	54,288	0,267	3,207	3,474	5,899	6,390	6,145	1,69	1,69	1,04

Alimentation en eau et évacuation des eaux usées et pluviales de la Zac de Guinth / Thiès

Troncon	D th (mm)	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Hongon	D al (lillil)			m	1 / s	1 / s	1 / s	1 / s	1 / s	1 / s	1 / s	m/s	m,/s	m/s
R191-R190	91	250	1,8%	50	54,288	0,267	2,940	3,207	5,407	5,899	5,653	1,69	1,69	1,04
R192-R191	88	250	1,8%	50	54,288	0,267	2,673	2,940	4,916	5,407	5,161	1,69	1,69	1,04
R193-R192	85 -	250	1,8%	50	54,288	0,267	2,405	2,673	4,424	4,916	4,670	1,69	1,69	1,04
R194-R193	81	250	1,8%	50	54,288	0,267	2,138	2,405	3,932	4,424	4,178	1,69	1,69	1,04
R195-R194	84	250	1,2%	50	54,288	0,267	1,871	2,138	3,441	3,932	3,687	1,38	1,38	0,85
R196-R195	80	250	1,2%	50	54,288	0,267	1,604	1,871	2,949	3,441	3,195	1,38	1,38	0,85
R197-R196	75	250	1,2%	50	54,288	0,267	1,336	1,604	2,458	2,949	2,704	1,38	1,38	0,85
R198-R197	69	250	1,2%	50	54,288	0,267	1,069_	1,336	1,966	2,458	2,212	1,38	1,38	0,85
R199-R198	63	250	1,2%	50	54,288	0,267	0,802	1,069	1,475	1,966	1,720	1,38	1,38	0,85
R200-R199	56	250	1,2%	50	54,288	0,267	0,535	0,802	0,983	1,475	1,229	1,38	1,38	0,85
R201-R200	46	250	1,2%	50	54,288	0,267	0,267	0,535	0,492	0,983	0,737	1,38	1,38	0,85
R202-R201	30	250	1,2%	50	54,288	0,267	-	0,267		0,492	0,246	1,38	1,38	0,85
R203-R184	251	315	0,3%	50	54,288	0,267	18,529	18,797	34,081	34,573	34,327	0,81	0,81	0,50
R204-R203	250	250	0,3%	50	54,288	0,267	18,262	18,529	33,590	34,081	33,835	0,69	0,69	0,42
R205-R204	249	250	0,3%	50	54,288	0,267	17,995	18,262	33,098	33,590	33,344	0,69	0,69	0,42
R206-R205	247	250	0,3%	50	54,288	0,267	17,728	17,995	32,606	33,098	32,852	0,69	0,69	0,42
R207-R206	246	250	0,3%	50	54,288	0,267	17,460	17,728	32,115	32,606	32,361	0,69	0,69	0,42
R208-R207	244	250	0,3%	50	54,288	0,267	17,193	17,460	31,623	32,115	31,869	0,69	0,69	0,42
R209-R208	243	250	0,3%	50	54,288	0,267	16,926	17,193	31,132	31,623	31,377	0,69	0,69	0,42
R210-R209	242 -	250	0,3%	50	54,288	0,267	16,659	16,926	30,640	31,132	30,886	0,69	0,69	0,42
R211-R210	240	250	0,3%	50	54,288	0,267	16,391	16,659	30,149	30,640	30,394	0,69	0,69	0,42
R212-R211	239	250	0,3%	50	54,288	0,267	16,124	16,391	29,657	30,149	29,903	0,69	0,69	0,42
R213-R212	237	250	0,3%	50	54,288	0,267	15,857	16,124	29,165	29,657	29,411	0,69	0,69	0,42
R215-R94	170	250	0,3%	50	54,288	0,267	6,414	6,681	11,797	12,289	12,043	0,69	0,69	0,42
R216-R215	167	250	0,3%	50	54,288	0,267	6,147	6,414	11,306	11,797	11,552	0,69	0,69	0,42
R217-R216	164	250	0,3%	50	54,288	0,267	5,880	6,147	10,814	11,306	11,060	0,69	0,69	0,42
R218-R217	162	250	0,3%	50	54,288	0,267	5,612	5,880	10,323	10,814	10,569	0,69	0,69	0,42
R219-R218	159	250	0,3%	50	54,288	0,267	5,345	5,612	9,831	10,323	10,077	0,69	0,69	0,42
R220-R219	156	250	0,3%	50	54,288	0,267	5,078	5,345	9,340	9,831	9,585	0,69	0,69	0,42
R221-R220	153	250	0,3%	50	54,288	0,267	4,811	5,078	8,848	9,340	9,094	0,69	0,69	0,42
R222-R221	150	250	0,3%	50	54,288	0,267	4,543	4,811	8,357	8,848	8,602	0,69	0,69	0,42
R223-R222	146	250	0,3%	50	54,288	0,267	4,276	4,543	7,865	8,357	8,111	0,69	0,69	0,42
R224-R223	72	250	0,3%	50	54,288	0,267	0,535	0,802	0,983	1,475	1,229	0,69	0,69	0,42
R225-R224	60	250	0,3%	50	54,288	0,267	0,267	0,535	0,492	0,983	0,737	0,69	0,69	0,42
R226-R225	39	250	0,3%	50	54,288	0,267	-	0,267		0,492	0,246	0,69	0,69	0,42
R162-R227	225	250	0,3%	59	54,288	0,313	13,679	13,992	25,159	25,735	25,447	0,69	0,69	0,42
R227-R163	226	250	0,3%	50	54,288	0,267	13,992	14,259	25,735	26,226	25,980	0,69	0,69	0,42
R163-R164	228	250	0,3%	50	54,288	0,267	14,259	14,526	26,226	26,718	26,472	0,69	0,69	0,42
R164-R165	229	250	0,3%	50	54,288	0,267	14,526	14,793	26,718	27,209	26,964	0,69	0,69	0,42
R165-R166	231	250	0,3%	50	54,288	0,267	14,793	15,061	27,209	27,701	27,455	0,69	0,69	0,42
R166-R167	233	250	0,3%	50	54,288	0,267	15,061	15,328	27,701	28,192	27,947	0,69	0,69	0,42

Alimentation en eau et évacuation des eaux usées et pluviales de la Zac de Guinth / Thiès

Tronçon	D th (mm)	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Hongon	D ai (min)	DC (mm)		m	1/s_	1/s	1/s	l / s	1/s	1/s	1 / s	m/s	m/s	m/s
R167-R168	234	250	0,3%	50	54,288	0,267	15,328	15,595	28,192	28,684	28,438	0,69	0,69	0,42
R168-R169	236	250	0,3%	50	54,288	0,267	15,595	15,862	28,684	29,176	28,930	0,69	0,69	0,42
R169-R170	237	250	0,3%	50	54,288	0,267	15,862	16,130	29,176	29,667	29,421	0,69	0,69	0,42
R170-R184	238	250	0,3%	33	54,288	0,178	16,130	16,308	29,667	29,995	29,831	0,69	0,69	0,42
R173-R174	36	250	0,3%	50	47,633	0,205	•	0,205	-	0,382	0,191	0,69	0,69	0,42
R174-R175	54	250	0,3%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,69	0,69	0,42
R175-R176	66	250	0,3%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	0,69	0,69	0,42
R176-R177	74	250	0,3%	50	47,633	0,205	0,616	0,821	1,146	1,528	1,337	0,69	0,69	0,42
R177-R178	82	250	0,3%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	0,69	0,69	0,42
R178-R179	88	250	0,3%	50	47,633	0,205	1,026	1,231	1,910	2,293	2,102	0,69	0,69	0,42
R179-R180	94	250	0,3%	50	47,633	0,205	1,231	1,436	2,293	2,675	2,484	0,69	0,69	0,42
R180-R181	99	250	0,3%	50	47,633	0,205	1,436	1,641	2,675	3,057	2,866	0,69	0,69	0,42
R181-R182	104	250	0,3%	50	47,633	0,205	1,641	1,847	3,057	3,439	3,248	0,69	0,69	0,42
R182-R228	108	250	0,3%	50	47,633	0,205	1,847	2,052	3,439	3,821	3,630	0,69	0,69	0,42
R228-R229	112	250	0,3%	50	47,633	0,205	2,052	2,257	3,821	4,203	4,012	0,69	0,69	0,42
R229-R230	116	250	0,3%	50	47,633	0,205	2,257	2,462	4,203	4,585	4,394	0,69	0,69	0,42
R230-R231	96	250	1,0%	50	47,633	0,205	2,462	2,667	4,585	4,967	4,776	1,26	1,26	0,77
R231-R232	98	250	1,0%	. 50	47,633	0,205	2,667	2,873	4,967	5,349	5,158	1,26	1,26	0,77
R232-R233	101	250	1,0%	50	47,633	0,205	2,873	3,078	5,349	5,731	5,540	1,26	1,26	0,77
R233-R234	104	250	1,0%	50	47,633	0,205	3,078	3,283	5,731	6,114	5,922	1,26	1,26	0,77
R234-R235	106	250	1,0%	50	47,633	0,205	3,283	3,488	6,114	6,496	6,305	1,26	1,26	0,77
R236-R237	111	250	1,0%	50	47,633	0,205	3,713	3,919	6,915	7,297	7,106	1,26	1,26	0,77
R237-R238	113	250	1,0%	50	47,633	0,205	3,919	4,124	7,297	7,679	7,488	1,26	1,26	0,77
R238-R239	115	250	1,0%	50	47,633	0,205	4,124	4,329	7,679	8,062	7,870	1,26	1,26	0,77
R239-R240	117	250	1,0%	50	47,633	0,205	4,329	4,534	8,062	8,444	8,253	1,26	1,26	0,77
R240-R241	119	250	1,0%	50	47,633	0,205	4,534	4,739	8,444	8,826	8,635	1,26	1,26	0,77
R241-R242	121	250	1,0%	50	47,633	0,205	4,739	4,944	8,826	9,208	9,017	1,26	1,26	0,77
R242-R243	123	250	1,0%	50	47,633	0,205	4,944	5,150	9,208	9,590	9,399	1,26	1,26	0,77
R243-R244	125	250	1,0%	50	47,633	0,205	5,150	5,355	9,590	9,972	9,781	1,26	1,26	0,77
R244-R245	127	250	1,0%	50	47,633	0,205	5,355	5,560	9,972	10,354	10,163	1,26	1,26	0,77
R235-R236	109	250	1,0%	55	47,633	0,225	3,488	3,713	6,496	6,915	6,705	1,26	1,26	0,77
R246-R245	128	250	2,6%	30	47,633	0,123	8,860	8,983	16,499	16,728	16,614	2,02	2,02	1,24
R247-R246	190	250	0,3%	50	47,633	0,205	8,655	8,860	16,117	16,499	16,308	0,69	0,69	0,42
R248-R247	188	250	0,3%	50	47,633	0,205	8,449	8,655	15,735	16,117	15,926	0,69	0,69	0,42
R249-R248	187	250	0,3%	50	47,633	0,205	8,244	8,449	15,353	15,735	15,544	0,69	0,69	0,42
R250-R249	185	250	0,3%	50	47,633	0,205	8,039	8,244	14,971	15,353	15,162	0,69	0,69	0,42
R251-R250	183	250	0,3%	50	47,633	0,205	7,834	8,039	14,589	14,971	14,780	0,69	0,69	0,42
R252-R251	181	250	0,3%	50	47,633	0,205	7,629	7,834	14,207	14,589	14,398	0,69	0,69	0,42
R253-R252	180	250	0,3%	50	47,633	0,205	7,424	7,629	13,824	14,207	14,015	0,69	0,69	0,42
R254-R253	178	250	0,3%	50	47,633	0,205	7,218	7,424	13,442	13,824	13,633	0,69	0,69	0,42
R255-R254	138	250	1,1%	50	47,633	0,205	7,013	7,218	13,060	13,442	13,251	1,32	1,32	0,81

	۲,					_								
Tronçon	D th (mm)	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
TTOHÇON	D iii (iiiiii)	De (IIIII)		m	1/s	1 / s	1 / s	l / s	1/s	l / s	1 / s	m/s	m/s	tn/s
R256-R255	136	250	1,1%	50	47,633	0,205	6,808	7,013	12,678	13,060	12,869	1,32	1,32	0,81
R257-R256	112	250	1,1%	50	47,633	0,205	3,972	4,177	7,397	7,779	7,588	1,32	1,32	0,81
R258-R257	110	250	1,1%	50	47,633	0,205	3,767	3,972	7,015	7,397	7,206	1,32	1,32	0,81
R259-R258	107	250	1,1%	50	47,633	0,205	3,562	3,767	6,633	7,015	6,824	1,32	1,32	0,81
R260-R259	105	250	1,1%	50	47,633	0,205	3,357	3,562	6,251	6,633	6,442	1,32	1,32	0,81
R261-R260	103	250	1,1%	50	47,633	0,205	3,152	3,357	5,869	6,251	6,060	1,32	1,32	0,81
R262-R261	100	250	1,1%	50	47,633	0,205	2,946	3,152	5,487	5,869	5,678	1,32	1,32	0,81
R263-R262	64	250	1,1%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	1,32	1,32	0,81
R264-R263	58	250	1,1%	50	47,633	0,205	0,616	0,821	1,146	1,528	1,337	1,32	1,32	0,81
R265-R264	51	250	1,1%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	1,32	1,32	0,81
R266-R265	42	250	1,1%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	1,32	1,32	0,81
R267-R266	28	250	1,1%	50	47,633	0,205		0,205	-	0,382	0,191	1,32	1,32	0,81
R245-R268	184	250	1,0%	50	47,633	0,205	14,543	14,748	27,082	27,465	27,273	1,26	1,26	0,77
R268-R269	185	250	1,0%	50	47,633	0,205	14,748	14,953	27,465	27,847	27,656	1,26	1,26	0,77
R269-R270	186	250	1,0%	50	47,633	0,205	14,953	15,159	27,847	28,229	28,038	1,26	1,26	0,77
R270-R271	187	250	1,0%	50	47,633	0,205	15,159	15,364	28,229	28,611	28,420	1,26	1,26	0,77
R271-R272	188	250	1,0%	50	47,633	0,205	15,364	15,569	28,611	28,993	28,802	1,26	1,26	0,77
R280-R279	157	250	1,2%	33	47,633	0,136	10,553	10,689	19,651	19,905	19,778	1,38	1,38	0,85
R281-R280	169	250	0,8%	50	47,633	0,205	10,347	10,553	19,269	19,651	19,460	1,13	1,13	0,69
R282-R281	168	250	0,8%	50	47,633	0,205	10,142	10,347	18,887	19,269	19,078	1,13	1,13	0,69
R283-R282	166	250	0,8%	50	47,633	0,205	9,937	10,142	18,505	18,887	18,696	1,13	1,13	0,69
R284-R283	165	250	0,8%	50	47,633	0,205	9,732	9,937	18,123	18,505	18,314	1,13	1,13	0,69
R285-R284	149	250	0,8%	50	47,633	0,205	7,344	7,549	13,675	14,058	13,867	1,13	1,13	0,69
R286-R285	147	250	0,8%	50	47,633	0,205	7,138	7,344	13,293	13,675	13,484	1,13	1,13	0,69
R287-R286	146	250	0,8%	50	47,633	0,205	6,933	7,138	12,911	13,293	13,102	1,13	1,13	0,69
R288-R287	144	250	0,8%	50	47,633	0,205	6,728	6,933	12,529	12,911	12,720	1,13	1,13	0,69
R289-R288	142	250	0,8%	50	47,633	0,205	6,523	6,728	12,147	12,529	12,338	1,13	1,13	0,69
R290-R289	141	250	0,8%	50	47,633	0,205	6,318	6,523	11,765	12,147	11,956	1,13	1,13	0,69
R291-R290	93	250	0,8%	50	47,633	0,205	2,052	2,257	3,821	4,203	4,012	1,13	1,13	0,69
R292-R291	90	250	0,8%	50	47,633	0,205	1,847	2,052	3,439	3,821	3,630	1,13	1,13	0,69
R293-R292	86	250	0,8%	50	47,633	0,205	1,641	1,847	3,057	3,439	3,248	1,13	1,13	0,69
R294-R293	82	250	0,8%	50	47,633	0,205	1,436	1,641	2,675	3,057	2,866	1,13	1,13	0,69
R295-R294	78	250	0,8%	50	47,633	0,205	1,231	1,436	2,293	2,675	2,484	1,13	1,13	0,69
R296-R295	73	250	0,8%	50	47,633	0,205	1,026	1,231	1,910	2,293	2,102	1,13	1,13	0,69
R297-R296	68	250	0,8%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	1,13	1,13	0,69
R298-R297	62	250	0,8%	50	47,633	0,205	0,616	0,821	1,146	1,528	1,337	1,13	1,13	0,69
R299-R298	55	250	0,8%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	1,13	1,13	0,69
R300-R299	45	250	0,8%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	1,13	1,13	0,69
R301-R300	30	250	0,8%	50	47,633	0,205	-	0,205	•	0,382	0,191	1,13	1,13	0,69
R279-R302	195	250	0,4%	38	47,633	0,126	10,689	10,814	19,905	20,139	20,022	0,79	0,79	0,49
R302-R151	200	250	0,3%	36	54,288	0,192	10,814	11,006	19,891	20,243	20,067	0,74	0,74	0,46

Alimentation en eau et évacuation des eaux usées et pluviales de la Zac de Guinth / Thiès

Tronçon	D th (mm)	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Tronçon	D til (IIIII)	De (iiiii)		m	1/s_	1/s	l/s	1 / s	1 / s	1 / s	1 / s	m./s	m./s	m/s
R303-R304	36	250	0,3%	50	47,633	0,205	-	0,205	•	0,382	0,191	0,69	0,69	0,42
R304-R305	54	250	0,3%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,69	0,69	0,42
R305-R306	66	250	0,3%	50	47,633	0,205	0,410_	0,616	0,764	1,146	0,955	0,69	0,69	0,42
R306-R307	74	250	0,3%	50	47,633	0,205	0,616	0,821	1,146	1,528	1,337	0,69	0,69	0,42
R307-R308	82	250	0,3%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	0,69	0,69	0,42
R308-R309	148	250	0,3%	50	47,633	0,205	4,379	4,584	8,154	8,536	8,345	0,69	0,69	0,42
R309-R310	150	250	0,3%	50	47,633	0,205	4,584	4,789	8,536	8,918	8,727	0,69	0,69	0,42
R310-R311	153	250	0,3%	50	47,633	0,205	4,789	4,994	8,918	9,300	9,109	0,69	0,69	0,42
R311-R312	155	250	0,3%	50	47,633	0,205	4,994	5,199	9,300	9,682	9,491	0,69	0,69	0,42
R312-R313	157	250	0,3%	50	47,633	0,205	5,199	5,404	9,682	10,064	9,873	0,69	0,69	0,42
R313-R314	160	250	0,3%	50	47,633	0,205	5,404	5,610	10,064	10,446	10,255	0,69	0,69	0,42
R314-R315	162	250	0,3%	50	47,633	0,205	5,610	5,815	10,446	10,829	10,638	0,69	0,69	0,42
R315-R316	164	250	0,3%	50	47,633	0,205	5,815	6,020	10,829	11,211	11,020	0,69	0,69	0,42
R316-R317	128	250	1,2%	50	47,633	0,205	6,020	6,225	11,211	11,593	11,402	1,38	1,38	0,85
R317-R318	130	250	1,2%	50	47,633	0,205	6,225	6,430	11,593	11,975	11,784	1,38	1,38	0,85
R318-R319	131	250	1,2%	50	47,633	0,205	6,430	6,636	11,975	12,357	12,166	1,38	1,38	0,85
R319-R320	133	250	1,2%	50	47,633	0,205	6,636	6,841	12,357	12,739	12,548	1,38	1,38	0,85
R320-R321	134	250	1,2%	50	47,633	0,205	6,841	7,046	12,739	13,121	12,930	1,38	1,38	0,85
R321-R322	136	250	1,2%	50	47,633	0,205	7,046	7,251	13,121	13,503	13,312	1,38	1,38	0,85
R322-R323	137	250	1,2%	50	47,633	0,205	7,251	7,456	13,503	13,885	13,694	1,38	1,38	0,85
R323-R324	139	250	1,2%	50	47,633	0,205	7,456	7,661	13,885	14,267	14,076	1,38	1,38	0,85
R324-R325	140	250	1,2%	50	47,633	0,205	7,661	7,867	14,267	14,650	14,458	1,38	1,38	0,85
R325-R326	141	250	1,2%	50	47,633	0,205	7,867	8,072	14,650	15,032	14,841	1,38	1,38	0,85
R326-R327	143	250	1,2%	61	47,633	0,251	8,072	8,323	15,032	15,499	15,265	1,38	1,38	0,85
R327-R328	144	250	1,2%	50	47,633	0,205	8,323	8,528	15,499	15,881	15,690	1,38	1,38	0,85
R330-R331	173	250	0,5%	43	47,633	0,176	8,733	8,909	16,263	16,591	16,427	0,89	0,89	0,55
R331-R332	175	250	0,5%	50	47,633	0,205	8,909	9,114	16,591	16,973	16,782	0,89	0,89	0,55
R332-R333	176	250	0,5%	50	47,633	0,205	9,114	9,319	16,973	17,355	17,164	0.89	0,89	0,55
R333-R334	178	250	0,5%	50	47,633	0,205	9,319	9,525	17,355	17,737	17,546	0,89	0,89	0,55
R334-R335	179	250	0,5%	50	47,633	0,205	9,525	9,730	17,737	18,119	17,928	0,89	0,89	0,55
R335-R336	180	250	0,5%	50	47,633	0,205	9,730	9,935	18,119	18,501	18,310	0,89	0.89	0,55
R336-R337	182	250	0,5%	50	47,633	0,205	9,935	10,140	18,501	18,883	18,692	0,89	0,89	0,55
R337-R338	183	250	0,5%	50	47,633	0,205	10,140	10,345	18,883	19,265	19,074	0,89	0,89	0,55
R338-R339	184	250	0,5%	50	47,633	0,200	10,345	10,546	19,265	19,639	19,452	0,89	0,89	0,55
R339-R340	195	250	0,5%	50	16,523	0,258	10,546	10,804	22,304	22,850	22,577	0,89	0,89	0,55
R328-R330	172	250	0,5%	50	47,633	0,205	8,528	8,733	15,881	16,263	16,072	0,89	0,89	0,55
R352-R256	86	250	1,0%	42	47,633	0,171	1,847	2,017	3,439	3,757	3,598	1,26	1,26	0,77
R353-R352	83	250	1,0%	50	47,633	0,205	1,641	1,847	3,057	3,439	3,248	1,26	1,26	0,77
R354-R353	79	250	1,0%	50	47,633	0,205	1,436	1,641	2,675	3,057	2,866	1,26	1,26	0,77
R355-R354	75	250	1,0%	50	47,633	0,205	1,231	1,436	2,293	2,675	2,484	1,26	1,26	0,77
R356-R355	70	250	1,0%	50	47,633	0,205	1,026	1,231	1,910	2,293	2,102	1,26	1,26	0,77

Alimentation en eau et évacuation des eaux usées et pluviales de la Zac de Guinth / Thiès

Troncon	D th (mm)	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Holigon	D iii (IIIIII)	De (IIIII)		m	1/s	1 / s	1 / s	1 / s	. 1/s	l / s	1 / s	m/s	m/s	m/s
R357-R356	65	250	1,0%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	1,26	1,26	0,77
R358-R357	59	250	1,0%	50	47,633	0,205	0,616	0,821	1,146	1,528	1,337	1,26	1,26	0,77
R359-R358	52	250	1,0%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	1,26	1,26	0,77
R360-R359	43	250	1,0%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	1,26	1,26	0,77
R361-R360	29	250	1,0%	50	47,633	0,205	-	0,205	-	0,382	0,191	1,26	1,26	0,77
R362-R262	105	250	0,3%	68	47,633	0,279	1,641	1,920	3,057	3,576	3,317	0,69	0,69	0,42
R363-R362	99	250	0,3%	50	47,633	0,205	1,436	1,641	2,675	3,057	2,866	0,69	0,69	0,42
R364-R363	94	250	0,3%	50	47,633	0,205	1,231	1,436	2,293	2,675	2,484	0,69	0,69	0,42
R365-R364	88	250	0,3%	50	47,633	0,205	1,026	1,231	1,910	2,293	2,102	0,69	0,69	0,42
R366-R365	82	250	0,3%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	0,69	0,69	0,42
R367-R366	74	250	0,3%	50	47,633	0,205	0,616_	0,821	1,146	1,528	1,337	0,69	0,69	0,42
R368-R367	6 6	250	0,3%	50	47,633	0,205	0,410_	0,616	0,764	1,146	0,955	0,69	0,69	0,42
R369-R368	54	250	0,3%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,69	0,69	0,42
R370-R369	36	250	0,3%	50	47,633	0,205	-	0,205		0,382	0,191	0,69	0,69	0,42
R371-R340	198	250	1,0%	50	16,523	0,258	15,546	15,804	32,880	33,426	33,153	1,26	1,26	0,77
R372-R371	197	250	1,0%	50	16,523	0,258	15,288	15,546	32,335	32,880	32,607	1,26	1,26	0,77
R373-R372	195	250	1,0%	50	16,523	0,258	15,030	15,288	31,789	32,335	32,062	1,26	1,26	0,77
R374-R373	194	250	1,0%	50	16,523	0,258	14,772	15,030	31,243	31,789	31,516	1,26	1,26	0,77
R375-R374	193	250	1,0%	50	16,523	0,258	14,514	14,772	30,698	31,243	30,970	1,26	1,26	0,77
R376-R375	184	250	1,0%	50	16,523	0,258	12,708	12,966	26,878	27,424	27,151	1,26	1,26	0,77
R377-R376	182	250	1,0%	50	16,523	0,258	12,450	12,708	26,333	26,878	26,605	1,26	1,26	0,77
R378-R377	181	250	1,0%	50	16,523	0,258	12,192	12,450	25,787	26,333	26,060	1,26	1,26	0,77
R379-R378	179	250	1,0%	50	16,523	0,258	11,934	12,192	25,241	25,787	25,514	1,26	1,26	0,77
R380-R379	223	250	0,3%	50	16,523	0,258	11,676	11,934	24,696	25,241	24,969	0,69	0,69	0,42
R381-R380	221	250	0,3%	50	16,523	0,258	11,418	11,676	24,150	24,696	24,423	0,69	0,69	0,42
R382-R381	219	250	0,3%	50	16,523	0,258	11,160	11,418	23,604	24,150	23,877	0,69	0,69	0,42
R383-R382	217	250	0,3%	50	16,523	0,258	10,902	11,160	23,059	23,604	23,332	0,69	0,69	0,42
R384-R383	215	250	0,3%	50	16,523	0,258	10,644	10,902	22,513	23,059	22,786	0,69	0,69	0,42
R385-R384	214	250	0,3%	50	16,523	0,258	10,386	10,644	21,968	22,513	22,240	0,69	0,69	0,42
R386-R385	163	250	0,3%	50	16,523	0,258	5,021	5,278	10,618	11,164	10,891	0,69	0,69	0,42
R387-R386	160	250	0,3%	50	16,523	0,258	4,763	5,021	10,073	10,618	10,346	0,69	0,69	0,42
R388-R387	157	250	0,3%	50	16,523	0,258	4,505	4,763	9,527	10,073	9,800	0,69	0,69	0,42
R389-R388	154	250	0,3%	50	16,523	0,258	4,247	4,505	8,982	9,527	9,254	0,69	0,69	0,42
R390-R389	150	250	0,3%	50	16,523	0,258	3,989	4,247	8,436	8,982	8,709	0,69	0,69	0,42
R391-R390	147	250	0,3%	50	16,523	0,258	3,731	3,989	7,890	8,436	8,163	0,69	0,69	0,42
R392-R391	143	250 .	0,3%	50	16,523	0,258	3,473	3,731	7,345	7,890	7,618	0,69	0,69	0,42
R393-R392	75	250	0,3%	50	16,523	0,258	0,516	0,774	1,091	1,637	1,364	0,69	0,69	0,42
R394-R393	62	250	0,3%	50	16,523	0,258	0,258	0,516	0,546	1,091	0,818	0,69	0,69	0,42
R395-R394	41	250	0,3%	50	16,523	0,258	•	0,258		0,546	0,273	0,69	0,69	0,42
R396-R375	101	250	0,3%	50	16,523	0,258	1,290	1,548	2,728	3,274	3,001	0,69	0,69	0,42
R397-R396	93	250	0,3%	50	16,523	0,258	1,032	1,290	2,183	2,728	2,455	0,69	0,69	0,42

Alimentation en eau et évacuation des eaux usées et pluviales de la Zac de Guinth / Thiès

Т	D th ()	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Tronçon	D th (mm)	De (min)		m	1/s	ļ/s	1 / s	1 / s	1 / s	1/s	1 / s	m/s	m/s	m/s
R398-R397	85 `	250	0,3%	50	16,523	0,258	0,774	1,032	1,637	2,183	1,910	0,69	0,69	0,42
R399-R398	75	250	0,3%	50	16,523	0,258	0,516	0,774	1,091	1,637	1,364	0,69	0,69	0,42
R400-R399	62	250	0,3%	50	16,523	0,258	0,258	0,516	0,546	1,091	0,818	0,69	0,69	0,42
R401-R400	41	250	0,3%	50	16,523	0,258	•	0,258	-	0,546	0,273	0,69	0,69	0,42
R402-R385	119	250	0,3%	50	16,523	0,258	2,064	2,322	4,365	4,911	4,638	0,69	0,69	0,42
R403-R402	113	250	0,3%	50	16,523	0,258	1,806	2,064	3,819	4,365	4,092	0,69	0,69	0,42
R404-R403	107	250	0,3%	50	16,523	0,258	1,548	1,806	3,274	3,819	3,547	0,69	0,69	0,42
R405-R404	101	250	0,3%	50	16,523	0,258	1,290	1,548	2,728	3,274	3,001	0,69	0,69	0,42
R406-R405	93	250	0,3%	50	16,523	0,258	1,032	1,290	2,183	2,728	2,455	0,69	0,69	0,42
R407-R406	85	250	0,3%	50	16,523	0,258	0,774	1,032	1,637	2,183	1,910	0,69	0,69	0,42
R408-R407	75	250	0,3%	50	16,523	0,258	0,516	0,774	1,091	1,637	1,364	0,69	0,69	0,42
R409-R408	62	250	0,3%	50	16,523	0,258	0,258	0,516	0,546	1,091	0,818	0,69	0,69	0,42
R410-R409	41	250	0,3%	50	16,523	0,258	-	0,258		0,546	0,273	0,69	0,69	0,42
R411-R392	125	250	0,3%	73	16,523	0,377	2,322	2,699	4,911	5,708	5,309	0,69	0,69	0,42
R412-R411	119	250	0,3%	50	16,523	0,258	2,064	2,322	4,365	4,911	4,638	0,69	0,69	0,42
R413-R412	113	250	0,3%	50	16,523	0,258	1,806	2,064	3,819	4,365	4,092	0,69	0,69	0,42
R414-R413	107	250	0,3%	50	16,523	0,258	1,548	1,806	3,274	3,819	3,547	0,69	0,69	0,42
R415-R414	101	250	0,3%	50	16,523	0,258	1,290	1,548	2,728	3,274	3,001	0,69	0,69	0,42
R416-R415	93	250	0,3%	50	16,523	0,258	1,032	1,290	2,183	2,728	2,455	0,69	0,69	0,42
R417-R416	85	250	0,3%	50	16,523	0,258	0,774	1,032	1,637	2,183	1,910	0,69	0,69	0,42
R418-R417	75	250	0,3%	50	16,523	0,258	0,516	0,774	1,091	1,637	1,364	0,69	0,69	0,42
R419-R418	62	250	0,3%	50	16,523	0,258	0,258	0,516	0,546	1,091	0,818	0,69	0,69	0,42
R420-R419	41	250	0,3%	50	16,523	0,258	-	0,258	-	0,546	0,273	0,69	0,69	0,42
R421-R385	127	250	0,3%	50	16,523	0,258	2,528	2,786	5,347	5,893	5,620	0,69	0,69	0,42
R422-R421	123	250	0,3%	50	16,523	0,258	2,270	2,528	4,802	5,347	5,074	0,69	0,69	0,42
R423-R422	118	250	0,3%	50	16,523	0,258	2,012	2,270	4,256	4,802	4,529	0,69	0,69	0,42
R424-R423	113	250	0,3%	40	16,523	0,206	1,806	2,012	3,819	4,256	4,038	0,69	0,69	0,42
R425-R424	107	250	0,3%	_ 50	16,523	0,258	1,548	1,806	3,274	3,819	3,547	0,69	0,69	0,42
R426-R425	101	250	0,3%	50	16,523	0,258	1,290	1,548	2,728	3,274	3,001	0,69	0,69	0,42
R427-R426	93	250	0,3%	50	16,523	0,258	1,032	1,290	2,183	2,728	2,455	0,69	0,69	0,42
R428-R427	85	250	0,3%	50	16,523	0,258	0,774	1,032	1,637	2,183	1,910	0,69	0,69	0,42
R429-R428	75	250	0,3%	50	16,523	0,258	0,516	0,774	1,091	1,637	1,364	0,69	0,69	0,42
R430-R429	62	250	0,3%	50	16,523	0,258	0,258	0,516	0,546	1,091	0,818	0,69	0,69	0,42
R431-R430	41	250	0,3%	50	16,523	0,258	-	0,258		0,546	0,273	0,69	0,69	0,42
R434-R433	142	250	0,5%	50	47,633	0,205	5,130	5,335	9,552	9,934	9,743	0,89	0,89	0,55
R435-R434	140	250	0,5%	50	47,633	0,205	4,924	5,130	9,170	9,552	9,361	0,89	0,89	0,55
R436-R435	138 -	250	0,5%	50	47,633	0,205	4,719	4,924	8,788	9,170	8,979	0,89	0,89	0,55
R437-R436	136	250	0,5%	50	47,633	0,205	4,514	4,719	8,406	8,788	8,597	0,89	0,89	0,55
R438-R437	134	250	0,5%	50	47,633	0,205	4,309	4,514	8,024	8,406	8,215	0,89	0,89	0,55
R439-R438	131	250	0,5%	50	47,633	0,205	4,104	4,309	7,642	8,024	7,833	0,89	0,89	0,55
R440-R439	129	250	0,5%	50	47,633	0,205	3,898	4,104	7,260	7,642	7,451	0,89	0,89	0,55

Tronçon	D th (mm)	Dc (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
	2 41 (111111)	_ (/		m	1 / s	1/s	1/s	l / s	1 / s	1 / s	1 / s	m/s	m/s	m/s
R441-R440	126	250	0,5%	50	47,633	0,205	3,693	3,898	6,878	7,260	7,069	0,89	0,89	0,55
R442-R441	124	250	0,5%	50	47,633	0,205	3,488	3,693	6,496	6,878	6,687	0,89	0,89	0,55
R443-R442	121	250	0,5%	50	47,633	0,205	3,283	3,488	6,114	6,496	6,305	0,89	0,89	0,55
R444-R443	118	_250	0,5%	50	47,633	0,205	3,078	3,283	5,731	6,114	5,922	0,89	0,89	0,55
R445-R444	115	250	0,5%	50	47,633	0,205	2,873	3,078	5,349	5,731	5,540	0,89	0,89	0,55
R446-R445	112	250	0,5%	50	47,633	0,205	2,667	2,873	4,967	5,349	5,158	0,89	0,89	0,55
R447-R446	109	250	0,5%	50	47,633	0,205	2,462	2,667	4,585	4,967	4,776	0,89	0,89	0,55
R448-R447	106	250	0,5%	50	47,633	0,205	2,257	2,462	4,203	4,585	4,394	0,89	0,89	0,55
R449-R448	102	250	0,5%	50	47,633	0,205	2,052	2,257	3,821	4,203	4,012	0,89	0,89	0,55
R450-R449	98	250	0,5%	50	47,633	0,205	1,847	2,052	3,439	3,821	3,630	0,89	0,89	0,55
R451-R450	104	250	0,3%	50	47,633	0,205	1,641	1,847	3,057	3,439	3,248	0,69	0,69	0,42
R452-R451	99	250	0,3%	50	47,633	0,205	1,436	1,641	2,675	3,057	2,866	0,69	0,69	0,42
R453-R452	94	250	0,3%	50	47,633	0,205	1,231	1,436	2,293	2,675	2,484	0,69	0,69	0,42
R454-R453	88	250	0,3%	50	47,633	0,205	1,026	1,231	1,910	2,293	2,102	0,69	0,69	0,42
R455-R454	82	250	0,3%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	0,69	0,69	0,42
R456-R455	74	250	0,3%	50	47,633	0,205	0,616	0,821	1,146	1,528	1,337	0,69	0,69	0,42
R457-R456	66 .	250	0,3%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	0,69	0,69	0,42
R458-R457	54	250	0,3%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,69	0,69	0,42
R459-R458	36	250	0,3%	50	47,633	0,205	-	0,205	•	0,382	0,191	0,69	0,69	0,42
R433-R462	144	250	0,5%	27	47,633	0,111	5,335	5,446	9,934	10,141	10,038	0,89	0,89	0,55
R462-R463	145	250	0,5%	44	47,633	0,147	5,446	5,593	10,141	10,415	10,278	0,89	0,89	0,55
R463-R464	154	250	0,5%	50	16,523	0,258	5,593	5,851	11,829	12,374	12,102	0,89	0,89	0,55
R464-R340	157	250	0,5%	30	16,523	0,156	5,851	6,006	12,374	12,704	12,539	0,89	0,89	0,55
R465-R290	123	250	0,3%	50	47,633	0,205	2,667	2,873	4,967	5,349	5,158	0,69	0,69	0,42
R466-R465	120	250	0,3%	50	47,633	0,205	2,462	2,667	4,585	4,967	4,776	0,69	0,69	0,42
R467-R466	116	250	0,3%	50	47,633	0,205	2,257	2,462	4,203	4,585	4,394	0,69	0,69	0,42
R468-R467	112	250	0,3%	50	47,633	0,205	2,052	2,257	3,821	4,203	4,012	0,69	0,69	0,42
R469-R468	108	250	0,3%	50	47,633	0,205	1,847	2,052	3,439	3,821	3,630	0,69	0,69	0,42
R470-R469	104	250	0,3%	50	47,633	0,205	1,641	1,847	3,057	3,439	3,248	0,69	0,69	0,42
R471-R470	99	250	0,3%	50	47,633	0,205	1,436	1,641	2,675	3,057	2,866	0,69	0,69	0,42
R472-R471	94	250	0,3%	50	47,633	0,205	1,231	1,436	2,293	2,675	2,484	0,69	0,69	0,42
R473-R472	88	250	0,3%	50	47,633	0,205	1,026	1,231	1,910	2,293	2,102	0.69	0,69	0,42
R474-R473	82	250	0,3%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	0,69	0,69	0,42
R475-R474	74	250	0,3%	50	47,633	0,205	0,616	0,821	1,146	1,528	1,337	0,69	0,69	0,42
R476-R475	66 '	250	0,3%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	0,69	0,69	0,42
R477-R476	54	250	0,3%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,69	0,69	0,42
R478-R477	36	250	0,3%	50	47,633	0,205	-	0,205	-	0,382	0,191	0,69	0,69	0,42
R479-R284	111	250	0,3%	40	47,633	0,164	2,019	2,183	3,760	4,065	3,913	0,69	0,69	0,42
R480-R479	108	250	0,3%	50	47,633	0,205	1,814	2,019	3,378	3,760	3,569	, 0,69	0,69	0,42
R481-R480	103	250	0,3%	50	47,633	0,205	1,609	1,814	2,996	3,378	3,187	0,69	0,69	0,42
R482-R481	98	250	0,3%	50	47,633	0,205	1,403	1,609	2,614	2,996	2,805	0,69	0,69	0,42

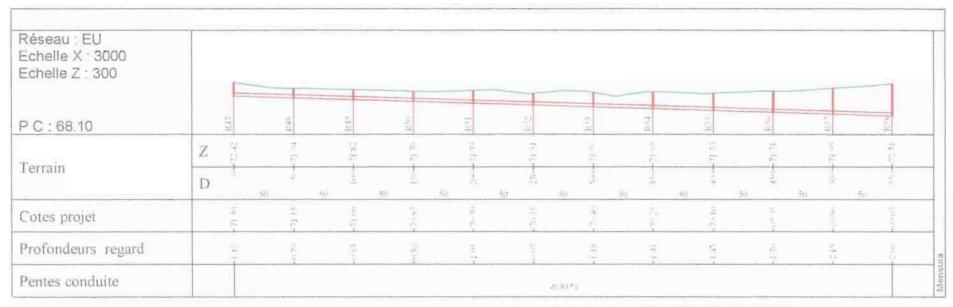
Alimentation en eau et évacuation des eaux usées et pluviales de la Zac de Guinth / Thiès

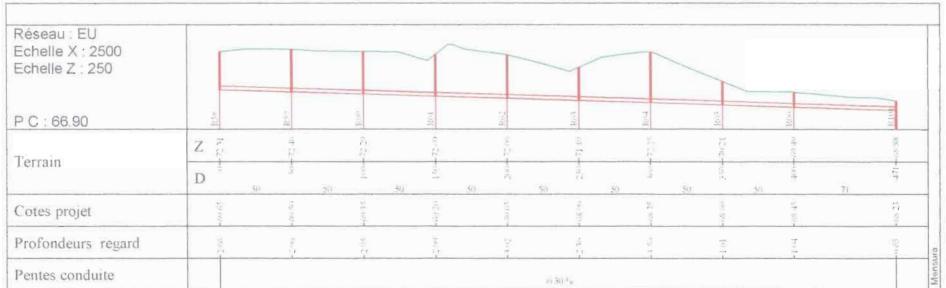
Tronçon	D th (mm)	De (mm)	Pente	Longueur	Qm	Qmr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
	, ,			m	1 / s	1 / s	l / s	l/s	1 / s	1 / s	1 / s	m/s	m/s	m/s
R483-R482	93	250	0,3%	50	47,633	0,205	1,198	1,403	2,231	2,614	2,422	0,69	0,69	0,42
R484-R483	87	250	0,3%	50	47,633	0,205	0,993	1,198	1,849	2,231	2,040	0,69	0,69	0,42
R485-R484	81	250	0,3%	50	47,633	0,205	0,788	0,993	1,467	1,849	1,658	0,69	0,69	0,42
R486-R485	74	250	0,3%	42	47,633	0,172	0,616	0,788	1,146	1,467	1,307	0,69	0,69	0,42
R487-R486	66	250	0,3%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	0,69	0,69	0,42
R488-R487	54	_250	0,3%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,69	0,69	0,42
R489-R488	36	250	0,3%	50	47,633	0,205		0,205		0,382	0,191	0,69	0,69	0,42
R490-R308	131	250	0,3%	50	47,633	0,205	3,147	3,353	5,861	6,243	6,052	0,69	0,69	0,42
R491-R490	128	250	0,3%	50	47,633	0,205	2,942	3,147	5,479	5,861	5,670	0,69	0,69	0,42
R492-R491	125	250	0,3%	50	47,633	0,205	2,737	2,942	5,097	5,479	5,288	0,69	0,69	0,42
R493-R492	121	250	0,3%	50	47,633	0,205	2,532	2,737	4,715	5,097	4,906	0,69	0,69	0,42
R494-R493	118	250	0,3%	50	47,633	0,205	2,327	2,532	4,333	4,715	4,524	0,69	0,69	0,42
R495-R494	114	250	0,3%	50	47,633	0,205	2,122	2,327	3,951	4,333	4,142	0,69	0,69	0,42
R496-R495	110	250	0,3%	50	47,633	0,205	1,916	2,122	3,569	3,951	3,760	0,69	0,69	0,42
R497-R496	105	250	0,3%	50	47,633	0,205	1,711	1,916	3,187	3,569	3,378	0,69	0,69	0,42
R498-R497	102	250	0,3%	22	47,633	0,090	1,621	1,711	3,019	3,187	3,103	0,69	0,69	0,42
R499-R498	99 *	250	0,3%	45	47,633	0,185	1,436	1,621	2,675	3,019	2,847	0,69	0,69	0,42
R500-R499	_94	250	0,3%	50	47,633	0,205	1,231	1,436	2,293	2,675	2,484	0,69	0,69	0,42
R501-R500	88	250	0,3%	50	47,633	0,205	1,026	1,231	1,910	2,293	2,102	0,69	0,69	0,42
R502-R501	82	250	0,3%	50	47,633	0,205	0,821	1,026	1,528	1,910	1,719	0,69	0,69	0,42
R503-R502	74	250	0,3%	50	47,633	0,205	0,616	0,821	1,146	1,528	1,337	0,69	0,69	0,42
R504-R503	66	250	0,3%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	0,69	0,69	0,42
R505-R504	54	250	0,3%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,69	0,69	0,42
R506-R505	36	250	0,3%	50	47,633	0,205	-	0,205	-	0,382	0,191	0,69	0,69	0,42
R507-R223	132	250	0,3%	50	54,288	0,267	3,207	3,474	5,899	6,390	6,145	0,69	0,69	0,42
R508-R507	128	250	0,3%	50	54,288	0,267	2,940	3,207	5,407	5,899	5,653	0,69	0,69	0,42
R509-R508	123	250	0,3%	50	54,288	0,267	2,673	2,940	4,916	5,407	5,161	0,69	0,69	0,42
R510-R509	119	250	0,3%	50	54,288	0,267	2,405	2,673	4,424	4,916	4,670	0,69	0,69	0,42
R511-R510	114	250	0,3%	50	54,288	0,267	2,138	2,405	3,932	4,424	4,178	0,69	0,69	0,42
R512-R511	109	250	0,3%	50	54,288	0,267	1,871	2,138	3,441	3,932	3,687	0,69	0,69	0,42
R513-R512	103	250	0,3%	50	54,288	0,267	1,604	1,871	2,949	3,441	3,195	0,69	0,69	0,42
R514-R513	97	250	0,3%	50	54,288	0,267	1,336	1,604	2,458	2,949	2,704	0,69	0,69	0,42
R515-R514	90	250	0,3%	50	54,288	0,267	1,069	1,336	1,966	2,458	2,212	0,69	0,69	0,42
R516-R515	82	250	0,3%	50	54,288	0,267	0,802	1,069	1,475	1,966	1,720	0,69	0,69	0,42
R517-R516	72	250	0,3%	50	54,288	0,267	0,535	0,802	0,983	1,475	1,229	0,69	0,69	0,42
R518-R517	60.	250	0,3%	50	54,288	0,267	0,267	0,535	0,492	0,983	0,737	0,69	0,69	0,42
R519-R518	39	250	0,3%	50	54,288	0,267	-	0,267		0,492	0,246	0,69	0,69	0,42
R520-R130	95	250	1,2%	50	54,288	0,267	2,673	2,940	4,916	5,407	5,161	1,38	1,38	0,85
R521-R520	92	250	1,2%	50	54,288	0,267	2,405	2,673	4,424	4,916	4,670	1,38	1,38	0,85
R522-R521	88	250	1,2%	50	54,288	0,267	2,138	2,405	3,932	4,424	4,178	1,38	1,38	0,85
R523-R522	84	250	1,2%	50	54,288	0,267	1,871	2,138	3,441	3,932	3,687	1,38	1,38	0,85

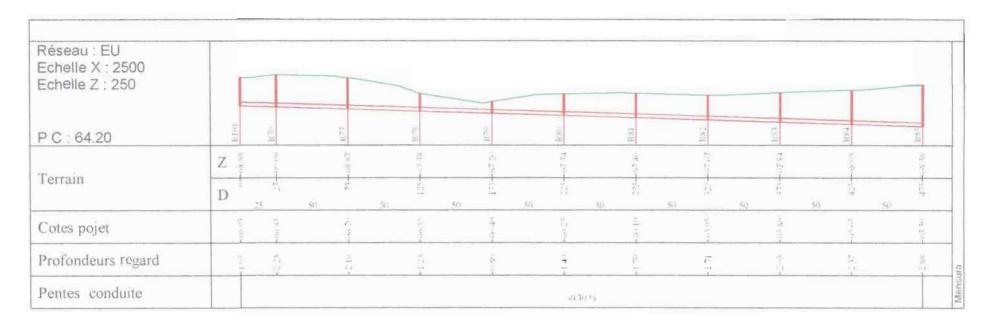
Alimentation en eau et évacuation des eaux usées et pluviales de la Zac de Guinth / Thiès

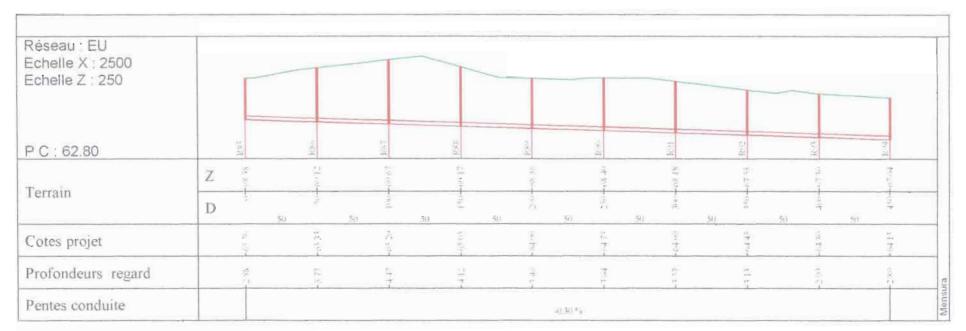
			Pente	Longueur	Qm	Omr	Qme	Qmst	Qpe	Qpst	Qpf	VPS	V 1/2 S	V 2/10 S
Tronçon	D th (mm)	Dc (mm)	1 01110	m	1/s	1/s	1 / s	1 / s	1/s	1/s	1 / s	m / s	m/s	m/s
R524-R523	80	250	1,2%	50	54,288	0,267	1,604	1,871	2,949	3,441	3,195	1,38	1,38	0,85
R525-R524	75	250	1,2%	50	54,288	0,267	1,336	1,604	2,458	2,949	2,704	1,38	1,38	0,85
R526-R525	69	250	1,2%	50	54,288	0,267	1,069	1,336	1,966	2,458	2,212	1,38	1,38	0,85
R527-R526	63	250	1,2%	50	54,288	0,267	0,802	1,069	1,475	1,966	1,720	1,38	1,38	0,85
R528-R527	56	250	1,2%	50	54,288	0,267	0,535	0,802	0,983	1,475	1,229	1,38	1,38	0,85
R529-R528	46	250	1,2%	50	54,288	0,267	0,267	0,535	0,492	0,983	0,737	1,38	1,38	0,85
R530-R529	30	250	1,2%	50	54,288	0,267		0,267	-	0,492	0,246	1,38	1,38	0,85
R533-R532	74	250	0,3%	50	47,633	0,205	0,616	0,821	1,146	1,528	1,337	0,70	0,70	0,43
R534-R533	65	250	0,3%	50	47,633	0,205	0,410	0,616	0,764	1,146	0,955	0,70	0,70	0,43
R535-R534	54	250	0,3%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,70	0,70	0,43
R536-R535	36	250	0,3%	50	47,633	0,205	•	0,205	-	0,382	0,191	0,70	0,70	0,43
R539-R540	36	250	0,3%	50	47,633	0,205	-	0,205	•	0,382	0,191	0,69	0,69	0,42
R540-R541	54	250	0,3%	50	47,633	0,205	0,205	0,410	0,382	0,764	0,573	0,69	0,69	0,42
R541-R256	65	250	0,3%	49	47,633	0,203	0,410	0,613	0,764	1,142	0,953	0,69	0,69	0,42
R532-R290	84	250	0,3%	90	47,633	0,367	0,821	1,188	1,528	2,213	1,871	0,70	0,70	0,43
R272-R542	188	250	1,0%	50	47,633	0,105	15,569	15,674	28,993	29,188	29,090	1,26	1,26	0,77
R542-R213	188	250	1,0%	34	54,288	0,183	15,674	15,857	28,828	29,165	28,997	1,26	1,26	0,77

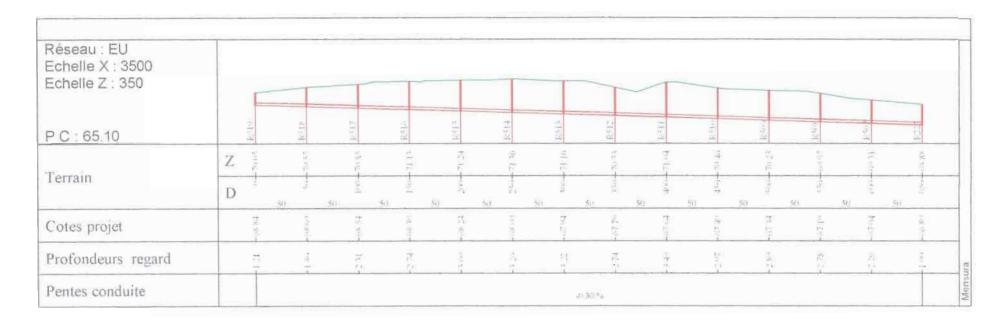
Qm : Débit moyen du bassin

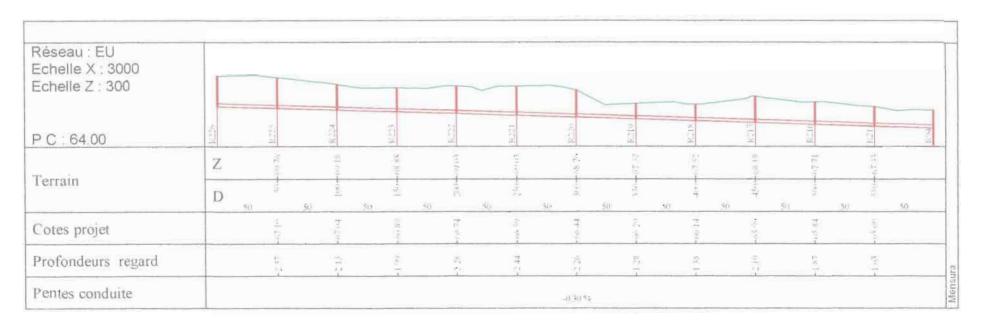

Qmr: Débit en route Qme: Débit entrant Qmst. Débit sortant

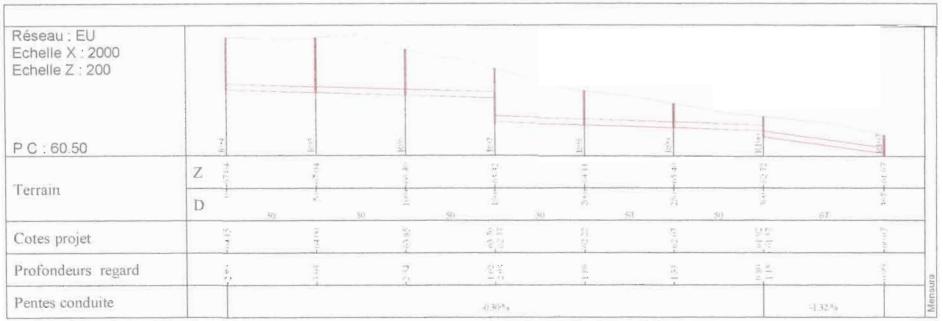

Qpe . Débit de pointe entrant Qpst . Débit de pointe sortant

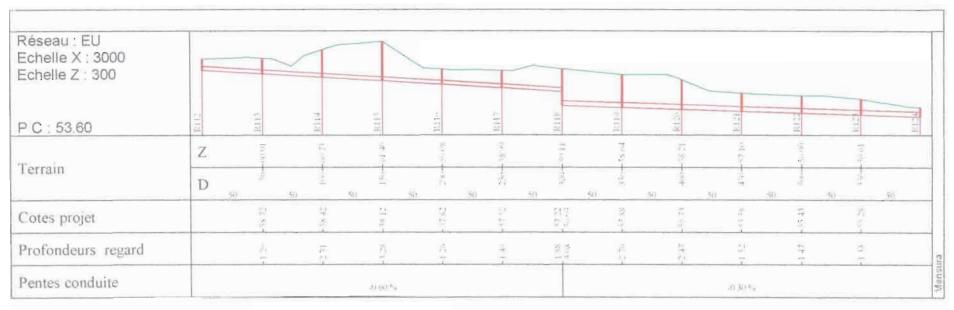

Qpf · Moyenne arithémtique entre Qpe et Qpst VPS : Vitesse à pleine section >= 0.70 m/s V 1/2 S : Vitesse à demi-section >= 0.70 m/s

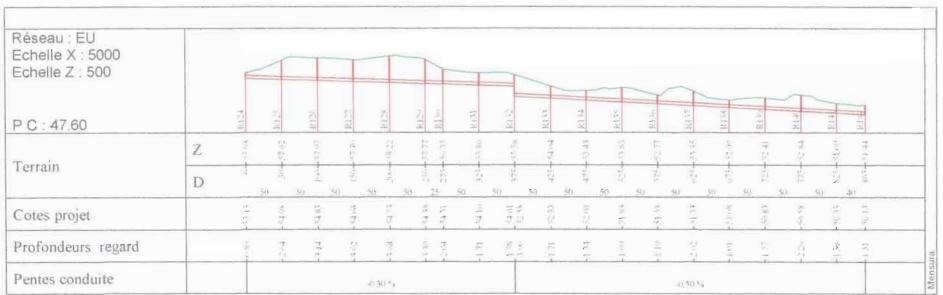

V 2/10 S Vitesse aux 2/10 de la section >= 0.30 m/s

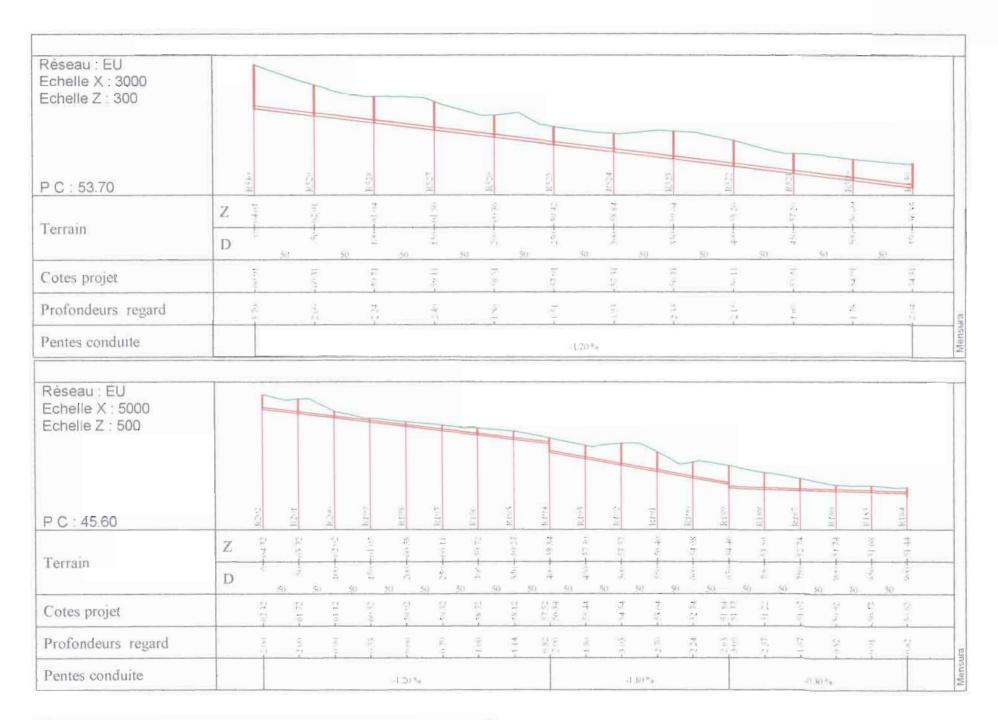

Profils en long

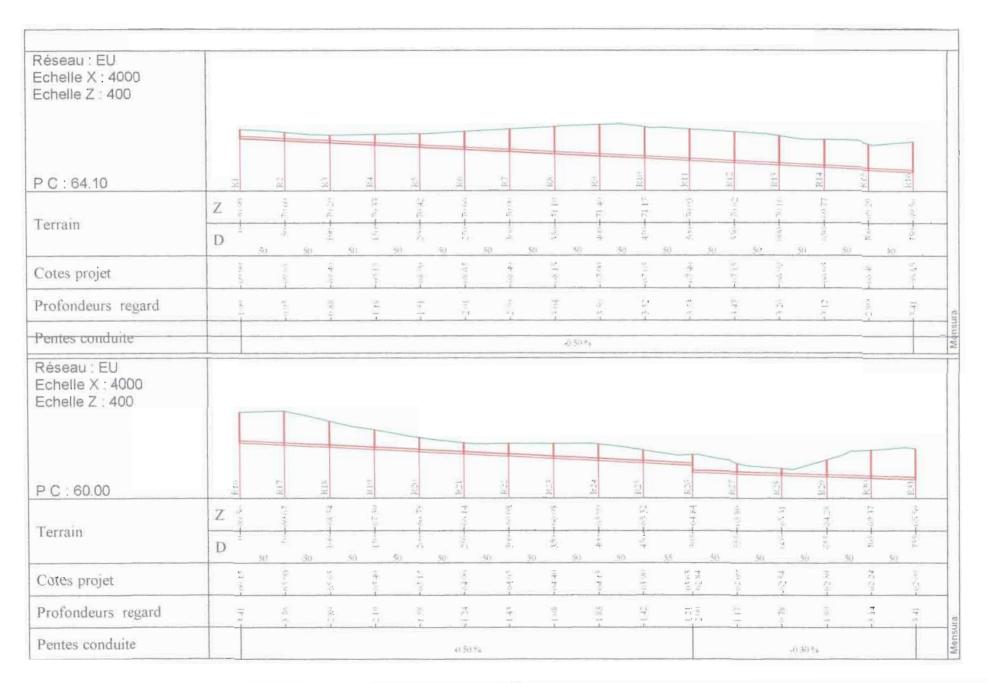


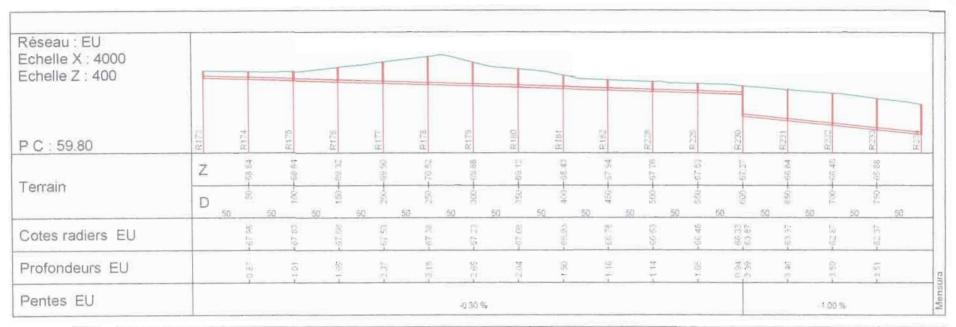


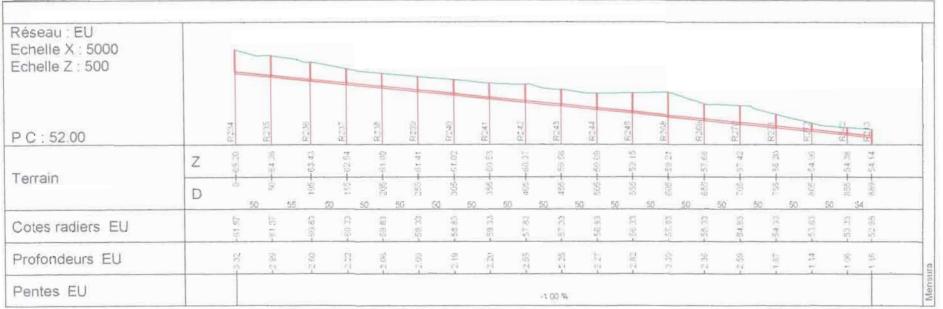


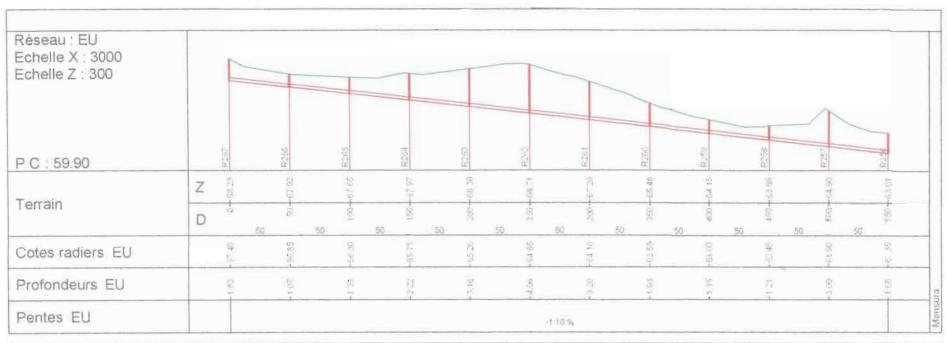


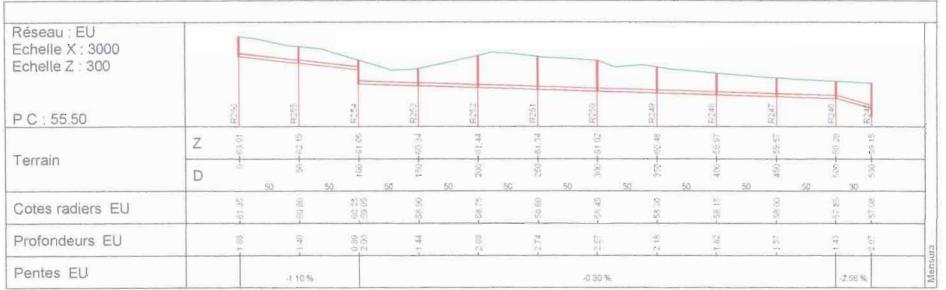


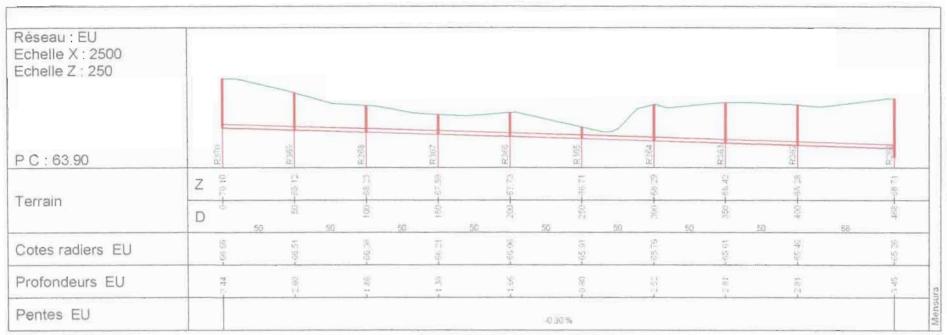


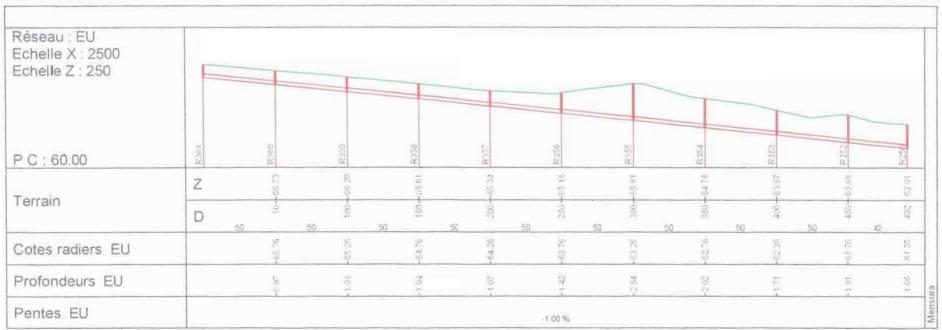


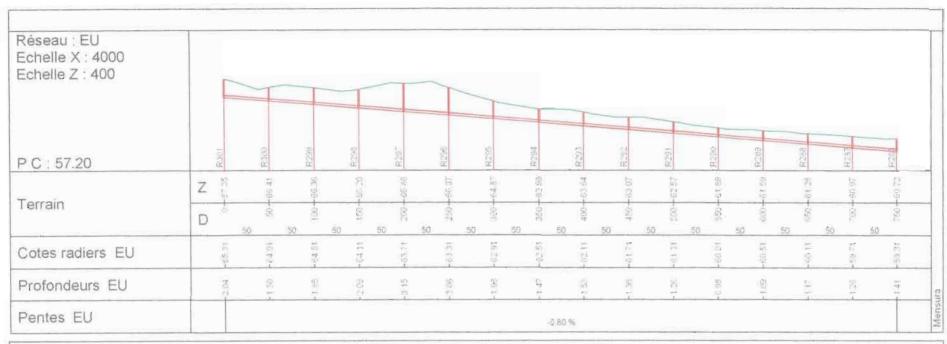


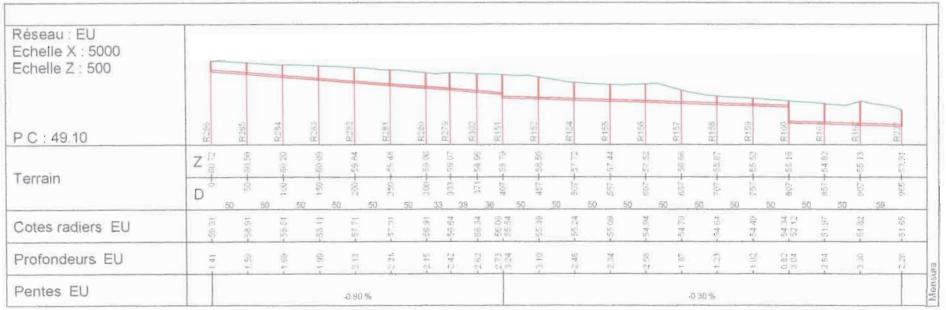


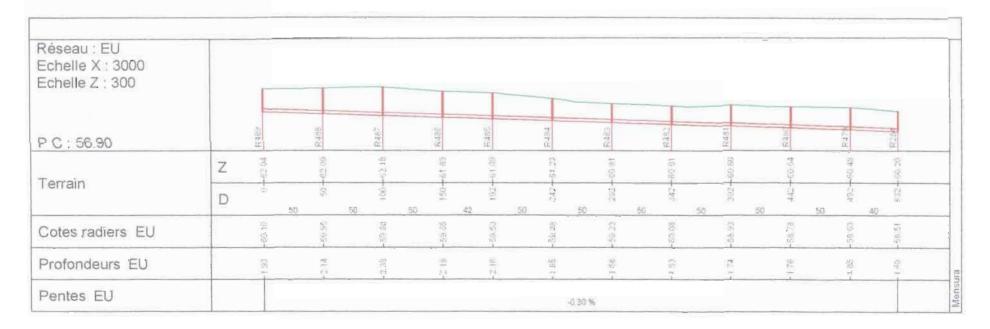




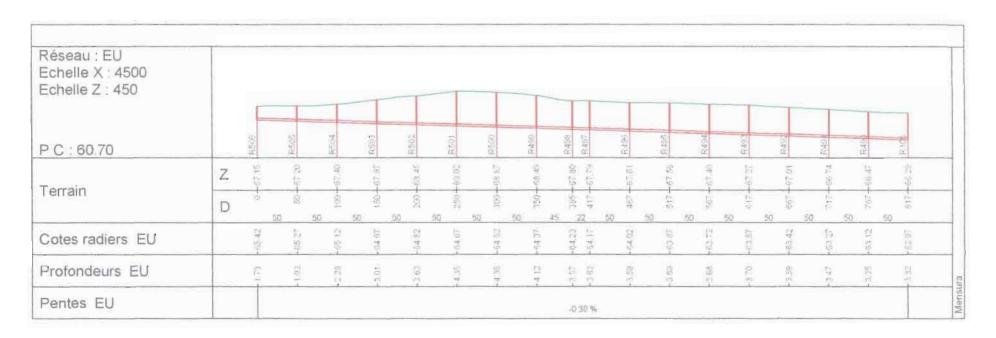


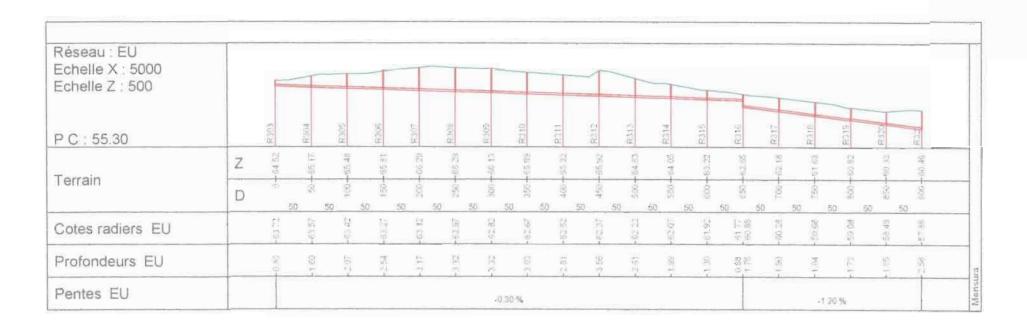


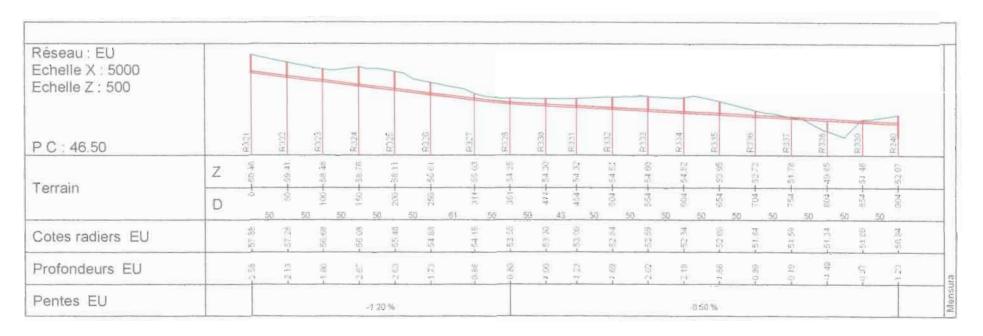


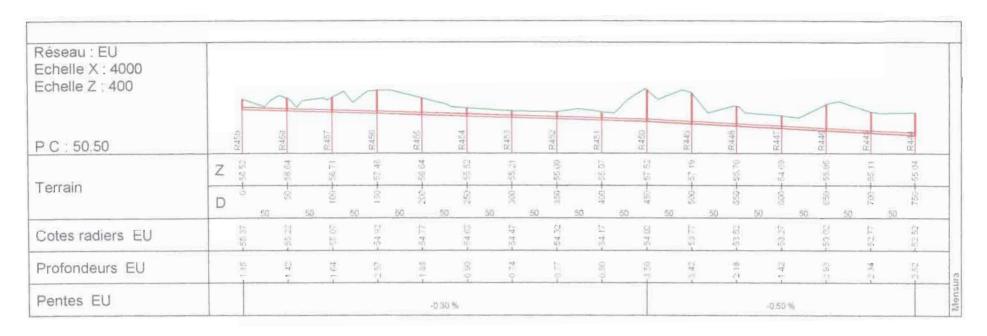


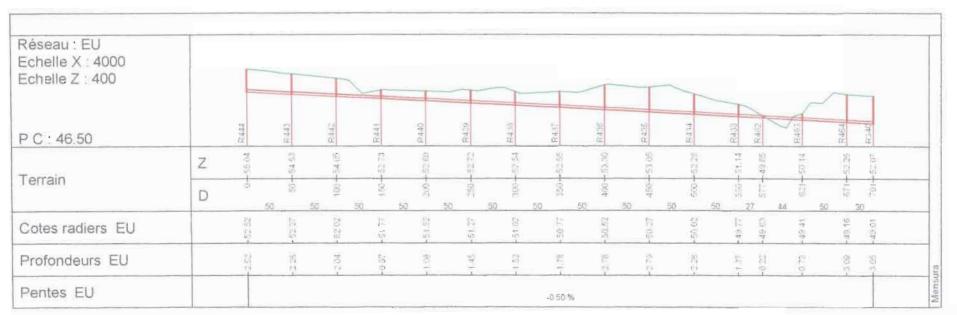
Réseau : EU Echelle X : 4000 Echelle Z : 400																			
P.C.: 58.80		R478	E477	R475	R476		Ralid	RATO	8477	1/41 1/41 1/41	6243	100		RABB	Ratio	R456	R46g		RTM
	Z	554.41	3	1 1		2	40 40 40	3	4.7	5		0 0	88	51	57 75	63.87	25, 25		E)
Terrain	D	±	50	50	50	50	50	9	(a)	50	50	50	50	B) 50	100	50	50	50	8
Cotes radiers EU		5.	51.86			2	477	19	200	8		_	8	519	9010	[1	8		16.05
Profondeurs EU		\$ \$	2			3	(B)	E)	13	66		8	EI 7	Ē.	98	16	E		8
Pentes EU										0.30	96								

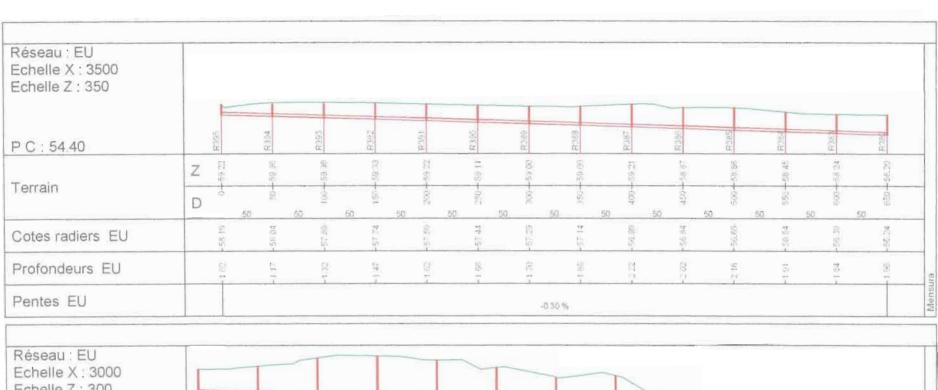


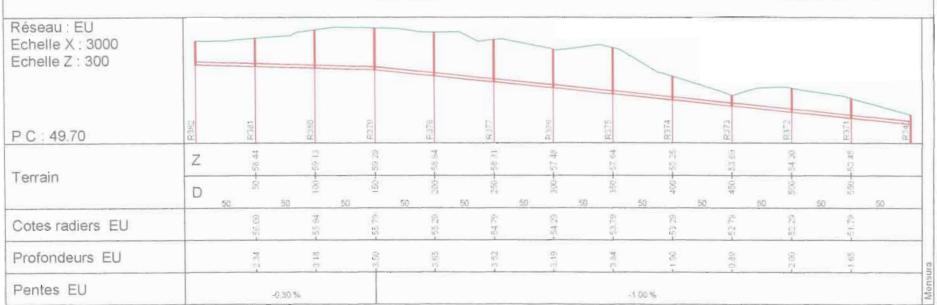

 Réseau : EU
 Echelle X : 2500

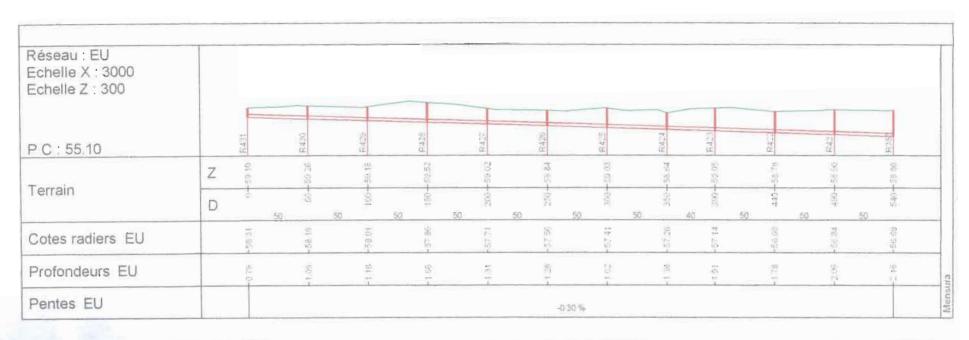

 Echelle Z : 250
 Echelle Z : 250

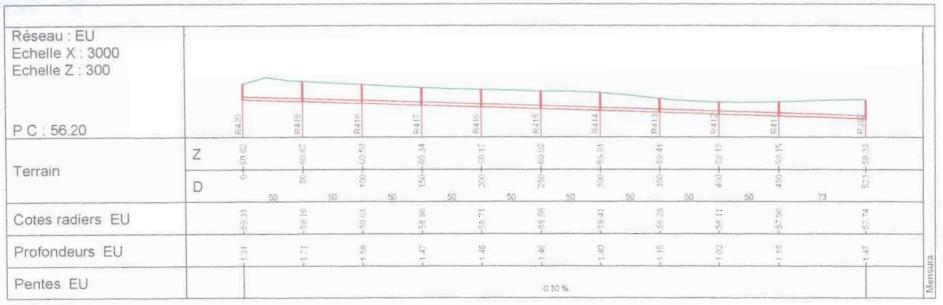

 P C : 60.00
 Z 255 + 00 + 05 + 05 + 00 + 05 + 00 + 05 + 00 + 05 + 00 + 05 + 00 + 05 + 00 + 05 + 00 + 05 + 00 + 05 + 00 + 0

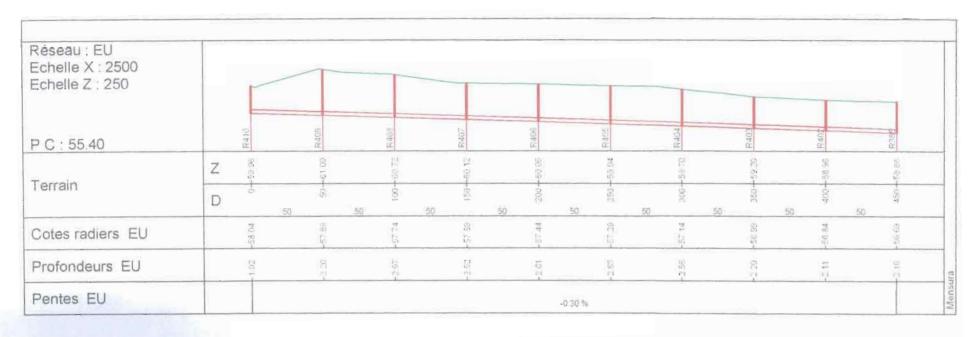

Réseau : EU Echelle X : 4500 Echelle Z : 300						
P C : 58.60	R536	RSE	77.52	REE	RAISO	R290
	Ζŝ	10	12.00	8	62.05	\$6 50
Terrain	D	50	50	50		\$0
Cotes radiers EU	-81.81	100 100 100	8.	77	61.19	16 0 b)
Profondeurs EU	250	-0.65	00	7.0	98	38 C
Pentes EU				-0.31%		

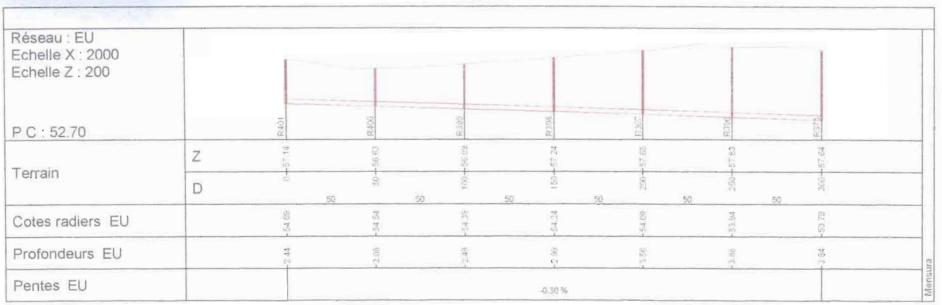












ANNEXE 3:

o Plan d'ensemble du réseau EP