#### REPUBLIQUE DU SENEGAL

#### UNIVERSITE CHEIKH ANTA DIOP DE DAKAR

## ECOLE POLYTECHNIQUE DE THIES



#### DEPARTEMENT DE GENIE CIVIL

#### PROJET DE FIN D'ETUDES

en vue de l'obtention du diplôme d'ingénieur de conception

Titre: ETUDE ET CONCEPTION DE L'IMMEUBLE DE L'AGENCE PATTE D'OLE DE LA SENELEC DANS LA NORME FRANÇAISE.

Auteur : Vladimir Serge OKEY

Directeur : El Hadj M. THIAM

Date

: Juillet 1993

A tous ceux qui me sont chers

## REMERCIEMENTS

Nous tenons à exprimer nos vifs remerciements à Monsieur El Hadj THIAM, professeur de béton armé à l'Ecole Polytechnique de Thiès; Sachez Mr que vous avez allumé en nous un feu, de part votre disponibilité et vos conseils.

Nous remercions également Monsieur Ndiaye Diouf NDIAYE, pour sa collaboration.

## SOMMAIRE

Le projet de fin d'étude qui fait l'objet de ce rapport technique s'intitule: Etude et conception de l'immeuble de l'agence Patte d'Oie de la SENELEC.

Au début nous avons rappelé les concepts fondamentaux du BAEL, après, nous avons fait le dimensionnement des différents éléments: dalle, poutres, poteaux...

Les résultats sont compilés sous forme de schémas et de tableaux récapitulatifs, présentés en fin de chapitre ou en annexe.

| TARLE | DEC | малт | EDEC |
|-------|-----|------|------|
|       |     |      |      |

| Sommaire<br>Table des<br>Liste des | ment                                                                                                                                                                                                                                                |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHAPITRE                           | Introduction                                                                                                                                                                                                                                        |
| CHAPITRE                           | 2 Rappels des notions fondamentales du calcul aux états limites                                                                                                                                                                                     |
|                                    | 2.1 Les différents états limites       3         2.1.1 Etat limite ultime       3         2.1.2 Etat limite de service       4                                                                                                                      |
|                                    | 2.2 Les actions et les sollicitations                                                                                                                                                                                                               |
|                                    | 2.3 Application du BAEL       10         2.3.1 Poutres       10         2.3.1.1 Schéma d'une poutre       10         2.3.1.2 Efforts à considérer       10         2.3.1.3 Prédimensionnement       11         2.3.1.4 Procédure de calcul       11 |
|                                    | 2.3.2 Poteaux                                                                                                                                                                                                                                       |
|                                    | 2.3.3       Semelles       16         2.3.3.1       Schéma d'une semelle       16         2.3.3.2       Efforts à considérer       16         2.3.3.3       Prédimensionnement       16         2.3.3.4       Procédure de calcul       17          |
| CHAPITRE                           | 3 Dimensionnement des dalles                                                                                                                                                                                                                        |

| CHAPITRE | Dimensionnement des poutres 20                                                                                                                                                                                                                                                                                      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 4.1 Poutres sur appui simple       20         4.1.1 Exemple de calcul de moment ultime       20         4.1.2 Récapitulation       21         4.1.3 Dimensionnement des poutres       23         4.1.3.1 Poutre série S3       23         4.1.3.2 Poutre série S2       26         4.1.3.3 Poutre série S1       29 |
| CHAPITRE | 5 Dimensionnement des poteaux 33                                                                                                                                                                                                                                                                                    |
|          | 5.1 Exemple de descente de charges 32                                                                                                                                                                                                                                                                               |
|          | 5.2 Dimensionnement       34         5.2.1 Poteaux de la série S1       3         5.2.2 Poteaux de la série S2       3         5.2.3 Poteaux de la série S3       3                                                                                                                                                 |
|          | 5.3 Récapitulation 39                                                                                                                                                                                                                                                                                               |
| CHAPITRE | 6 Dimensionnement des semelles 41                                                                                                                                                                                                                                                                                   |
|          | 6.1 Dimensionnement 42                                                                                                                                                                                                                                                                                              |
|          | 6.1.1 Semelles de la série Sl                                                                                                                                                                                                                                                                                       |
|          | 6.1.1 Semelles de la série Sl                                                                                                                                                                                                                                                                                       |
| CHAPITRE | 6.1.1 Semelles de la série Sl       42         6.1.2 Semelles de la série S2       45         6.1.3 Semelles de la série S3       47                                                                                                                                                                                |

BIBLIOGRAPHIE

# LISTE DES TABLEAUX

| TABLEAU | 2.1          | Charges. Toit: panneaux Dl,D2,D3,D4,D6 6                                                                 |
|---------|--------------|----------------------------------------------------------------------------------------------------------|
|         | 2.2          | Charges. Toit : panneaux D5 7                                                                            |
|         | 2.3          | Charges. Plancher de l'étage et RDC 8                                                                    |
|         | 2.4          | Charges. Poids des murs 9                                                                                |
|         | 2.5          | Charges de l'escalier 9                                                                                  |
|         | 4.1          | Poutres du toit 21                                                                                       |
|         | 4.2          | Poutres du plancher de l'étage et du RDC 22                                                              |
|         | 6.1          | Récapitulation 49                                                                                        |
|         | A.4.<br>A.4. | 1 Valeurs du moment réduit critique $\mu_c$ A.4 2 Valeurs des contraintes $\sigma_s$ vs $\epsilon_e$ A.4 |
|         |              | 1 Dimensionnement des poteaux                                                                            |

## LISTE DES FIGURES

| FIGURE | 4.1 | ferraillage | des | poutres  | de   | lä  | série | s3  | 25   |
|--------|-----|-------------|-----|----------|------|-----|-------|-----|------|
|        | 4.2 | ferraillage | des | poutres  | de   | la  | série | s2  | 28   |
|        | 4.3 | ferraillage | des | poutres  | de   | 1a  | série | Sl  | 3.1. |
|        | 5.1 | ferraillage | des | poteaux  | de   | l.a | série | S1  | 36   |
|        | 5.2 | ferraillage | des | poteaux  | de   | la  | série | S2  | 38   |
|        | 5.3 | ferraillage | des | poteaux  | de   | l.a | série | \$3 | 38   |
|        | 6.1 | ferraillage | des | semelle  | 5 la | а : | série | S1  | 44   |
|        | 6.2 | ferraillage | des | semelle  | 5 18 | a   | série | S2  | 46   |
|        | 6.3 | ferraillage | des | semelle: | s la | а : | série | S3  | 48   |

#### CHAPITRE 1

#### INTRODUCTION

Lorsque les premiers hommes montèrent leurs premiers abris, il cherchaient essentiellement à s'isoler, à se protéger contre les dangers sans nombres qui les guettaient: le froid, la pluie, le vent, la chaleur, l'humidité, les bêtes..., puis le feu, les voleurs...

Depuis une période relativement récente les problèmes du bâtiment sont plus que jamais posés avec acuité, étant donné que chaque construction doit s'inscrire dans un cadre environnemental de plus en plus exigent sur toutes les formes de sécurités et d'harmonie.

Il est alors du devoir de l'Ingénieur Civil d'associer ses acquis académiques pour relever le double défi de la beauté et de la sécurité. C'est dans ce sens que nous avons choisi pour projet de fin d'étude la construction d'un immeuble, plus précisément le projet de construction de l'agence Patte d'Oie de la SENELEC. Le but du projet est la conception et le dimensionnement des divers éléments structuraux de l'immeuble qui notons le, a une vocation administrative; Les différents éléments qui feront l'objet du dimensionnement sont: les dalles, les poutres, les poteaux, la fondation, etc... Le dimensionnement se fera dans la norme française avec utilisation des méthodes forfaitaire du BAEL.

#### CHAPITRE 2

## RAPPELS DES NOTIONS FONDAMENTALES DU CALCUL AUX ETATS LIMITES.

Pendant près d'un siècle, le béton armé a été calculé "aux contraintes admissibles". Pour cela on détermine pour le béton et l'acier des contraintes dites admissibles définies à partir des coefficients de performances inférieurs à 1 (0.28 sur la résistance moyenne de rupture à 90 jours du béton, et 0.60 de la limite élastique de l'acier). On calculait les contraintes de ces matériaux sous l'effet le plus défavorable des charges exactement prévues, et elle ne devaient pas dépasser ces contraintes admissibles.

La sécurité globale d'une construction n'était donc assurée que par ces coefficients, comme si le seul facteur d'insécurité était la résistance intrinsèque des matériaux utilisés. Cette façon de voir la sécurité a évolué et on tend de plus en plus à prendre en compte tous les facteurs d'insécurité comme par exemple:

- \* La valeur la plus probable des charges permanentes;
- \* La valeur des actions variables appliquées;
- \* L'action défavorable ou favorable de charges;
- \* Les approximations du calcul des sollicitations;
- \* Les défauts géométriques dans les divers dimensions:
- \* Les fissurations plus ou moins favorables...

On tient compte de tous ces facteurs en leur appliquant individuellement un facteur de sécurité supérieur à l.

C'est donc ce principe basé sur une théorie semi-probabiliste qui est à la base du calcul aux états limites, définit comme étant l'état pour lequel une condition requise d'une construction est strictement satisfaite, et cesserait de l'être en cas de modification d'une action.

### 2.1 Les différents états limites

On distingue deux états limites:

#### 2.1.1 <u>Etat\_limite\_ultime.</u>

Elle correspond à la valeur maximale de la capacité portante, dont le dépassement entraînerait la ruine de l'ouvrage:

- Equilibre statique;
- Résistance de la structure ou de l'un de ses éléments;
- Stabilité de forme...

#### 2.1.2 Etat limite de service.

Elle constitue la frontière au delà de laquelle les conditions normales d'exploitation et de durabilité de la construction ou de l'un de ses éléments ne sont plus satisfaites:

- Ouvertures excessives des fissures;
- Déformation excessives des éléments porteurs:
- Vibrations inconfortables pour les usagers...

#### 2.2 Les actions et les sollicitations

#### 2.2.1 Les actions

Les actions sont les forces et les couples dus aux charges appliquées:

Les actions permanentes G,

- \_ Le poids propre des éléments de la construction;
- \_ Le poids des équipements fixes ( cloisons ...);
- \_ Les poussés, les pressions..
- Les déformations permanentes imposées à la construction Les actions variables Q,
  - \_ Les charges d'exploitation;
  - Les poussés et les pressions variables;
  - \_ Charges non permanentes appliquées en cours d'exécution;
  - \_ Les charges climatiques..

Les actions accidentelles sont entre autres Le séisme, les cyclônes tropicaux, glissement de terrain, les explosions...

#### 2.2.2 Les sollicitations

Les sollicitations sont : effort normal et effort tranchant le moment fléchissant et moment de torsion, calculés à partir des valeurs des actions, généralement en employant un modèle élastique et linéaire et en utilisant les procédés de la résistance des matériaux.

## 2.2.3 <u>Les coefficients de pondérations</u>

On utilise des coefficients de pondération pour les différentes actions. Ainsi on a suivant le type d'action les coefficients:

Charge permanente G 1.35

Charges d'exploitation 1.50

Vent, séisme 1.20

Température 0.80

Nous présentons sur les pages suivantes, les charges qui seront prises en comptes dans les calculs de sollicitations.

Pour les calculs à l'état limite ultime on utilise les charges pondérées (1.35G + 1.5Q) et pour les calculs à l'état limite de service (G + Q).

Disposition des dalles

## CHARGES

TABLEAU 2.1

TOIT PANNEAUX D1, D2, D3, D4, D6

| DESCRIPTION                                                                                                                                                                           | CHARGES (kPa)                                |                                  |           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|-----------|--|--|
| DU<br>TYPE DE CHARGES                                                                                                                                                                 | NON<br>PONDEREES                             | COEFFICIENT<br>DE<br>PONDERATION | PONDEREES |  |  |
| SURCHARGES                                                                                                                                                                            | 1.00                                         | 1.50                             | 1.50      |  |  |
| PERMANENTES (hourdis 16+4)  * Table de compression  * âme  * entrevous (16 cm)  * mortier de ciment (15 cm  * forme de pente (ép 5cm, p=1/100)  * étanchéité  * protection étanchéité | 1.00<br>0.67<br>0.95<br>0.30<br>0.80<br>0.50 | •                                |           |  |  |
|                                                                                                                                                                                       | 4.82                                         | 1.35                             | 6.51      |  |  |
|                                                                                                                                                                                       |                                              |                                  | 8.01      |  |  |

## TABLEAU 2.2

## TOIT PANNEAUX D5

| DESCRIPTION                                                                                           | CHARGES (kPa)                          |                                  |           |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|-----------|--|--|
| DU<br>TYPE DE CHARGES                                                                                 | NON<br>PONDEREES                       | COEFFICIENT<br>DE<br>PONDERATION | PONDEREES |  |  |
| SURCHARGES                                                                                            | 1.00                                   | 1.50                             | 1.50      |  |  |
| PERMANENTES  * couverture  * structure de couverture en bois  * charpente  * faux plafond (céramique) | 0.40/cosâ<br>0.20/cosâ<br>0.25<br>0.52 |                                  |           |  |  |
| â = 18.85, 18.15                                                                                      | 1.38                                   | 1.35                             | 1.86      |  |  |
|                                                                                                       |                                        |                                  | 3.36      |  |  |

## TABLEAU 2.3

## PLANCHER DE L'ETAGE

| DESCRIPTION                                                                                                                                                                | CHARGES (kPa)                        |                                  |           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------|-----------|--|
| DU<br>TYPE DE CHARGES                                                                                                                                                      | NON<br>PONDEREES                     | COEFFICIENT<br>DE<br>PONDERATION | PONDEREES |  |
| SURCHARGES  * bureau et toilettes  * cloisons en briques creuses enduit plâtre 15cm, 2 faces                                                                               | 2.40                                 |                                  |           |  |
| épaisseur nom 100mm                                                                                                                                                        | 1.35                                 |                                  |           |  |
|                                                                                                                                                                            | 3.75                                 | 1.50                             | 5.63      |  |
| PERMANENTES (hourdis 16+4)  * Table de compression  * âme= 0.1(0.24-0.04)/0.6  * entrevous (20 cm)  * enduit de ciment (15 cm)  * carrelage  * faux plafond fibreux, léger | 1.00<br>0.84<br>1.10<br>0.30<br>0.33 |                                  |           |  |
|                                                                                                                                                                            | 3.72                                 | 1.35                             | 5.02      |  |
|                                                                                                                                                                            |                                      |                                  | 10.65     |  |

TABLEAU 2.4

## POIDS DES MURS

| DESCRIPTION                                                                                                                           | CHARGES (kPa)    |                                  |           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------|-----------|--|--|
| DU<br>TYPE DE CHARGES                                                                                                                 | NON<br>PONDEREES | COEFFICIENT<br>DE<br>PONDERATION | PONDEREES |  |  |
| PERMANENTES Murs intérieurs de remplissage briques creuses, enduit sur les deux faces, épaisseur nominale 20 cm                       | 2.54             | 1.5                              | 3.81      |  |  |
| PERMANENTES  Murs extérieurs de façade avec vide des baies = 30% briques creuses, enduit sur les deux faces, épaisseur nominale 20 cm | 3.24             | 1.35                             | 4.37      |  |  |

TABLEAU 2.5

## CHARGE DE L'ESCALIER

| DESCRIPTION           | CHARGES (kPa)    |                                  |           |  |  |
|-----------------------|------------------|----------------------------------|-----------|--|--|
| DU<br>TYPE DE CHARGES | NON<br>PONDEREES | COEFFICIENT<br>DE<br>PONDERATION | PONDEREES |  |  |
| SURCHARGES            | 4.80             | 1.50                             | 7.20      |  |  |
| PERMANENTES           | 4.03             | 1.35                             | 5.44      |  |  |

## 2.3 Application du BAEL

## 2.3.1 POUTRES

**Définition :** La poutre est l'élément de l'ossature qui reprend les efforts transmises par la dalle.

On distingue les poutres appuyées simplement, et les poutres continues.

La section des poutres est rectangulaire. On suppose donc que les poutres sont soumises à la flexion simple.

## 2.3.1.1 <u>Schéma d'une poutre</u>



#### 2.3.1.2 Efforts à considérer :

- \* M<sub>U</sub> = moment fléchissant ultime, supposé
  supérieur à 0 car la fibre supérieure est
  comprimée;
- \*  $M_{\text{ser}}$  = moment fléchissant ultime en service;
- \* N = effort normal supposé nul ce qui permet de faire le design à l'état limite ultime de résistance en flexion;

Ces trois efforts sont utilisés pour la détermination de l'armature longitudinale.

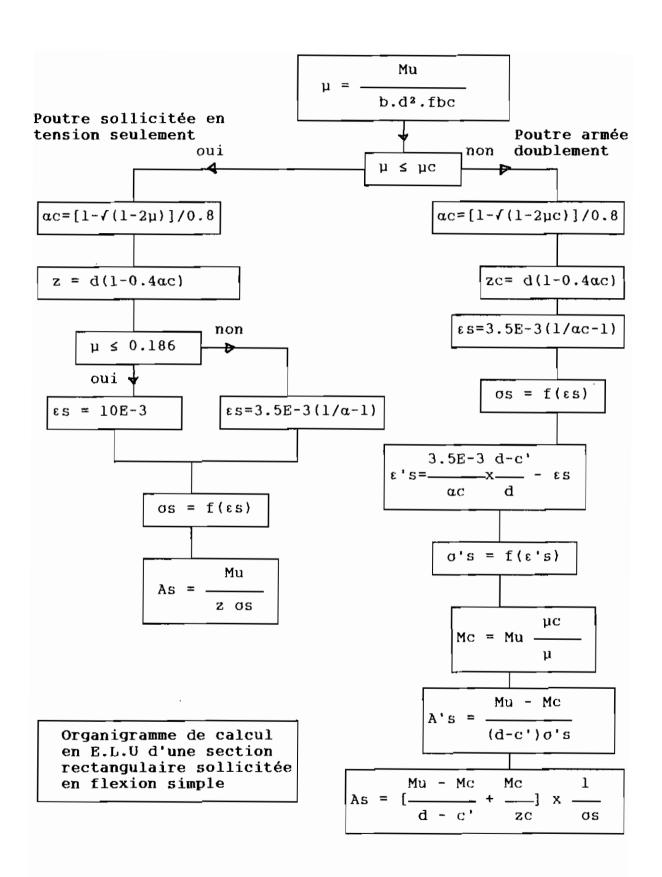
\* V = effort tranchant : Sous l'effet de cet effort

la poutre se fissure et se décompose en bielle

inclinée de 45°. On tient compte de l'effort

tranchant pour déterminer l'armature transversale.

## 2.3.1.3 Prédimensionnement

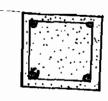

h = [1/12 ; 1/16] de la portée l.

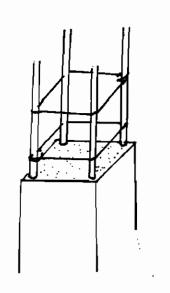
b = [1/2 ; 1/5] de la hauteur h.

 $d = 0.9 \cdot h$ 

## 2.3.1.4 <u>Procédure de calcul</u>

Voir l'organigramme de la page suivante





## 2.3.2 POTEAUX

Définition: Les poteaux sont les éléments verticaux de l'ossature qui transmettent aux fondations les charges transmises par les poutres.

On détermine par l'opération de la descente de charge les charges supportées par un poteau à chaque niveau.

## ... 2.3.2.1 Schéma d'un poteau





## 2.3.2.2 <u>Efforts à considérer</u>

\* Nu = Effort normal ultime

## 2.3.2.3 <u>Prédimensionnement</u>

b = 20 cm

h = 20 cm

## 2.3.2.4 Procédure de calcul

\* Calcul à l'état limite de résistance L'aire totale des armatures est donnée par :

$$A = \frac{N_{u} - 0.85 - \frac{f_{c20} \cdot B}{\tau_{b}}}{\frac{f_{e}}{\tau_{s}}}$$

Si on trouve A négative on prend A = 0

Toutefois, en pratique c'est par l'état limite de stabilité de forme qu'on détermine l'armature nécessaire.

Dans le cas où le poteau est soumis à une compression centrée l'Article B.8.4 donne une méthode qui stipule que:

si - l'élancement j est inférieur ou égal à 100

- l'imperfection de rectitude est inférieure ou égal à la plus grande des deux valeurs l cm et 1/500, alors on procède au calcul à l'état limite de stabilité de forme de la façon suivante.

#### \* Calcul à l'état limite de stabilité de forme.

On calcul la determine la longueur de flambement  $l_f$  on calcul l'élancement j =  $3.46 \cdot l_f/b$ 

On calcul 
$$\alpha = \frac{0.85}{1 + 0.2 \cdot (j/35)^2}$$
 pour  $j \le 50$ 

$$\alpha = 0.60 \cdot (50/j)^2$$
 pour  $50 \le j \le 100$ 

$$A_s = \frac{\tau_s}{f_a} \cdot \left( \frac{N_u}{\alpha} - \frac{f_{c28} B_r}{1.35} \right)$$

On calcul l'armature minimale requise.

$$A_{min} = ( 8 \cdot (b+h)/100$$

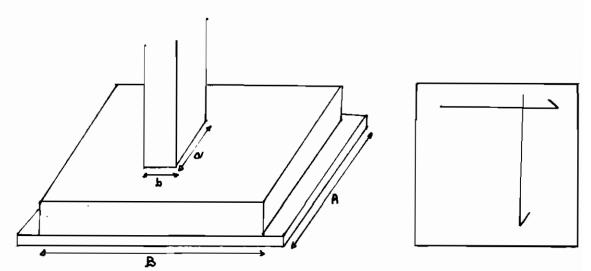
L'armature de la section rectangulaire, de dimension b, h est le le max entre  $A_s$  et  $A_{\text{min}}$ 

#### \* L'armature transversale

Le diamètre de l'armature transversal est donné par la correspondance suivante :

Le diamètre de l'armature transversale ne doit pas dépasser 12 mm pour un façonnage facile. Le diamètre doit être environ le 1/3 de l'armature longitudinale. Nous avons les correspondances suivantes:

| Armature<br>longitudinale | 12 | 14 | 16 | 20 | 25 |
|---------------------------|----|----|----|----|----|
| Armature<br>transversale  | 5  | 5  | 6  | 6  | 8  |


## 2.3.3 SEMELLES

**Définition:** La fonction de la fondation est de transmettre correctement au sol les efforts apportés par la structure. Le schéma de la descente de charge est la suivante :

Dalle ——> Poutres ——> Poteaux ———> Fondation ———> Sol

Nous optons pour une fondation superficielle, ce qui est
généralement le cas le plus fréquent dans les types de
constructions de bâtiments de faibles portées et les semelles
seront des semelles sous appuis isolés rectangulaires pour les
poteaux rectangulaires et carrées pour les poteaux carrés.

## 2.3.3.1 Schéma d'une semelle



## 2.3.3.2 <u>Efforts à considérer :</u>

- \* Nu = Effort normal ultime
- \*  $\sigma_{sol}$  = contrainte de rupture du sol
- \* N = Effort normal ultime de service

## 2.3.3.3 <u>Prédimensionnement</u>

On détermine directement les dimensions en fonction de la contrainte de rupture du sol.

#### 2.3.3.4 Procédure de calcul

\* Calcul à l'état limite ultime

$$a/b = A/B$$

$$A \times B = N_{u} / \sigma_{sol}$$

$$d_b \le A-a$$
  $d_a \ge B-b/4$ 

Armature suivant A

$$A_a = \frac{N_0 (A - a)}{8 * d_a * o_s}$$

Armature suivant B

$$A_b = \frac{N_u + B - b}{8 * d_b * f_e / \tau_s}$$

$$\sigma_s = f_e / \tau_s$$

\* Calcul à l'état limite de service

L'armature trouvée doit être inférieure à celle donnée à l'état limite ultime

Armature suivant A

$$A_a = \frac{N (A - a)}{8 * d_a * \sigma_s}$$

Armature suivant B

$$A_b = \frac{N_u (B - b)}{8 * d_b * \sigma_s}$$

On détermine l'épaisseur par la relation

e =  $6\phi$  + 6,  $\phi$  étant le diamètre de la barre ayant le plus grand diamètre.

La longueur de scellement droit.

La longueur de scellement droit est la longueur de scellement nécessaire pour qu'une barre rectiligne de diamètre 🏚 soumise à une contrainte égale à sa limite élastique  $\mathbf{f}_{\mathbf{e}}$  soit convenablement ancrée. La longueur de scellement droit est donnée par la relation:

$$1_s = \frac{\phi \cdot f_e}{4 \cdot r}$$

 $\begin{array}{l} l_s = \frac{{\varphi \cdot f_e }}{{4 \cdot \tau _s }} \\ \\ \text{Suivant la valeur de la contrainte limite du béton on la tableau} \end{array}$ suivant:

| fe28 (MPa)                          | 20  | 25  | 30  | 35  |
|-------------------------------------|-----|-----|-----|-----|
| Barres à haute adhérence<br>Fe E 40 | 42ф | 36ф | 31ф | 28ф |

La valeur de  $\mathbf{l_S}$  est ensuite comparée à celle de A/4 et B/4. Si la  $\mathbf{l}_{ extsf{s}}$  est supérieure à l'une de ces valeurs alors les armatures suivant cette direction seront munies de crochets.

#### CHAPITRE 3

#### DIMENNIONNEMENT DES DALLES

**Définition :** Les dalles sont les éléments plans, d'épaisseur faible par rapport à ses deux autres dimensions.

Il existe plusieurs systèmes structuraux correspondant à différent types de charpentes:

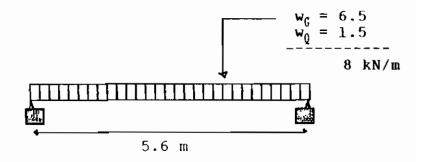
- \* Système composite
- \* Système préfabriqué
- \* Système coulé sur place...

Nous optons pour le système préfabriqué qui comporte deux options:

- Dalle coulée sur place sur des entrevous en béton qui prennent appuis sur les poutrelles
- Dalle préfabriquée à liaison par clavetage coulé sur place.

Nous optons pour la première option qui a l'avantage d'obtenir un plafond uni à l'étage. Ce système présente aussi l'avantage d'éviter les calculs de dalle portant dans les deux directions, en ce sens que les charges ponctuelles des poutrelles sur les poutres principales sont considérées du fait de leur rapprochement comme uniformément réparties.

Nous présentons en annexe le système de dalle préfabriquée à entrevous et poutrelles.


Voir Annexe A.3

## CHAPITRE 4

## DIMENSIONNEMENT DES POUTRES

## 4.1 Poutres sur appui simple

4.1.1 <u>Exemple de calcul de moment ultime :</u>
Poutre P-39



 $w_G = 6.5 * 3.6/2 + 2.1 * 1 = 13.8 kN/m$  $M_G = 13.8 * 5.6^2/8 = 54.1 kN.m$ 

 $w_0 = 1.5 * 3.6/2 = 2.7 kN/m$  $M_0 = 2.7 * 5.6^2/8 = 10.6 kN.m$ 

 $M_G + M_0 = 54.1 + 10.6 = 64.7 \text{ kN.m}$ 

## 4.1.2 <u>Récapitulation</u>

Nous récapitulons les différents moments ultimes dans les tableaux suivant :

Tableau 4.1 POUTRES DU TOIT

| Poutres | wG   | MG   | wQ  | MQ   | Mu   | Ms   | Pm   | Série |
|---------|------|------|-----|------|------|------|------|-------|
| 39, 25  | 13.8 | 54.1 | 2.7 | 10.6 | 64.7 | 47.1 | 1.37 | 2     |
| 40, 41  | 15.6 | 61.2 | 3.6 | 14.1 | 75.3 | 54.7 | 1.37 | 2     |
| 5, 20   | 13.8 | 34.9 | 2.7 | 6.8  | 41.7 | 30.4 | 1.37 | 2     |
| 43, 44  | 23.4 | 59.2 | 5.4 | 13.7 | 72.9 | 46.3 | 1.57 | 2     |
| 53, 54  | 23.4 | 59.2 | 5.4 | 13.7 | 72.9 | 46.3 | 1.57 | 2     |
| 45, 42  | 18.2 | 46.1 | 4.2 | 10.6 | 56.7 | 41.2 | 1.38 | 2     |
| 46, 51  | 17.6 | 8.8  | 4.1 | 2.1  | 10.9 | 6.6  | 1.65 | 3     |
| 47, 50  | 13   | 6.5  | 3   | 1.5  | 8    | 5.8  | 1.38 | 3     |
| 32, 49  | 9.1  | 46.6 | 2.1 | 10.8 | 57.4 | 41.7 | 1.38 | 2     |
| 55, 56  | 13   | 12.7 | 3   | 2.1  | 14.8 | 10.8 | 1. 0 | 3     |
| 12      | 8.6  | 19   | 1.5 | 3.3  | 22.3 | 16.3 | 1.37 | 3     |
| 48      | 9.8  | 15   | 2.3 | 3.5  | 18.5 | 13.4 | 1.38 | 3     |
| 58      | 14   | 35.4 | 3.2 | 8.1  | 43.5 | 31.6 | 1.38 | 2     |
| 59      | 20.5 | 51.9 | 4.7 | 11.8 | 63.8 | 46.3 | 1.38 | 2     |

 $w_0$  = charge uniforme permanente kN/m

 $w_0$  = charge uniforme permanente kN/m

 $M_6$  = moment flechissant dù à la charge permanente kN.m

 $\mathrm{M}_{\mathrm{0}}$  = moment flechissant dù à la charge d'exploitation kN.m

 $M_{U} = M_{G} + M_{Q}$  Moment ultime

 $M_s = M_g/1.35 + M_0/1.5$  Moment ultime de service

 $P_m = M_u/M_s$ 

Tableau 4.2 POUTRES DU PLANCHER DE L'ETAGE ET DU RDC

| Poutres | wG   | MG   | wQ   | MQ   | Mu    | Ms   | Pm   | Série |
|---------|------|------|------|------|-------|------|------|-------|
| 39, 2'  | 29.5 | 53.2 | 10.1 | 18.2 | 71.4  | 51.4 | 1.39 | 2     |
| 1, 24'  | 14   | 22.7 | 15.7 | 25.2 | 48.1  | 33.6 | 1.43 | 2     |
| 5, 20   | 29.5 | 74.6 | 10.2 | 25.8 | 100.4 | 72.5 | 1.38 | 1     |
| 43, 44  | 27.2 | 68.9 | 20.2 | 51.1 | 120   | 85.1 | 1.41 | 1     |
| 53, 54  | 27.2 | 68.9 | 20.2 | 51.1 | 120   | 85.1 | 1.41 | 1     |
| 45, 42  | 23.2 | 58.7 | 15.7 | 39.7 | 98.7  | 70   | 1.41 | 1     |
| 46, 51  | 22.7 | 11.4 | 15.2 | 7.6  | 19    | 13.5 | 1.41 | 3     |
| 47, 50  | 19.2 | 9.5  | 11.2 | 5.6  | 15.2  | 10.8 | 1.41 | 3     |
| 49      | 20.2 | 103. | 12.3 | 63   | 166.4 | 18.6 | 1.40 | 1     |
| 55, 56  | 13   | 12.7 | 3    | 2.1  | 14.8  | 10.8 | 1.37 | 3     |
| 12      | 28   | 61.7 | 8.4  | 18.5 | 79.2  | 58   | 1.37 | 2     |
| 48      | 18.2 | 27.9 | 10.1 | 15.5 | 43.4  | 31   | 1.40 | 2     |
| 58      | 20.5 | 80.5 | 14.5 | 55.7 | 136.2 | 96.8 | 1.41 | 1     |
| 59      | 25.6 | 46.2 | 19.8 | 35.7 | 82    | 58   | 1.41 | 1     |
| 57      | 25.3 | 41   | 17.1 | 27.7 | 68.7  | 48.8 | 1.41 | 2     |
| 32      | 16.2 | 83   | 7.8  | 40   | 123   | 88.1 | 1.4  | 1     |
| 40      | 12   | 39.1 | 13.4 | 24.2 | 63.3  | 45.1 | 1.40 | 2     |
| 41      | 10.8 | 42.3 | 12   | 47   | 89.3  | 62.7 | 1.42 | 1     |

#### 4.1.3 Dimensionnement des poutres

#### 4.1.3.1 Poutre Série \$3

\* Calcul de l'armature longitudinale

 $M_n = 40 \text{ kN.m}$ 

b = 20 cm

h = 30 cm

d = 27 cm

Pour ces poutres on à en moyenne Pm = 1.38

d'où à partir du tableau A.4  $\mu_c = 0.29$ 

$$\mu = \frac{M_{f}}{b \cdot d^{2} \cdot f_{bc}} = \frac{40 \text{ E3}}{20 \cdot 27^{2} \text{E-}6 \cdot 14.2 \text{E6}}$$

= 0.2

 $\mu = 0.2 < \mu_c = 0.29$ 

donc la poutre sera armée simplement.

$$\alpha = \frac{1 - (1 - 2 \cdot \mu)^{1/2}}{2} = \frac{1 - (1 - 2 \cdot 0.2)^{1/2}}{2}$$

= 0.28

$$z = 27 \cdot (1 - 0.4 \cdot \alpha) = 27 \cdot (1 - 0.4 \cdot 0.24)$$

= 24 cm

 $\mu = 0.2 > 0.186$ 

$$\varepsilon_s = 3.5E-3 \cdot (\frac{1}{\alpha} - 1) = 3.5E-3 \cdot (\frac{1}{0.28} - 1)$$

$$= 9.86.$$

du tableau A.4.2 on a  $\sigma_s$  = 379 MPa pour  $\epsilon_s$  = 9 %.

$$\mathbf{A}_{\mathbf{S}} = \frac{\mathbf{M}_{\mathbf{U}}}{\mathbf{z} \cdot \mathbf{\sigma}_{\mathbf{S}}} = \frac{40E3}{24E - 2 \cdot 379E6}$$

= 4.4 cm2 On prend 4 # 12

### \* Calcul de l'armature transversale

La poutre type de cette série est la poutre P-12

$$w_G = 8.6 \text{ kN/m}$$

$$w_{Q} = 1.5 \text{ kN/m}$$
  
 $10.1 \text{ kN/m}$ 

L'effort tranchant ultime est

$$v_{0} = \frac{w_{1} \cdot 1}{2} = \frac{10.1 \cdot 2.8}{2}$$

$$= 14.14 \text{ kN}$$

La contrainte tangentielle est

$$\tau_{q} = \frac{V_{q}}{b \cdot d} = \frac{14.14E3}{20 \cdot 27 E-4}$$
= 0.26 MPa

L'espacement  $s_t$  entre armatures transversales est le minimum entre 40 cm et  $0.9 \cdot 27 = 24.3$ 

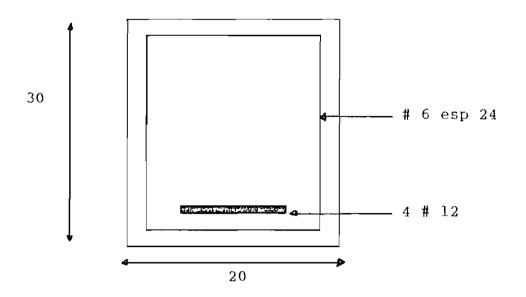
On adopte pour  $s_t$  la valeur 24 cm.

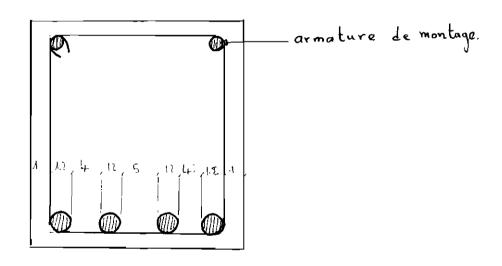
L'armature est donnée par

$$\frac{A_{t} \cdot f_{e}}{b \cdot s_{t}} \geq \frac{\tau_{u}}{2} \quad \text{et} \quad 0.4 \text{ MPa}$$

Puisque  $\tau_{\rm U}/2$  = 0.13 la condition doit être justifiée

pour :


$$\frac{A_{t} \cdot f_{e}}{b \cdot s_{t}} \geq 0.4 \text{ MPa}$$


soit

$$A_t \ge 0.4 \cdot \frac{20 \cdot 25}{400} = 0.5 \text{ cm}^2$$

$$A_t = 0.5 \text{ cm}^2$$
 On prend des  $\phi$  6

Schéma 4.1 POUTRE DE LA SERIE S3





#### 4.1.3.2 Poutre Série S2

\* Calcul de l'armature longitudinale

$$M_u = 80 \text{ kN.m}$$

$$b = 20 \text{ cm}$$

$$h = 40 \text{ cm}$$

$$d = 36 \text{ cm}$$

Pour ces poutres on à en moyenne Pm = 1.39

d'où à partir du tableau A.4.1  $\mu_c = 0.295$ 

$$\mu_c = 0.295$$

$$\mu = \frac{M_{f}}{b \cdot d^{2} \cdot f_{bc}} = \frac{80 \text{ E3}}{20 \cdot 36^{2} \text{E} - 6 \cdot 14.2 \text{E6}}$$
$$= 0.22$$

$$\mu$$
 = 0.22  $<$   $\mu_{c}$  = 0.295

donc la poutre sera armée simplement.

$$\alpha = \frac{1 - (1 - 2 \cdot \mu)^{1/2}}{0.8} = \frac{1 - (1 - 2 \cdot 0.22)^{1/2}}{0.8}$$

$$= 0.315$$

$$z = 36 \cdot (1 - 0.4 \cdot \alpha) = 36 \cdot (1 - 0.4 \cdot 0.315)$$
  
= 31.5 cm

$$\mu = 0.22 > 0.186$$

$$\varepsilon_s = 3.5E-3 \cdot (\frac{1}{\alpha} - 1) = 3.5E-3 \cdot (\frac{1}{0.315} - 1)$$
= 7.6 %.

du tableau A.4.2 on a  $o_s$  = 372 MPa pour  $\varepsilon_s$  = 7.6 %.

$$A_s = \frac{M_0}{z \cdot \sigma_s} = \frac{80E3}{31.5E - 2 \cdot 376E6}$$
  
= 6.75 cm<sup>2</sup> On prend 4 # 14

## \* Calcul de l'armature transversale

La poutre type de cette série est la poutre P-12

$$w_c = 28 \text{ kN/m}$$

$$w_0 = 8.4 \text{ kN/m}$$

l'effort tranchant ultime est

$$V_{0} = \frac{w_{1} \cdot 1}{2} = \frac{36.4 \cdot 2.8}{2}$$

$$= 50.96 \text{ kN}$$

La contrainte tangentielle est

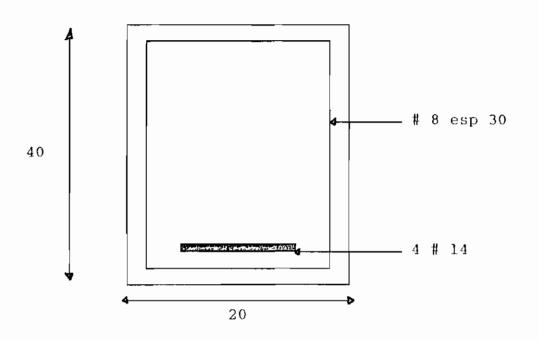
$$\tau_{u} = \frac{V_{u}}{b \cdot d} = \frac{50.96E3}{20 \cdot 36 E-4}$$
= 0.71 MPa

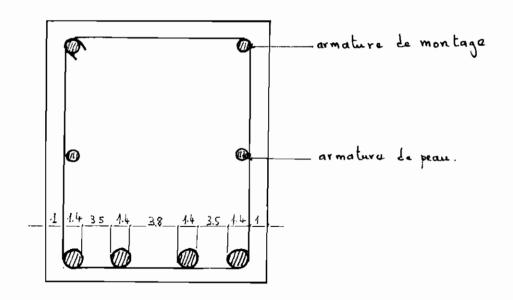
L'espacement  $s_t$  entre armatures transversales est le minimum entre 40 cm et  $0.9 \cdot 36 = 32.4$  cm;

On adopte pour  $\mathbf{s}_{t}$  la valeur 30 cm.

L'armature est donnée par

$$\frac{A_t * f_e}{b * s_t} \ge \frac{\tau_0}{2} \text{ et 0.4 MPa}$$


Puisque  $\tau_{\rm U}/2$  = 0.355 la condition doit être justifiée


$$\frac{A_{t} \cdot f_{e}}{b \cdot s_{t}} \ge 0.4 \text{ MPa}$$

soit

$$A_t \ge 0.4 \cdot \frac{20.36}{400} = 0.72 \text{ cm}^2$$

 $A_{t}$  = 0.72 cm<sup>2</sup> on prend des barres de  $\phi$  8





### 4.1.3.3 Poutre Série Sl

### \* Calcul de l'armature longitudinale

 $M_u = 120 \text{ kN.m}$ 

b = 20 cm

h = 60 cm

d = 54 cm

Pour ces poutres on à en moyenne Pm = 1.41

d'où à partir du tableau A.4.1  $\mu_c$  = 0.298

$$\mu = \frac{M_f}{b \cdot d^2 \cdot f_{bc}} = \frac{120 \text{ E3}}{20 \cdot 54^2 \text{E} - 6 \cdot 14.2 \text{E6}}$$
$$= 0.145$$

 $\mu = 0.145 < \mu_c = 0.295$ 

donc la poutre sera armée simplement.

$$\alpha = \frac{1 - (1 - 2 \cdot \mu)^{1/2}}{0.8} = \frac{1 - (1 - 2 \cdot 0.145)^{1/2}}{0.8}$$
= 0.197

$$z = 54 \cdot (1 - 0.4 \cdot \alpha) = 54 \cdot (1 - 0.4 \cdot 0.145)$$

= 50.9 cm

 $\mu = 0.145 < 0.186$ 

 $\epsilon_{\rm g}$  = 10 %.

du tableau A.4.2 on a  $\sigma_{\text{s}}$  = 381.5 MPa pour  $\epsilon_{\text{s}}$  = 10 %.

As = 
$$\frac{M_u}{z \cdot \sigma_s} = \frac{120E-3}{50.9E-2\cdot381.5E6}$$
  
= 6.2 cm<sup>2</sup> On prend 4 # 14

### \* Calcul de l'armature transversale

La poutre type de cette série est la poutre P-49

$$w_{G} = 20.2 \text{ kN/m}$$

$$w_{Q} = 12.3 \text{ kN/m}$$
  
-----32.5 kN/m

l'effort tranchant ultime est

$$v_u = \frac{w_{f}.1}{2} = \frac{32.5 \cdot 6.2}{2}$$
= 100.75 kN

La contrainte tangentielle est

$$\tau_{u} = \frac{\mathbf{v}_{u}}{\mathbf{b} \cdot \mathbf{d}} = \frac{100.75E3}{20.54 E-4}$$
= 0.93 MPa

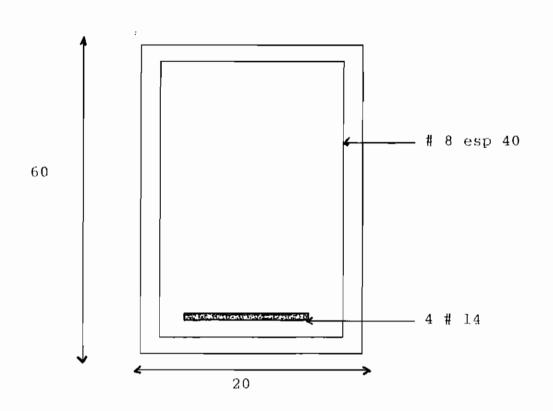
L'espacement entre armatures transversales est le minimum entre

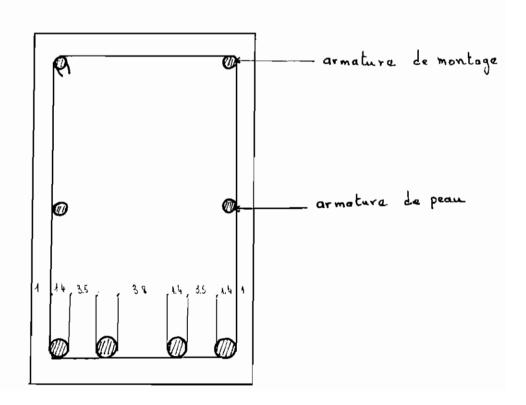
40 cm et 
$$0.9 * 54 = 48.6$$
 cm

On adopte pour s<sub>t</sub> la valeur 40 cm.

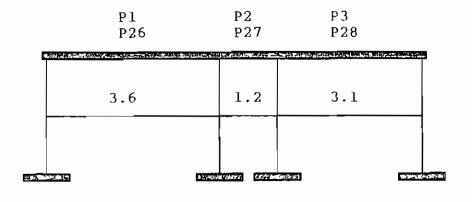
L'armature est donnée par

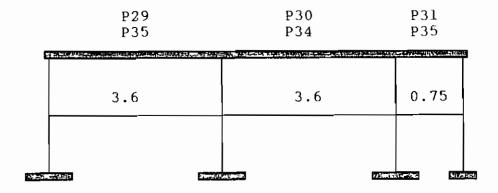
$$\frac{\mathbf{A_t \cdot f_e}}{\mathbf{b \cdot s_t}} \geq \frac{\tau_u}{2} \quad \text{et } 0.4 \text{ MPa}$$

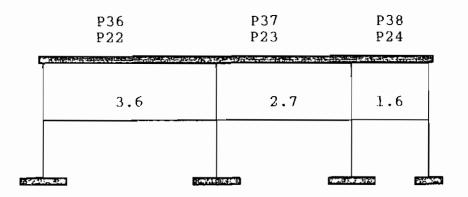

Puisque  $\tau_{\parallel}/2$  = 0.355 la condition doit être justifiée


$$\frac{A_t * f_e}{b * s_t} \ge 0.465 \text{ MPa}$$

soit

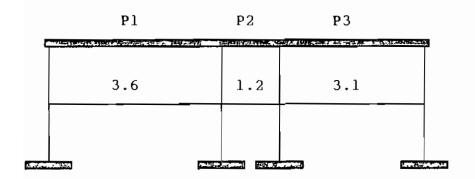

$$A_t \ge 0.465 \cdot \frac{20.54}{400} = 1.25 \text{ cm}^2$$

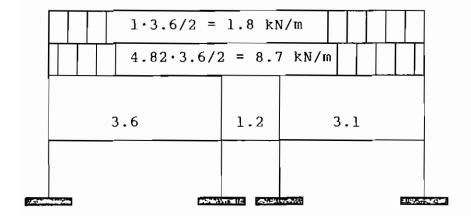

 $A_t = 1.25 \text{ cm}^2$  On prend une barre de  $\phi$  8






# a.2.1 DIMENSIONNEMENT DES POUTRES CONTINUES : TOIT






| _      | P6<br>P18  | P7<br>P17     | P8<br>P16 | P9<br>P15         | P10<br>P15      | P11<br>P13     | _    |
|--------|------------|---------------|-----------|-------------------|-----------------|----------------|------|
| E      | 3.6        | 3.6           | 3.6       | 2.7               | 1.2             | 1              | ,    |
| -N77-2 | many (***) | 1727-45 Kgs., | 547       | reactive products | Oleskon Ottober | and the second | A-M. |

### Poutre continue : application de la méthode forfaitaire





$$M_G = 8.7 \cdot 3.6^2/8 = 14.1 \text{ kN.m}$$

$$M_0 = 1.8 \cdot 3.6^2/8 = 2.9 \text{ kN.m}$$

$$M_{H} = 14.1 \cdot 1.35 + 2.9 \cdot 1.5 = 23.4 \text{ kN.m}$$

$$M_s = 14.1 + 2.9 = 17 \text{ kN.m}$$

$$\alpha = w_Q / (w_G + w_Q)$$

$$= 1.8 / (1.8 + 8.7)$$

### On peut donc appliquer la méthode forfaitaire

$$(1.2+0.3 \cdot \alpha)/2 = 0.625$$

$$(1+0.3 \cdot \alpha)/2 = 0.525$$

$$(1+0.3 \cdot \alpha) = 1.05$$

$$M_{trive} = \ge 0.625 \cdot 23.4 = 14.6$$

$$M_{tinte} = \ge 0.525 \cdot 23.4 = 12.3$$

$$0.5M_{o}$$

$$0.5M_0$$

$$M_v = 0.5M_0 = 0.5 \cdot 23.4 = 11.7$$

$$M_{\psi} = 0.5M_0 = 0.5 \cdot 23.4 = 11.7$$

Travée de rive

$$M_{\text{trive}} = \ge (1+0.3\alpha)M_0 - (M_W + M_e)/2$$
  
= 1.05.23.4 - (0+11.7)/2  
= 18.7 \ge 14.6

On prend M<sub>trive</sub> = 19 kN.m

$$M_{\text{tinte}} = \ge (1+0.3\alpha)M_0 - (M_w + M_e)/2$$
  
= 1.05·23.4 - (11.7+11.7)/2  
= 12.9 \ge 12.3

On prend  $M_{tinte} = 13 \text{ kN.m}$ 

12 12

### Amature pour les poutres de rives Pl

On adopte des poutres 20 x 20

$$M_n = 19 \text{ kN.m}$$

$$p_m = 1.38$$
  $\mu_c = 0.29$ 

On a b = 20 cm

Pour h = 20 cm on a d = 18 cm

$$\mu = \frac{19E3}{20 \cdot 18^2 \cdot 14.2} = 0.21$$

$$\mu = 0.21 \le \mu_c = 0.29$$

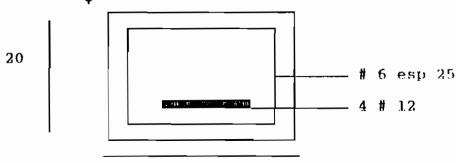
donc la poutre sera armée simplement.

$$\alpha = \frac{1 - (1 - 2 \cdot \mu)^{1/2}}{0.8} = \frac{1 - (1 - 2 \cdot 0.21)^{1/2}}{0.8}$$

$$z = 18 \cdot (1 - 0.4 \cdot \alpha) = 18 \cdot (1 - 0.4 \cdot 0.3)$$
  
= 15.8 cm

$$\mu = 0.21 \rightarrow 0.186$$

$$\varepsilon_{s} = 3.5E-3 \cdot (\frac{1}{\alpha} - 1) = 3.5E-3 \cdot (\frac{1}{0.3} - 1)$$


$$= 8.6 \%.$$

du tableau A.4.2 on a  $\sigma_s$  = 364 MPa pour  $\epsilon_s$  = 8.6 %.

$$A_s = \frac{M_0}{z \cdot \sigma_s} = \frac{19E3}{15.8E - 2 \cdot 364.4E6}$$

= 3.3 cm<sup>2</sup> On prend 3 # 12

et des barre 🐞 6 comme armature transversale.



### Amature pour les poutres intermédiaire P2

On adopte des poutres 20 x 20

$$M_{\rm p} = 13 \text{ kN.m}$$

$$pm = 1.38$$
  $\mu_c = 0.29$ 

On a b = 20 cm

Pour h = 20 cm on a d = 18 cm

$$\mu = \frac{13E3}{20 \cdot 18^2 \cdot 14.2} = 0.13$$

$$\mu = 0.14 \le \mu_c = 0.29$$

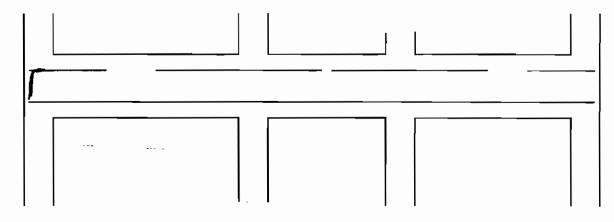
donc la poutre sera armée simplement.

$$\alpha = \frac{1 - (1 - 2 \cdot \mu)^{1/2}}{0.8} = \frac{1 - (1 - 2 \cdot 0.14)^{1/2}}{0.8}$$

$$= 0.19$$

$$z = 18 \cdot (1 - 0.4 \cdot \alpha) = 18 \cdot (1 - 0.4 \cdot 0.19)$$
  
= 16.6 cm

$$\mu = 0.14 > 0.186$$


$$\varepsilon_s = 10 %$$
.

du tableau A.4.2 on a  $\sigma_s$  = 382 MPa pour  $\epsilon_s$  = 10 %.

$$A_s = \frac{M_0}{z \cdot \sigma_s} = \frac{13E3}{16.6E - 2 \cdot 382.4E6}$$

=  $2.1 \text{ cm}^2$  On prend 3 # 10

et des barre 🛦 6 comme armature transversale.



### CHAPITRE 5

# DIMENSIONNEMENT DES POTEAUX

# 5.1 EXEMPLE DE DESCENTE DES CHARGES

| POTEAU   | P Cl.                                                   |                             |       |
|----------|---------------------------------------------------------|-----------------------------|-------|
| -        | <del></del>                                             | C-P                         | C-E   |
|          |                                                         |                             |       |
|          | eau 1                                                   |                             |       |
| 1        |                                                         | 24.3                        |       |
|          |                                                         | 4.6                         |       |
|          | Garde corps(5.6/2+3.6/2)*1*2.1                          | 9.7                         |       |
|          | •                                                       | 38.6                        |       |
|          | 1*1/4*5.6*3.6                                           |                             | 5.04  |
|          | 1 . 1 / 4 . 3 . 0 . 3 . 0                               |                             | 3.01  |
|          |                                                         |                             |       |
| Niv      | eau 2 Venant de Nl                                      | 38.6                        |       |
|          | Colonne                                                 | 3.3                         |       |
|          |                                                         |                             |       |
|          |                                                         | 41.9                        |       |
| NI di    | eau 3 Venant de N2                                      | 41.9                        |       |
|          | alle3.72*1/4*1.8*3.6                                    | 6                           |       |
| 1        | outres2*1/2*(1.8+3.6)                                   | 2.7                         |       |
|          | ur de façade $4.6*1/2*(1.8+3.6)*3.3$                    |                             |       |
| 1        | ur de remplissage                                       | 41                          |       |
|          |                                                         |                             |       |
|          |                                                         | 91.6                        |       |
|          |                                                         |                             |       |
| 1        | Venant de N2                                            |                             |       |
| 3        | .75*1/4*1.8*3.6                                         | • • • • • • • • • • • • • • | 6.08  |
| Ì        |                                                         |                             | 11.12 |
|          |                                                         |                             | 11.12 |
| Niv      | eau 4 Venant de N3                                      | 91.6                        |       |
|          | Colonne                                                 | 3.3                         |       |
|          |                                                         |                             |       |
|          |                                                         | 94.9                        |       |
| <u> </u> |                                                         |                             |       |
| 1        | eau 5                                                   |                             |       |
| 1        | enant de N4                                             | 94.9                        |       |
|          | ongrines                                                | 4.6                         |       |
| 1        | ur de façade 4.6*1/2*(3.6+5.6)*3.3<br>ur de remplissage | 69.8                        |       |
| "        | ar de rempirasage                                       |                             |       |
|          |                                                         | 169.3                       |       |
|          | ٦                                                       |                             |       |
|          | Venant de N4                                            |                             |       |
|          | 1.35*1/2*(3.6+5.6)*3.3                                  |                             | 20.5  |
|          |                                                         | •                           |       |
|          |                                                         |                             | 31.6  |

Pour les autres poteaux nous présentons en récapitulation les charges appliquées aux niveaux N3 et N5. Ces charges serviront aux dimensionnements des poteaux et des semelles respectivement.

Voir tableau A.5.1 et tableau A.5.2 en annexe.

Après avoir déterminé par l'opération de la descente des charges les différentes charges s'appliquant aux divers niveaux du bâtiment nous catégorisons les charges en trois séries en vue de rendre uniforme les poteaux ainsi que les semelles.

Nous allons donc dimensionner les poteaux avec les efforts s'appliquant au niveaux N3 et nous allons uniformiser avec les poteaux de l'étage.

On fait l'hypothèse que les poteaux sont soumis à un effort de compression centrée au centre de gravité de la section à l'exclusion de tout moment fléchissant qui pourrait être engendré soit par une action extérieure (vent par exemple) soit par un excentrement de l'effort normal. Ces moments sont supposés faibles et leur existence n'est pas pris en compte dans la justification à l'état limite. Toutefois les coefficients de sécurité prennent en compte leur existence.

Pour le design des poteaux la justification se fait vis à vis de l'effort normal ultime pour la résistance ultime et la stabilité de forme.

Mais en pratique c'est la stabilité de la forme qui fait le plus souvent l'objet de justification.

### 5.2 DIMENSIONNEMENT DES POTEAUX.

### 5.2.1 POTEAU DE LA SERIE S1

Charge non pondérée  $P_f$  = 400 kN Longueur de flambement  $l_f$  =  $l_o$  = 350 cm Coefficient de sécurité du béton  $\tau_b$  = 1.5 Coefficient de sécurité de l'acier  $\tau_s$  = 1.15 Limite élastique de l'acier  $f_e$  = 400 MPa Largeur du poteau b = 20 cm

\* Calcul de l'armature longitudinale.

### Calcul à l'état ultime limite de résistance

La section d'armature est donnée par la formule

As = 
$$\frac{f_e}{\tau_s}$$
 \* (  $P_f$  -  $\frac{0.85 * f_{c28} * B}{\tau_b}$  )

As = 
$$\frac{1.15}{400E6}$$
 \*  $\frac{400E3 - 0.85 * 25E6 * 20 * 25 E-4}{1.5}$   
= -12.7 cm<sup>2</sup> < 0

Donc pour la résistance il faut prévoir l'armature minimale.

Toutefois en pratique l'armature est déterminée par le calcul à l'état ultime de stabilité de forme dont la Procédure de calcul est la suivante:

### Calcul à l'état ultime de stabilité de forme

Calcul de l'élancement j

$$l_f = l_0 = 350$$
 double articulation

$$j = 3.46 * 1_f/b = 3.46 * 350/20$$

$$= 60.55$$

$$\alpha = 0.6 * (50/\tau)^2 = 0.6 * (50/60.55)^2$$

$$= 0.41$$

$$A_s = \frac{\tau_s}{f_e} \star \left(\frac{P_f}{\alpha} - \frac{f_{c20} \star B_r}{1.35}\right)$$

$$A_s = \frac{1.15}{400E6} * (\frac{400E3}{0.41} - \frac{25E6 * 19 * 24^2E-4}{1.35})$$

$$= 3.8 \text{ cm}^2 \text{ On prend } 4 \# 12 = 4.52 \text{ cm}.$$

Armature longitudinale minimale

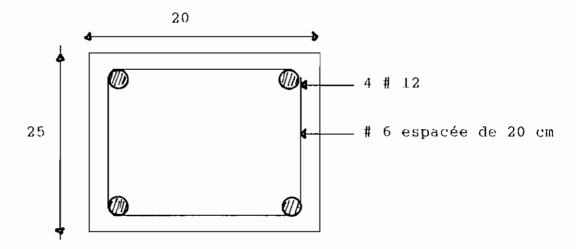
$$A_{min} = \frac{0.2*b * a}{100} = 0.2 * 20 * 25/100$$

$$= 1 cm2 < As$$

Armature par m de parement

$$A_{sp} = \frac{8 * (a + b)}{100} = 8 * (20 + 25)/100$$
$$= 3.6 cm2$$

L'armature pour le parement est nécessaire lorsque la distance entre axe de deux armatures voisines est au plus égale à b+10 et 40 cm. Dans notre cas on ne peut pas avoir d'armatures intermédiaires puisque déjà b est plus petite que ces deux valeurs.


### \* Calcul de l'armature transversale

L'armature transversale est déterminée de façon à ce que le diamètre de la barre soit le tiers de celui de la plus petite barre de l'armature longitudinale.

### On prend # 6

La distance entre les barres transversale est la plus petite entre les valeurs suivantes : 15\*  $\phi_l$  ; 40 cm ; b+10,  $\phi_l$  étant la plus grande des barres longitudinales. On prend 18 cm.

Schéma 5.1 ferraillage poteau Série Sl



### 5.2.2 POTEAU DE LA SERIE S2

### \* Calcul à l'état ultime de stabilité de forme

Calcul de l'élancement τ

 $l_f = l_0 = 350$  double articulation

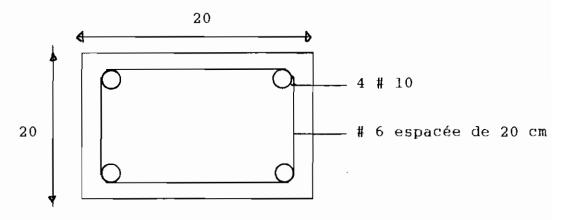
$$\tau = 3.46 * 1_f/b = 3.46 * 350/20$$
  
= 60.55

$$\alpha = 0.6 * (50/\tau)^2 = 0.6 * (50/60.55)^2$$
= 0.41

$$A_s = \frac{\tau_s}{f_e} \star \left( \frac{P_f}{\alpha} - \frac{f_{c28} \star B_r}{1.35} \right)$$

$$A_{S} = \frac{1.15}{400E6} * (\frac{300E3}{0.41} - \frac{25E6 * 19 * 19^{2}E-4}{1.35})$$

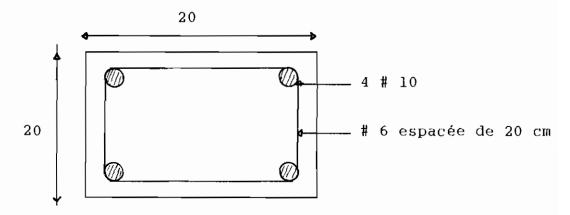
=  $1.8 \text{ cm}^2$  On prend 4 # 10 cm.


Armature longitudinale minimale

$$A_{\text{pin}} = \frac{0.2 \text{ *b}^2}{100} = 0.2 \text{ * 20 * 20/100}$$
$$= 0.8 \text{ cm}^2$$

Armature par m de parement

$$A_{s} = \frac{8 * (a + b)}{100} = 8 * (20 + 20)/100$$
$$= 3.2 \text{ cm}^{2}$$


Schéma 5.2 ferraillage poteau Série S2



### 5.2.3 POTEAU DE LA SERIE S3

Nous adoptons le même design que les poteaux de la Série S2.

Schéma 5.3 ferraillage poteau Série S3



Nous présentons le tableau récapitulatif pour les différents poteaux, les sections ainsi que l'armature adéquat.

# 5.3 RECAPITULATION

| 1  | Série | CHARGE | SECTION |    |  | ARMATURE |        |  |
|----|-------|--------|---------|----|--|----------|--------|--|
|    |       |        | b       | h  |  | Long     | Transv |  |
| 1  | 2     | 150    | 20      | 20 |  | 4 #10    | #6-20  |  |
| 2  | 2     | 150    | 20      | 20 |  | ***      | ***    |  |
| 3  | 2     | 300    | 20      | 20 |  | ***      | ***    |  |
| 4  | 2     | 150    | 15      | 15 |  | ***      | * * *  |  |
| 5  | 2     | 300    | 20      | 20 |  | ***      | ***    |  |
| 6  | 2     | 300    | 20      | 20 |  | ***      | * * *  |  |
| 7  | 2     | 300    | 20      | 20 |  | ***      | ***    |  |
| 8  | 2     | 300    | 20      | 20 |  | ***      | ***    |  |
| 9  | 1     | 400    | 20      | 20 |  | 4# 12    | #6-20  |  |
| 10 | 3     | 150    | 15      | 15 |  | ***      | ***    |  |
| 11 | 3     | 150    | 15      | 15 |  | * * *    | ***    |  |
| 12 | 2     | 300    | 20      | 20 |  | * * *    | ***    |  |
| 13 | 2     | 300    | 20      | 20 |  | ***      | ***    |  |
| 14 | 3     | 150    | 15      | 15 |  | ***      | ***    |  |
| 15 | 3     | 150    | 15      | 15 |  | * * *    | ***    |  |
| 16 | 1     | 400    | 20      | 20 |  | 4# 12    | #6-20  |  |
| 17 | 2     | 300    | 20      | 20 |  | ***      | ***    |  |
| 18 | 2     | 300    | 20      | 20 |  | ***      | * * *  |  |
| 19 | 2     | 300    | 20      | 20 |  | * * *    | ***    |  |
| 20 | 2     | 300    | 20      | 20 |  | ***      | ***    |  |
| 21 | 3     | 1.50   | 15      | 15 |  | ***      | ***    |  |
| 22 | 2     | 300    | 20      | 20 |  | ***      | * * *  |  |
| 23 | 2     | 300    | 20      | 20 |  | 4 #10    | #6-20  |  |
| 24 | 3     | 150    | 15      | 15 |  | ***      | * * *  |  |
| 25 | 2     | 300    | 20      | 20 |  | * *      | **     |  |

| 26 | 2 | 300 | 20 | 20 | **    | * *   |
|----|---|-----|----|----|-------|-------|
| 27 | 2 | 300 | 20 | 20 | **    | **    |
| 28 | 1 | 400 | 20 | 20 | 4# 12 | #6-20 |
| 29 | 1 | 400 | 20 | 20 | *     | *     |
| 30 | 2 | 300 | 20 | 20 | ***   | * * * |
| 31 | 2 | 300 | 20 | 20 | ***   | ***   |
| 32 | 2 | 300 | 20 | 20 | ***   | ***   |
| 33 | 2 | 300 | 20 | 20 | ***   | * * * |
| 34 | 1 | 400 | 20 | 20 | *     | *     |
| 35 | 1 | 400 | 20 | 20 | *     | *     |
| 36 | 1 | 400 | 20 | 20 | *     | *     |
| 37 | 1 | 400 | 20 | 20 | *     | *     |
| 38 | 2 | 300 | 20 | 20 | ***   | * * * |
| 39 | 2 | 300 | 20 | 20 | ***   | ***   |
| 40 | 2 | 300 | 20 | 20 | ***   | * * * |
| 41 | 2 | 300 | 20 | 20 | ***   | ***   |
| 42 | 2 | 300 | 20 | 20 | ***   | ***   |
| 43 | 2 | 300 | 20 | 20 | ***   | ***   |
| 44 | 2 | 300 | 20 | 20 | ***   | ***   |
| 45 | 2 | 300 | 20 | 20 | ***   | ***   |
| 46 | 2 | 300 | 20 | 20 | ***   | * * * |

### CHAPITRE 6

### DIMENSIONNEMENT DES SEMELLES

**Définition:** La fonction de la fondation est de transmettre correctement au sol les efforts apportés par la structure. Le schéma de la descente de charge est la suivante :

Dalle ----> Poutres ----> Poteaux ----> Fondation ----> Sol

Nous optons pour une fondation superficielle, ce qui est généralement le cas le plus fréquent dans les types de constructions de bâtiments de faibles portées et les semelles seront des semelles sous appuis isolés.

Le tableau A.5.2 de l'annexe donnent les différentes charges qui s'exercent sur les semelles.

### 6.1 DIMENSIONNEMENT

### 6.1.1 Semelle de la Série Sl

Hypothèses : - Semelle sous poteaux.

- Poteaux rectangulaire 20 x 25

- Fissuration préjudiciable

- Contrainte admissible du sol  $\sigma_{\text{sol}}$  1.5 kPa

Charge pondérée  $N_{ij} = 720 \text{ kN}$ 

Charge non pondérée P = 520 kN

Etat limite ultime

$$\frac{a}{b} = \frac{A}{B} = \frac{20}{15}$$

$$B*B*20/25 = \frac{720000}{1.5} = 480000 \text{ mm}^2$$

 $B^2 = 6000 \text{ cm}^2$ 

$$B = 77.5 \text{ cm} \text{ et } A = 62 \text{ cm}$$

On adopte une semelle de  $80 \times 64$ 

$$d_{\lambda} = \frac{80 - 25}{4} = 13.75 \text{ cm}$$

On prend  $d_{k} = 25$  cm

$$d_8 = 64 - 20 = 44 \text{ cm}$$

On prend  $d_{\beta} = 40$  cm

Armature

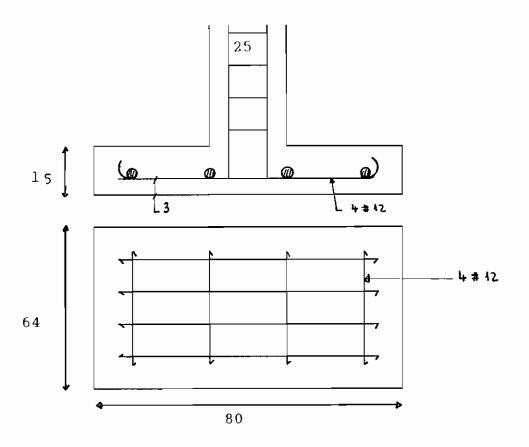
$$A_{SB} = \frac{720000 * (80 - 25)}{8 * 40 * 348E6} = 3.6 \text{ cm}^2$$

$$A_{SA} = \frac{720000 * (64 - 20)}{8 * 30 * 348E6} = 3.8 cm^{2}$$

d'où  $4 + 12 = 4.5 \text{ cm}^2$ 

Etat limite de service

$$A_{SB} = \frac{520000*(80 - 25)}{8*40*240E6} = 3.7 \text{ cm}^2 < 4.5 \text{ cm}^2 \text{ O.K}$$


$$A_{Sh} = \frac{520000*(64 - 20)}{8 * 30 * 240E6} = 4 \text{ cm}^2 < 4.5 \text{ cm}^2 \text{ O.K}$$

La longueur de scellement  $l_s$  est égale  $36 \cdot lcm = 36$  cm

 $\rm B/4$  = 80/4 = 20 cm <  $\rm l_{s}$  = 36 cm donc les armatures parallèles à B seront munies de crochets.

A/4 = 64/4 = 16 cm <  $1_s$  = 36 cm donc les armatures parallèles à A seront munies de crochets.

Schéma 6.1 ferraillage des semelles de la série Sl



### <u>6.1.2 Semelle de la Série S2</u>

Hypothèses : - Semelle sous poteaux.

- Poteaux carrés 20 x 20

- Fissuration préjudiciable

- Contrainte admissible sol  $o_{sol}$  1.5 kPa

Charge pondérée  $N_n = 480 \text{ kN}$ 

Charge non pondérée P = 345 kN

Etat limite ultime

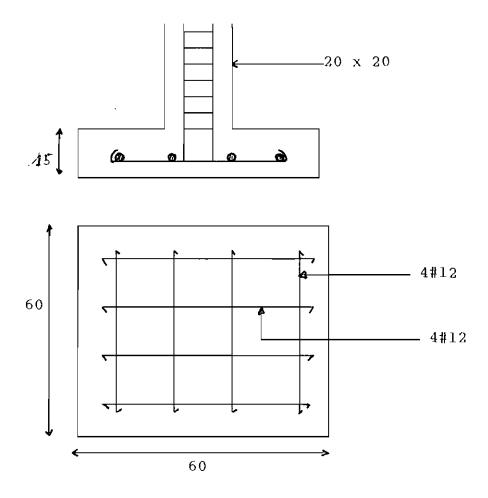
$$A^{2} = \frac{480000}{1.5} = 320000 \text{ mm}^{2}$$
$$= 3200 \text{ cm}^{2}$$

A = 56.6cm d'où semelle 60 x 60

$$d_{h} \le 60 - 20 = 40$$
 $d_{h} \ge (60 - 20)/4 = 10$ 
On prend  $d_{h} = 30$  cm

Armature

$$A_{s} = \frac{480000*(600 - 200)}{8*200*348} = 3.4 \text{ cm}^{2}$$


d'où 4 🏚 12 soit 4.5 cm²

### Etat limite de service

$$A_s = \frac{345000*(600 - 200)}{8*200*240} = 3.6cm^2 < 4.5 \text{ OK}$$

La longueur de scellement  $1_s$  est égale  $36 \cdot 1$ cm = 36 cm A/4 = 60/4 = 20 cm  $< 1_s = 36$  cm donc les armatures parallèles à A seront munies de crochets. Il en est ainsi pour les deux sens.

Schéma 6.2 ferraillage des semelles de la série S2



### 6.1.3 Semelle de la Série S3

Hypothèses : - Semelle sous poteaux.

- Poteaux carrés 20 x 20

- Fissuration préjudiciable

- Contrainte admissible sol  $\sigma_{sol}$  1.5 kPa

Charge pondérée  $N_n = 240 \text{ kN}$ 

Charge non pondérée P = 170 kN

Etat limite ultime

$$A^{2} = \frac{240000}{1.5} = 160000 \text{ mm}^{2}$$
$$= 1600 \text{ cm}^{2}$$

A = 40 cm d'où semelle  $40 \times 40$ 

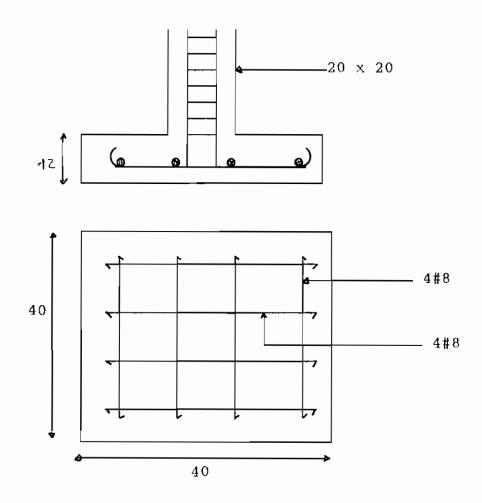
$$d_{\frac{1}{h}} \le 40 - 20 = 20$$

$$d_{\frac{1}{4}} \ge (40 - 20)/4 = 5$$

On prend d<sub>A</sub> = 10 cm

Armature

$$A_{S} = \frac{240000*(400 - 200)}{8*100*348} = 1.7 \text{ cm}^{2}$$


d'où 4 6 8 soit 2.1 cm2

Etat limite de service

$$A_s = \frac{170000*(400 - 200)}{8*100*240} = 1.8 \text{ cm}^2 < 2.1 \text{ OK}$$

La longueur de scellement  $1_{\S}$  est égale  $36\cdot 0.8$  cm = 28.8 cm A/4 = 40/4 = 10 cm  $< 1_{\S}$  = 28.8 cm donc les armatures parallèles à A seront munies de crochets. Il en est ainsi pour les deux sens.

Schéma 6.3 ferraillage des semelles de la série S3



### 6.2 Récapitulation

Nous résumons les semelles par série dans le tableau A.6

|    |        |       |           | POTEAUX |         |                  |              |
|----|--------|-------|-----------|---------|---------|------------------|--------------|
| N° | Charge | Série | Charge kN | Dim     | ensionS |                  | Armatures    |
|    | kN     |       | requise   | b       | h       | longitudinal     | transversale |
|    | 1000   |       | 150       |         | 20      | 4 # 10           | 0.000.00     |
| 1  | 102.2  | 3     | 150       | 20      | 20      | 4 # 10           | 6 esp 20     |
| 2  | 122.1  | 3     | 150       | 20      | 20      | 4 # 10           | 6 esp 20     |
| 3  | 219.5  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 4  | 101.3  | 3     | 150       | 20      | 20      | 4 # 10<br>4 # 12 | 6 esp 20     |
| 5  | 279.1  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 6  | 196.3  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 7  | 292.1  |       | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 8  | 292.1  | 2     |           | 20      | 20      | 4 # 12           | 6 esp 20     |
| 9  | 263.6  | 1 1   | 400       | 20      | 25      | 4 # 12           | 6 esp 20     |
| 10 | 123.5  | 3     | 150       | 20      | 20      |                  | 6 esp 20     |
| 11 | 106    | 3     | 150       | 20      | 20      | 4 # 10           | 6 esp 20     |
| 12 | 146.1  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 13 | 146.1  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 14 | 106    | 3     | 150       | 20      | 20      | 4 # 10           | 6 esp 20     |
| 15 | 123.5  | 3     | 150       | 20      | 20      | 4 # 10           | 6 esp 20     |
| 16 | 263.6  | 1     | 400       | 20      | 25      | 4 # 12           | 6 esp 20     |
| 17 | 292.1  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 18 | 292.1  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 19 | 196.3  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 20 | 244.3  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 21 | 66.7   | 3     | 150       | 20      | 20      | 4 # 10           | 6 esp 20     |
| 22 | 261.6  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 23 | 209.9  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 24 | 102.2  | 3     | 150       | 20      | 20      | 4 # 10           | 6 esp 20     |
| 25 | 301.3  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 26 | 289.3  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 27 | 256.6  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 28 | 402.7  | 1     | 400       | 20      | 25      | 4 # 12           | 6 esp 20     |
| 29 | 354.5  | 1     | 400       | 20      | 25      | 4 # 12           | 6 esp 20     |
| 30 | 310.9  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 31 | 318.1  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 32 | 318.1  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 33 | 310.9  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 34 | 354.5  | 1     | 400       | 20      | 25      | 4 # 12           | 6 esp 20     |
| 35 | 403.8  | 1     | 400       | 20      | 25      | 4 # 12           | 6 esp 20     |
| 36 | 409.5  | 1     | 400       | 20      | 25      | 4 # 12           | 6 esp 20     |
| 37 | 386.3  | 1     | 400       | 20      | 25      | 4 # 12           | 6 esp 20     |
| 38 | 301.3  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 39 | 290    | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 40 | 290    | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 41 | 221.1  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 42 | 221.1  | 2     | 300       | 20      | - 20    | 4 # 12           | 6 esp 20     |
| 43 | 147.5  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 44 | 183.3  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 45 | 147.5  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |
| 46 | 183.3  | 2     | 300       | 20      | 20      | 4 # 12           | 6 esp 20     |

| N٥ | Charge | Série | Charge kN | Di m      | ensions   |           | Armatures | Espacemen | it des barres | Epaisse |
|----|--------|-------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|---------|
|    | kN     |       | requise   | SUIVANT B | SUIVANT A | SUIVANT B | SUIVANT A | SUIVANTB  | SUIVANTA      | , cm    |
|    |        |       |           |           |           |           |           |           |               |         |
| 1  | 178.3  | 3     | 240       | 40        | 40        | 4 # 8     | 4#8       | 9         | 9             | 12      |
| 2  | 233.4  | 3     | 240       | 20        | 20        | 4 # 8     | 4 # 8     | 9         | 9             | 12      |
| 3  | 336.6  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 4  | 170.4  | 3     | 240       | 20        | 20        | 4 # 8     | 4 # 8     | 9         | 9             | 12      |
| 5  | 415.3  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 6  | 317.4  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 7  | 452.7  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 8  | 452.7  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 9  | 666.2  | 1     | 720       | 80        | 64        | 4 # 12    | 4 # 12    | 23        | 18            | 15      |
| 10 | 200.2  | 3     | 240       | 20        | 20        | 4 # 8     | 4 # 8     | 9         | 9             | 12      |
| 11 | 176.9  | 3     | 240       | 20        | 20        | 4 # 8     | 4 # 8     | 9         | 9             | 12      |
| 12 | 241.2  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 13 | 241.2  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 14 | 172.9  | 3     | 240       | 20        | 20        | 4#8       | 4 # 8     | 9         | 9             | 12      |
| 15 | 200.16 | 3     | 240       | 20        | 20        | 4 # 8     | 4 # 8     | 9         | 9             | 12      |
| 16 | 666.2  | 1     | 720       | 80        | 64        | 4 # 12    | 4 # 12    | 23        | 18            | 15      |
| 17 | 452.7  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 18 | 452.7  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 19 | 317.4  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 20 | 380.6  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 21 | 114.6  | 3     | 240       | 20        | 20        | 4 # 8     | 4 # 8     | 9         | 9             | 12      |
| 22 | 420.5  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 23 | 321.2  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 24 | 178.3  | 3     | 240       | 20        | 20        | 4 # 8     | 4 # 8     | 9         | 9             | 12      |
| 25 | 440.7  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 26 | 420.9  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 27 | 378.5  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 28 | 709.3  | 1     | 720       | 80        | 64        | 4 # 12    | 4 # 12    | 23        | 18            | 15      |
| 29 | 515.3  | 1     | 720       | 80        | 64        | 4 # 12    | 4 # 12    | 23        | 18            | 15      |
| 30 | 444.1  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |
| 31 | 473.3  | 2     | 480       | 60        | 60        | 4 # 12    | 4 # 12    | 16        | 16            | 15      |

| 32 | 473.3 | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
|----|-------|---|-----|----|----|--------|--------|----|----|----|
| 33 | 444.1 | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
| 34 | 515.3 | 1 | 720 | 80 | 64 | 4 # 12 | 4 # 12 | 23 | 18 | 15 |
| 35 | 659.2 | 1 | 720 | 80 | 64 | 4 # 12 | 4 # 12 | 23 | 18 | 15 |
| 36 | 656.1 | 1 | 720 | 80 | 64 | 4 # 12 | 4 # 12 | 23 | 18 | 15 |
| 37 | 714.1 | 1 | 720 | 80 | 64 | 4 # 12 | 4 # 12 | 23 | 18 | 15 |
| 38 | 440.7 | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
| 39 | 434.6 | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
| 40 | 434.6 | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
| 41 | 331.1 | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
| 42 | 331.1 | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
| 43 | 264   | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
| 44 | 329.3 | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
| 45 | 264   | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
| 46 | 329.3 | 2 | 480 | 60 | 60 | 4 # 12 | 4 # 12 | 16 | 16 | 15 |
|    |       |   |     |    |    |        |        |    |    |    |

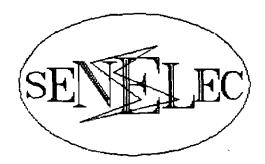
### CONCLUSION

Nous avons fait le dimensionnement des différents éléments structuraux et les résultats sont compilés dans différents tableaux.

A terme de ce travail il convient de faire une évaluation des résultats de design que fourni la norme française. Nous jugeons que les résultats obtenus sont ceux que l'on trouve dans la pratique. Aussi par comparaison avec les résultats du design effectué dans la norme canadienne en trouve que les résultats sont approximativement les mêmes.

A partir de ce moment le bâtiment de l'agence Patte d'Oie de la SENELEC peut faire l'objet de construction.

Nous recommandons que pour les prochaines design, l'on prenne pour la valeur de la protection 2 ou 4 cm.


Nous recommandons aussi que les dimensions des semelles soient augmentées pour tenir compte d'une extension futur de l'immeuble.

# ANNEXES

A.1 Esquisse
Plan de situation
Plan de masse
Vue en plan RDC
Coupe A.A
Façade principale.

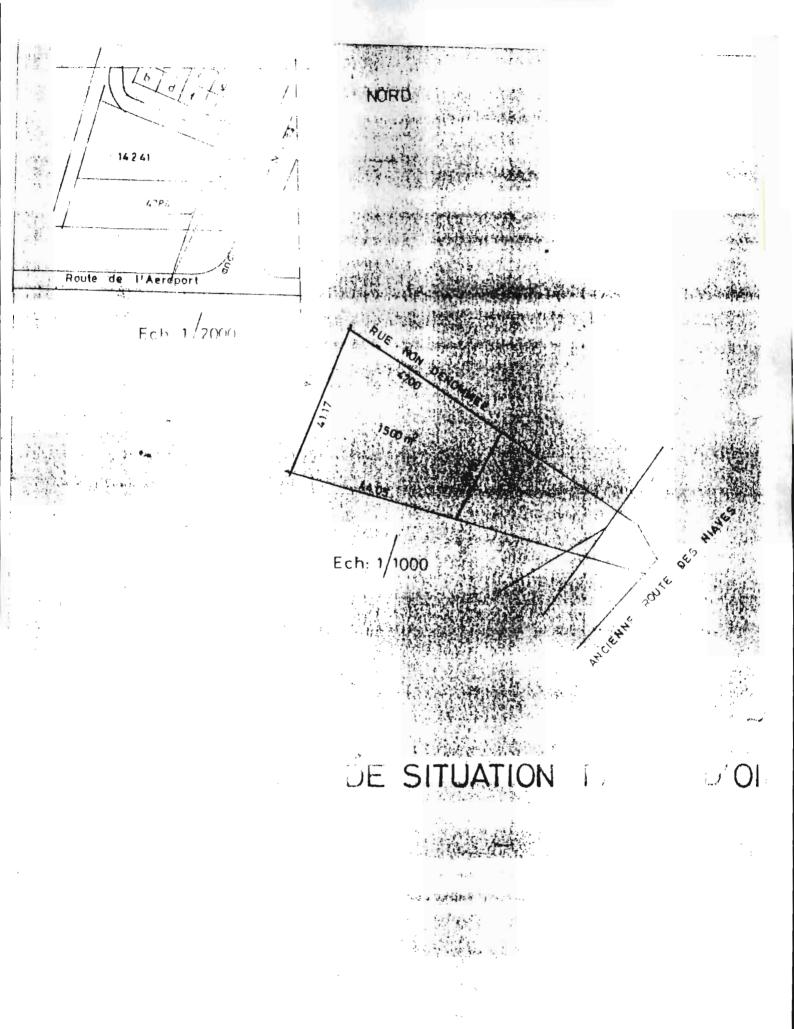
# REPUBLIQUE DU SENEGAL

SOCIETE NATIONALE D'ELECTRICITE 28, RUE VINCENS DAKAR

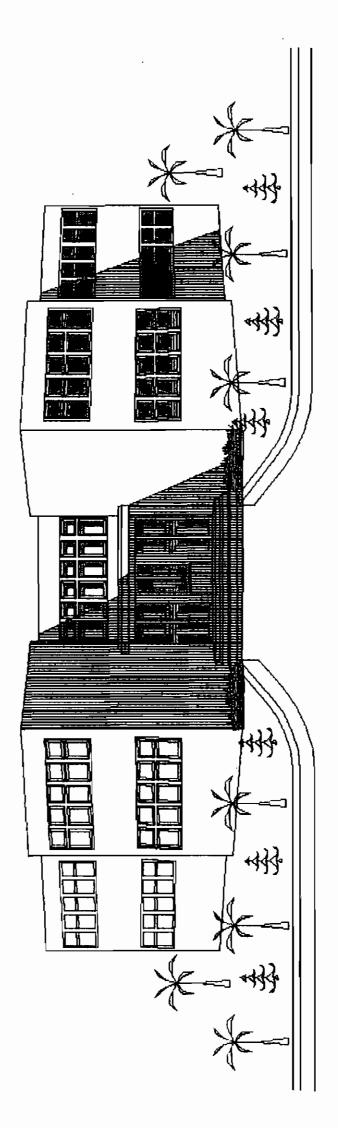


AGENCE PATTE-D'OIE ESQUISSE




DIRECTION DES ETUDES DES REALISATIONS

ET DE LA FORMATION

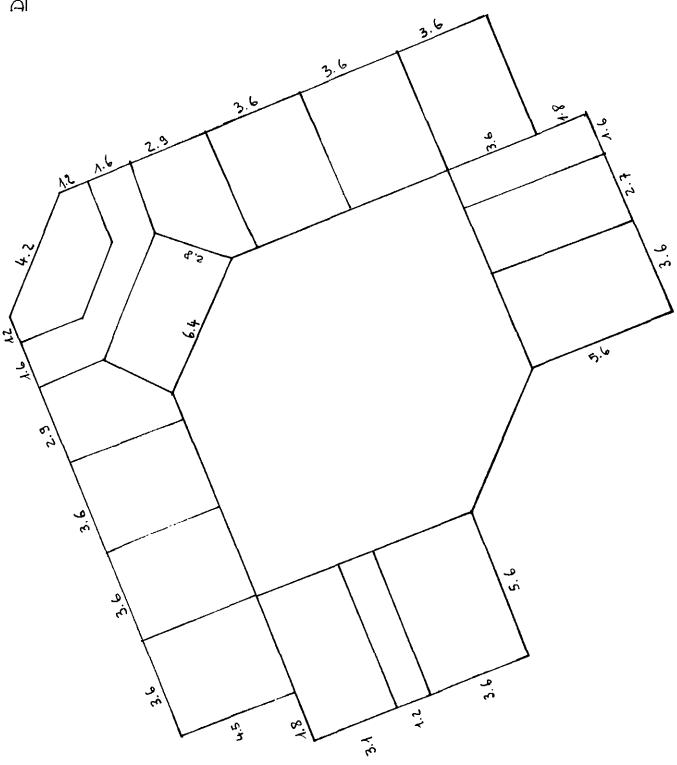

SERVICE GENIE CIVIL

ROUTE DES PERES MARISTES A HANN - DAKAR (SENEGAL)

Tel: 32.88.40

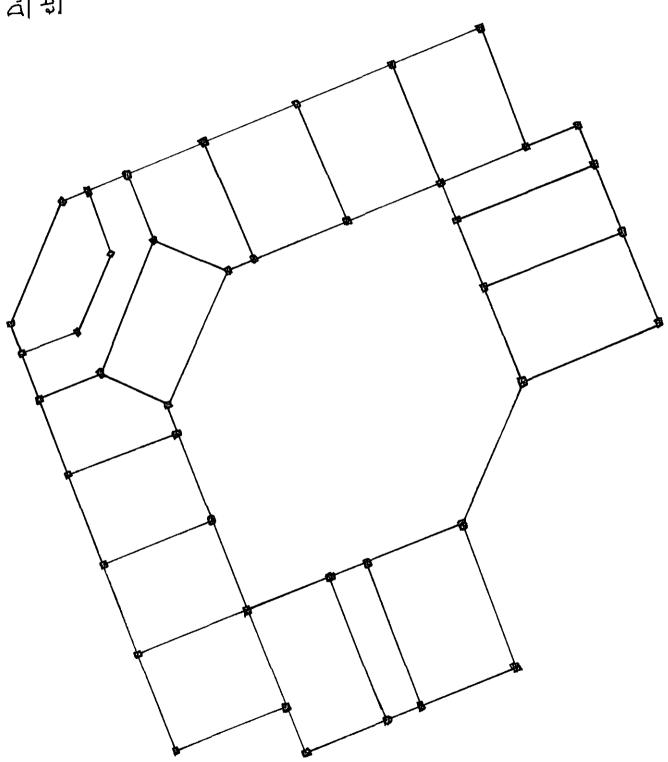


VUE EN PLAN R.D.C.

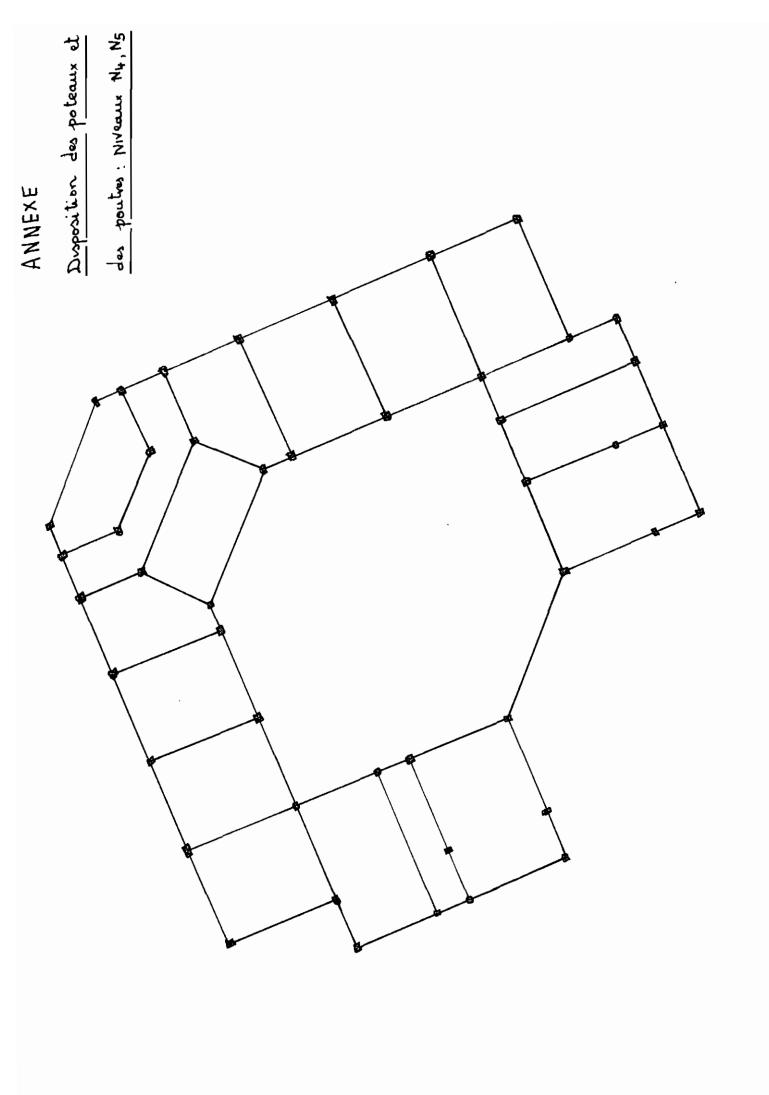



# FACADE PRINCIPALE

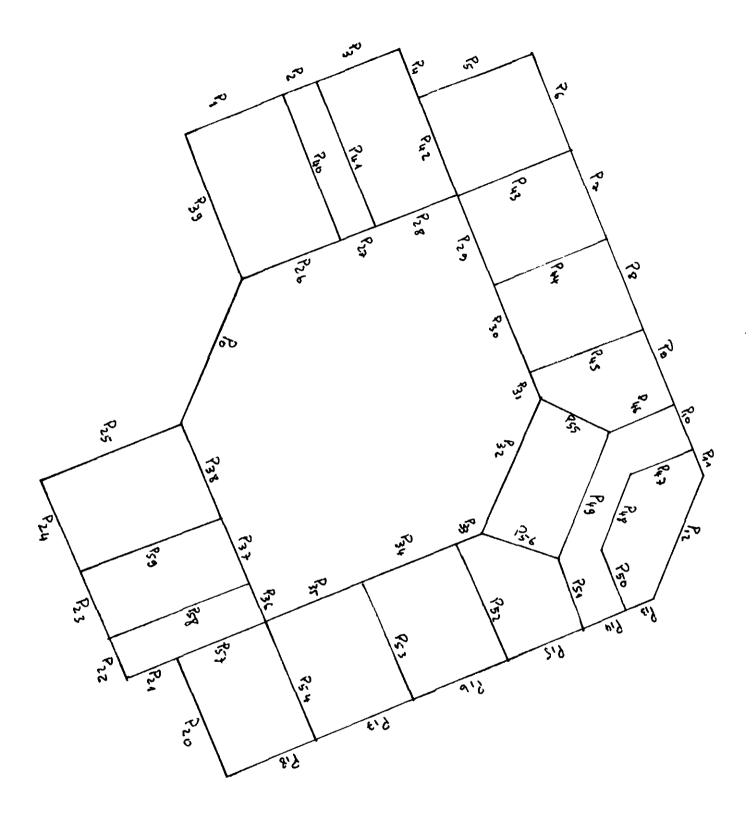
Œ,

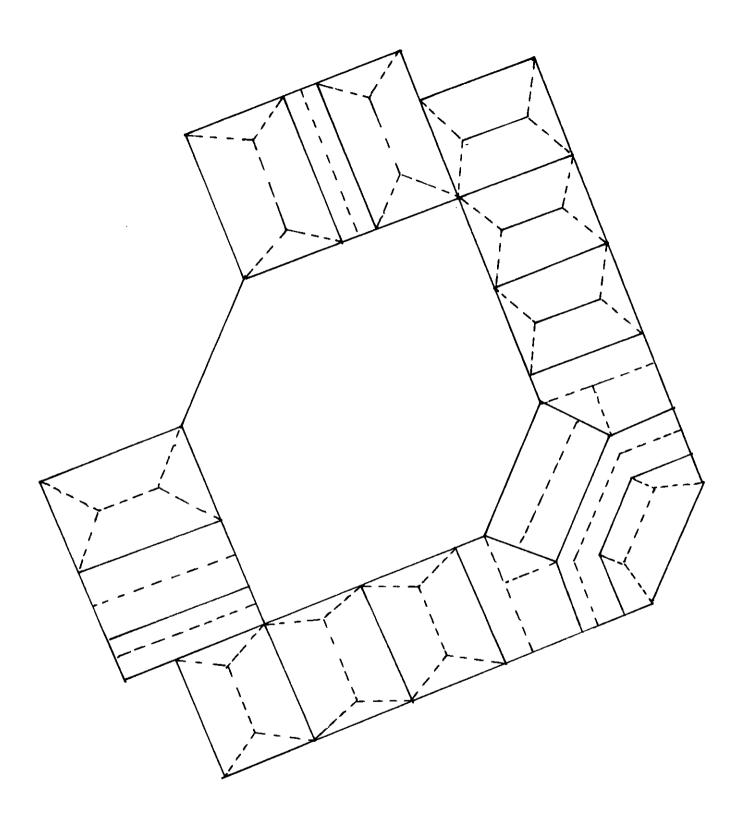

### ANNEXES

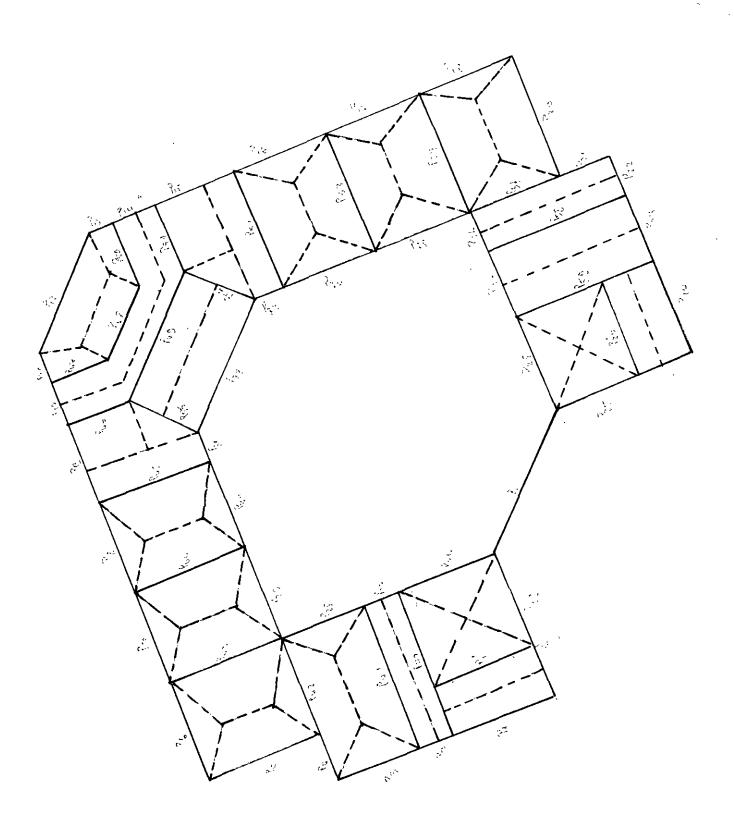
A.2 Plan de masse
dimensions
Plan de masse
Disposition des poteaux et des poutres N1
Disposition des poteaux et des poutres N2-N3
Disposition des poteaux et des poutres N4-N5
Surfaces tributaires des poteaux N1
Surfaces tributaires N2-N3, N4-N5
Désignation des poutres
Surfaces tributaires des poutres N1
Surfaces tributaires des poutres N2-N3




61


Disposition des poteaux et des poutes: Niveau M





6



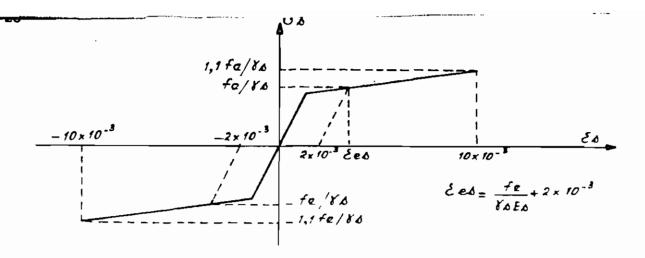
F







## ANNEXES


A.3 Diamètres nominaux des aciers. contrainte en fonction des déformations unitaires. Valeurs du moment réduit critique. Les diamètres nominaux utilisés sont (en mm) :

6 . 8 . 10 . 12 . 14. 16 . 20 . 25 . 32 . 40 . 50.

Le tableau suivant donne la section nominale et ses multiples en fonction du diamètre nominal :

|                              |   |     |    | 112  |      |      | •    | ~     | -', `_       | •     | `.`          |               |       |        |
|------------------------------|---|-----|----|------|------|------|------|-------|--------------|-------|--------------|---------------|-------|--------|
| diamètre nominal<br>(mm)     |   | 5.  | 6  | 8    | 10   | 12   | 14   | 16    | 20           | 25    | 32           | 40            |       |        |
| ω.<br>ω                      |   | "x  | 1  | 0.20 | 0,28 | 0.50 | 0,79 | 1,13  | 1,54         | 2,01  | 3,14         | 4.91          | 8.04  | 12,57  |
|                              | ſ | . х | 2  | 0,39 | 0.57 | 1,01 | 1,57 | 2,26  | 3,08         | 4,02  | 6,28         | 9,82          | 16,08 | 25,13  |
| multipl                      |   | .х  | 3  | 0,59 | 0,85 | 1,51 | 2,36 | 3,39  | 4,62         | 6.03  | 9,42         | 14,73         | 24,13 | 37,70  |
| ſ                            |   | . х | 4  | 0,79 | 1,13 | 2,01 | 3,11 | 4,52  | 6 <b>.16</b> | 8.04  | <b>42.57</b> | 19,63         | 32,17 | 50.27  |
| es t                         |   | λí  | 5  | 0,98 | 1,41 | 2.51 | 3,93 | 5,65  | 7,70         | 10.05 | 15,71        | 24,54         | 40.21 | 62.83  |
| nominale<br>lom <sup>2</sup> |   | , х | 6  | 1,18 | 1,70 | 3.02 | 4,71 | 6,79  | 9,24         | 12.06 | 18,85        | 29,45         | 48,25 | 75.40  |
| im.                          |   | , x | 7  | 1,37 | 1,38 | 3.52 | 5,50 | 7,32  | 10.78        | 14,07 | 21,99        | 34,36         | 56.30 | 87,96  |
| 1                            |   | х.  | 8  | 1,57 | 2,26 | 4,02 | 6,28 | 9.05  | 12,32        | 16,08 | 25,13        | 39,2 <i>7</i> | 64,34 | 100.53 |
| tion                         |   | х.  | 9  | 1,77 | 2.54 | 4,52 | 7,07 | 10,13 | 13.85        | 18,10 | 28,27        | 44.18         | 72.38 | 113,10 |
| Sec                          |   | ж.  | 10 | 1.96 | 2,83 | 5.03 | 7,85 | 11,31 | 15,39        | 20,11 | 31,42        | 49,09         | 80,42 | 125,66 |

7



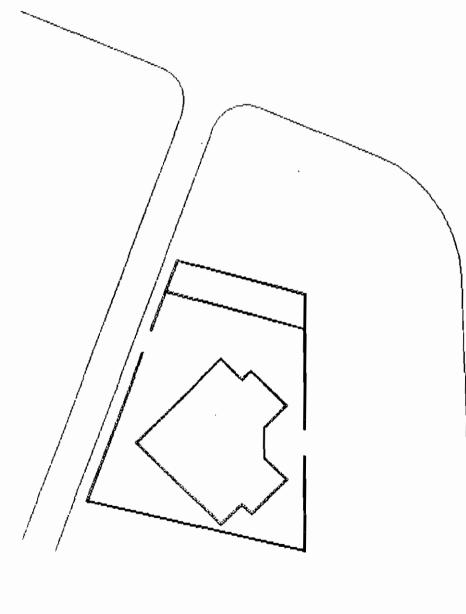
L'abscisse du point d'intersection des deux droites est :

$$E \delta = \frac{fe}{Y \delta E \delta} \left( 1 - \frac{0.0002}{0.008 - 1.1 \frac{fe}{Y \delta}} \right)$$

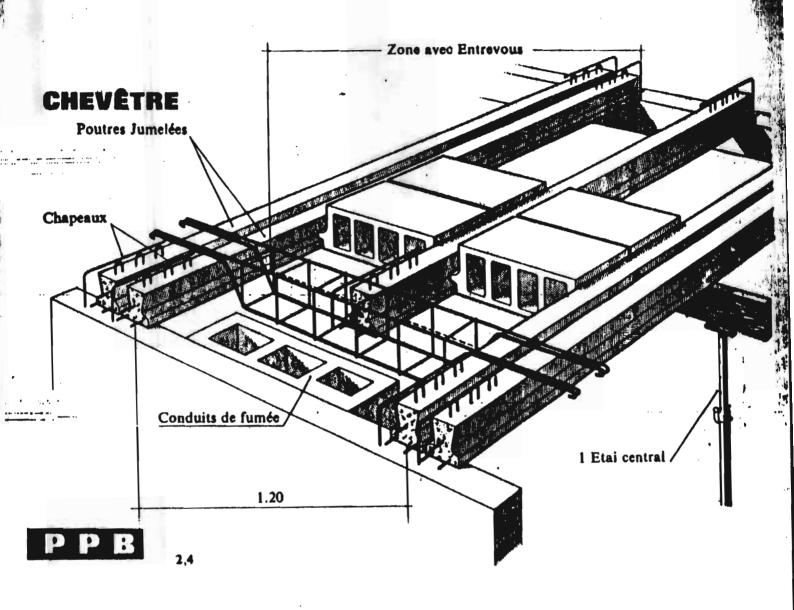
Valeurs de  $\sigma_{\delta}$  pour l'acier Fe E 40 - type 2, avec  $\gamma_{\delta}$  = 1,15

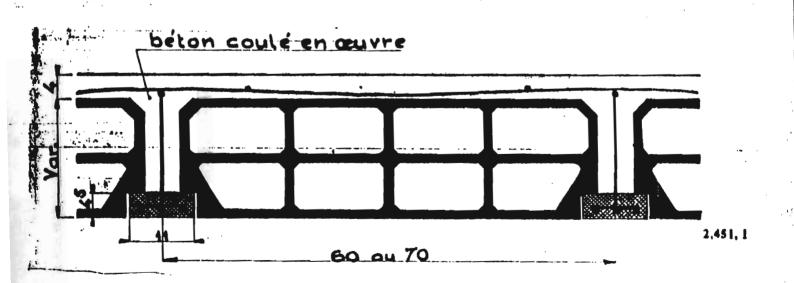
| 1,217 < € ≤ 1,36 |       | 1,36 < € € 1,50 |                | 1,50 < E < 2,30 |       | 2,30 < € <b>4</b> ,60 |       | 4,60 < | € 6 10 |
|------------------|-------|-----------------|----------------|-----------------|-------|-----------------------|-------|--------|--------|
| £                | ه     | e <sup>9</sup>  | σ.             | E               | ۵     | £                     | ٥     | E      | ه      |
| 1,217            | 243,4 | 1,37            | 273,3          | 1,62            | 302,0 | 2,40                  | 329,5 | 4,80   | 356,8  |
| 1,23             | 246,D | 1.38            | 275.D          | 1,64            | 303,3 | 2,50                  | 331,3 | 5,00   | 358.2  |
| 1.24             | 248,D | 1,39            | 276,7          | 1,66            | 304,6 | 2,60                  | 333,1 | 5,20   | 359,6  |
| 1,25             | 250,0 | 1,40            | 278,3          | 1,68            | 305,8 | 2.70                  | 334,€ | 5,40   | 3,038  |
| 1,26             | 252.D | 1,41            | 279,9          | 1,70            | 306,9 | 2,80                  | 336,4 | 5,60   | 362,1  |
| 1,27             | 254,D | 1,42            | 281,5          | 1,75            | 309,5 | 2,90                  | 337,9 | 5,80   | 363,3  |
| 1,28             | 256,0 | 1,44            | 284,3          | <b>1,8</b> D    | 311,8 | 3,00                  | 339,3 | 6,00   | 364,4  |
| 1,25             | 258,C | 1,46            | 2 <b>6</b> 7,D | 1,85            | 313,9 | 3,20                  | 341,9 | €,50   | 367,1  |
| 1,30             | 26D,D | 1,48            | 289,4          | 1,90            | 315,8 | 3,40                  | 344,2 | 7,00   | 369,6  |
| 1,31             | 261,9 | 1,50            | 291,6          | 1,95            | 317,6 | 3,60                  | 345,4 | 7,50   | 371,9  |
| 1,32             | 263,9 | 1,52            | 293,7          | 2,00            | 319,2 | 3,80                  | 346,4 | £,00   | 374,D  |
| 1,33             | 265,8 | 1,54            | 295,7          | 2,05            | 320,9 | 4,00                  | 350,4 | 8,50   | 376,1  |
| 1,34             | 267,7 | 1,56            | 297,4          | 2,10            | 322,3 | 4,20                  | 352,1 | 9,00   | 378,0  |
| 1,35             | 269,6 | 1,58            | 299,0          | 2,20            | 324,9 | 4,40                  | 353,8 | 9,50   | 379,8  |
| 1,36             | 271,5 | 1,60            | 300,5          | 2,30            | 327,2 | 4,60                  | 355,3 | 10,00  | 381,5  |

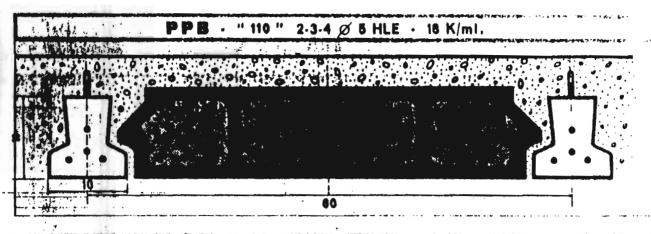
€ en %. o en MPa E<sub>B6</sub>=3,74%, \frac{f\_B}{Y\_6}=347,8 MPB

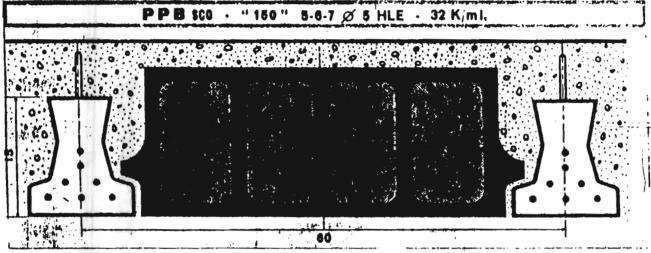

| f              | c M Pa                | 15    | 20    | 25    | 30    | 35    | 40    |
|----------------|-----------------------|-------|-------|-------|-------|-------|-------|
| Fe E 40        | ρ <sub>M</sub> = 1,35 | 0,219 | 0.255 | 0,283 | D.3D6 | 0,323 | 0,338 |
|                | ρ <sub>M</sub> = 1,40 | 0,233 | 0,271 | 0,300 | 0,323 | 0,341 | 0,356 |
| type 1, 3 ou 4 | ρ <sub>M</sub> = 1,45 | 0,247 | 0,286 | 0,317 | 0,340 | 0,359 | 0,375 |
| ·              | ρ <sub>M</sub> = 1,50 | 0,261 | 0,302 | 0,334 | 0,358 | 0,378 | 0,392 |
| Fe E 40        | ρ <sub>M</sub> = 1,35 | 0,209 | 0,249 | 0,280 | 0,305 | 0,325 | u,341 |
| type 2         | ρ <sub>M</sub> = 1,40 | 0,224 | 0,266 | 0,298 | 0,324 | 0,345 | 0,362 |
|                | PM = 1,45             | 0,239 | 0,283 | 0,317 | 0,344 | 0,367 | ü,386 |
|                | PM = 1,50             | 0,255 | 0,301 | 0,337 | 0,366 | 0,392 | 0,392 |

| f                  | c M Pa                | 15            | 20    | 25     | 30    | 35    | 40    |
|--------------------|-----------------------|---------------|-------|--------|-------|-------|-------|
| Fe E 50            | PM = 1,35             | 0,191         | 0,227 | 0,255  | 0,278 | 0,297 | 0,313 |
| typs 1, 3 ou 4     | PM = 1,40             | 0,204         | 0,241 | 0.271  | 0,290 | 0,314 | 0,331 |
|                    | ρ <sub>M</sub> = 1,45 | 0,2 <b>16</b> | 0,256 | 0,286  | 0,307 | 0,332 | 0,348 |
|                    | P <sub>M</sub> = 1,50 | 0,229         | 0,270 | 0,302  | 0,324 | 0,349 | 0,367 |
| Fe E 24            | ρ <sub>M</sub> = 1,35 | 0,283         | 0,318 | 0,342  | 0,361 | 0,375 | 0,386 |
| NATUREL            | ρ <sub>M</sub> = 1,40 | 0,300         | 0,336 | 0,361  | 0,379 | 0,394 | 0,405 |
|                    | P <sub>M</sub> = 1,45 | 0.317         | 0,354 | 0,379  | 0,399 | 0,413 | 0,425 |
|                    | ρ <sub>M</sub> = 1,50 | 0,334         | 0,372 | 0,398  | 0,418 | 0,426 | 0,426 |
| F. 5 22            | P <sub>M</sub> = 1,35 | U, 294        | 0,328 | U, 351 | 0,369 | 0,382 | 0,393 |
| Fe E 22<br>NATUREL | ρ <sub>M</sub> = 1,40 | U, 311        | 0,346 | 0,370  | 0,388 | 0,401 | 0,412 |
|                    | P <sub>M</sub> = 1,45 | 0,328         | 0,364 | 0,365  | 0,407 | 0,421 | 0,431 |
|                    | ρ <sub>M</sub> = 1,50 | 0,346         | 0,383 | 0,403  | 0,427 | 0,431 | 0,431 |


# ANNEXES

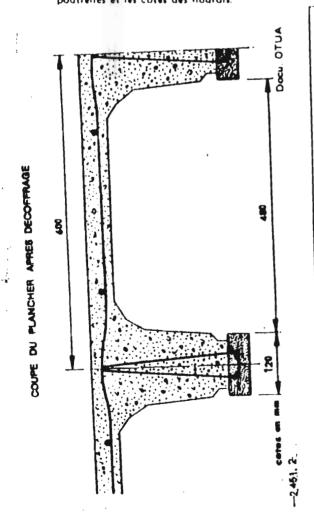

A.4 système de Dalle adopté. Poutrelle préfabriquée et hourdie. Valeurs du moment réduit critique.

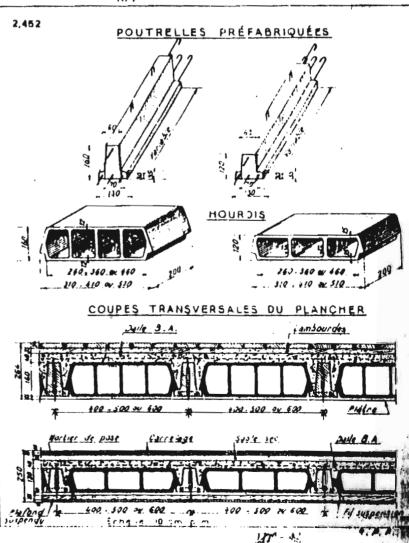

# PLAN DE MASSE




AGENCE DE LA PATTE D'OIE








2,453
Les hourdis ont des hauteurs de 12, 14, 16, 20 et 25 cm. Epaisseur dalle 4 cm
Un claveuge parfait est assuré par le béton coule entre l'âme en trapèze des
poutrelles et les côtés des hourdis.

RPF





# ANNEXES

- A.5.1 charge pour le dimensionnement des poteaux. A.5.2 charge pour le dimensionnement des semelles.

TABLEAU A.5.1 : DIMENSIONNEMENT DES POTEAUX

| Poteaux | CHARGES NO  | N PONDEREES   |       |             |                |         |     |
|---------|-------------|---------------|-------|-------------|----------------|---------|-----|
| roleaux | Permanentes | Exploitations | Total | Permanentes | Exploitations  | Total   |     |
| 1       | 63.5        | 11            | 74.5  | 85.725      | 16.5           | 102.225 | 1   |
| 2       | 74.1        | 14.7          | 88.8  | 100.035     | 22. <b>0</b> 5 | 122.085 |     |
| 3       | 131         | 28.4          | 159.4 | 176.85      | 42.6           | 219.45  | l   |
| 4       | 66.6        | 7.6           | 74.2  | 89.91       | 11.4           | 101.31  | l   |
| 5       | 163.6       | 38.8          | 202.4 | 220.86      | 58.2           | 279.06  |     |
| 6       | 124.1       | 19.2          | 143.3 | 167.535     | 28.8           | 196.335 |     |
| 7       | 173.6       | 38.5          | 212.1 | 234.36      | 57.75          | 292.11  | - 1 |
| 8       | 173.6       | 38.5          | 212.1 | 234.36      | 57.75          | 292.11  |     |
| 9       | 156.7       | 34.7          | 191.4 | 211.545     | 52.05          | 263.595 |     |
| 10      | 77.7        | 12.4          | 90.1  | 104.895     | 18.6           | 123.495 | -1  |
| 11      | 67.4        | 10            | 77.4  | 90.99       | 15             | 105.99  | l   |
| 12      | 95          | 11.9          | 106.9 | 128.25      | 17.85          | 146.1   |     |
| 13      | 95          | 11.9          | 106.9 | 128.25      | 17.85          | 146.1   |     |
| 14      | 67.4        | 10            | 77.4  | 90.99       | 15             | 105.99  |     |
| 15      | 77.7        | 12.4          | 90.1  | 104.895     | 18.6           | 123.495 |     |
| 16      | 156.7       | 34.7          | 191.4 | 211.545     | 52.05          | 263.595 | - 1 |
| 17      | 173.6       | 38.5          | 212.1 | 234.36      | 57.75          | 292.11  |     |
| 18      | 173.6       | 38.5          | 212.1 | 234.36      | 57.75          | 292.11  |     |
| 19      | 124.1       | 19.2          | 143.3 | 167.535     | 28.8           | 196.335 | 1   |
| 20      | 146.1       | 31.4          | 177.5 | 197.235     | 47.1           | 244.335 | - 1 |
| 21      | 45.6        | 3.4           | 49    | 61.56       | 5.1            | 66.66   | - 1 |
| 22      | 155.1       | 34.8          | 189.9 | 209.385     | 52.2           | 261.585 |     |
| 23      | 135.5       | 18            | 153.5 | 182.925     | 27             | 209.925 | - 1 |
| 24      | 63.5        | 11            | 74.5  | 85.725      | 16.5           | 102.225 |     |
| 25      | 178.5       | 40.2          | 218.7 | 240.975     | 60.3           | 301.275 |     |
| 26      | 169.7       | 40.1          | 209.8 | 229.095     | 60.15          | 289.245 |     |
| 27      | 148.6       | 37.3          | 185.9 | 200.61      | 55.95          | 256.56  | ١   |
| 28      | 230.4       | 61.1          | 291.5 | 311.04      | 91.65          | 402.69  | - 1 |
| 29      | 203.4       | 53.3          | 256.7 | 274.59      | 79.95          | 354,54  | - 1 |
| 30      | 174.1       | 50.6          | 224.7 | 235.035     | 75.9           | 310.935 | - 1 |
| 31      | 187.5       | 43.3          | 230.8 | 253.125     | 64.95          | 318.075 |     |
| 32      | 187.5       | 43.3          | 230.8 | 253.125     | 64.95          | 318.075 | l   |
| 33      | 174.1       | 50.6          | 224.7 | 235.035     | 75.9           | 310.935 | l   |
| 34      | 203.4       | 53.3          | 256.7 | 274.59      | 79.95          | 354.54  | - 1 |
| 35      | 214         | 76.6          | 290.6 | 288.9       | 114.9          | 403.8   |     |
| 36      | 201.1       | 92            | 293.1 | 271.485     | 138            | 409.485 |     |
| 37      | 221.6       | 58            | 279.6 | 299.16      | 87             | 386.16  |     |
| 38      | 178.5       | 40.2          | 218.7 | 240.975     | 60.3           | 301.275 |     |
| 39      | 163.6       | 46.1          | 209.7 | 220.86      | 69.15          | 290.01  |     |
| 40      | 163.6       | 46.1          | 209.7 | 220.86      | 69.15          | 290.01  |     |
| 41      | 123.1       | 36.6          | 159.7 | 166.185     | 54.9           | 221.085 | 1   |
| 42      | 123.1       | 36.6          | 159.7 | 166.185     | 54.9           | 221.085 |     |
| 43      | 88.5        | 18.7          | 107.2 | 119.475     | 28.05          | 147.525 |     |
| 44      | 98.1        | 33.9          | 132   | 132,435     | 50.85          | 183.285 |     |
| 45      | 88.5        | 18.7          | 107.2 | 119,475     | 28.05          | 147.525 |     |
| 46      | 98.1        | 33.9          | 132   | 132.435     | 50.85          |         |     |
| 40      | 90,1        | 33.9          | 132   | 132.433     | 50.85          | 183.285 |     |

POTEAUX DE LA SERIE N°1 ....... Nu = 400 kN POTEAUX DE LA SERIE N°2 ...... Nu = 300 kN POTEAUX DE LA SERIE N°3 ...... Nu = 150 kN

TABLEAU A.5.2 : DIMENSIONNEMENT DES SEMELLES

| Poteaux  | CHARGES NO     | N PONDEREES   |                | CHARGES P   |               |         |   |
|----------|----------------|---------------|----------------|-------------|---------------|---------|---|
| Poteaux  | Permanentes    | Exploitations | Total          | Permanentes | Exploitations | Totai   |   |
| 1        | 113.2          | 17            | 130.2          | 152.82      | 25.5          | 178.32  | 3 |
| 2        | 147.7          | 22.7          | 170.4          | 199.395     | 34.05         | 233.445 | 3 |
| 3        | 192.9          | 50.8          | 243.7          | 260.415     | 76.2          | 336.615 | 2 |
| 4        | 112            | 12.8          | 124.8          | 151.2       | 19.2          | 170.4   | 3 |
| 5        | 230.5          | 69.4          | 299.9          | 311.175     | 104.1         | 415.275 | 2 |
| 6        | 197            | 34.3          | 231.3          | 265.95      | 51.45         | 317.4   | 2 |
| 7        | 258.8          | 68.9          | 327.7          | 349.38      | 103.35        | 452.73  | 2 |
| 8        | 258.8          | 68.9          | 327.7          | 349.38      | 103.35        | 452.73  | 2 |
| 9        | 374.4          | 107.2         | 481.6          | 505.44      | 160.8         | 666.24  | 1 |
| 10       | 123.6          | 22.2          | 145.8          | 166.86      | 33.3          | 200.16  | 3 |
| 11       | 108.2          | 17.9          | 126.1          | 146.07      | 26.85         | 172.92  | 3 |
| 12       | 155            | 21.3          | 176.3          | 209.25      | 31.95         | 241.2   | 2 |
| 13       | 155            | 21.3          | 176.3          | 209.25      | 31.95         | 241.2   | 2 |
| 14       | 108.2          | 17.9          | 126.1          | 146.07      | 26.85         | 172.92  | 3 |
| 15       | 123.6          | 22.2          | 145.8          | 166.86      | 33.3          | 200.16  | 3 |
| 16       | 374.4          | 107.2         | 481.6          | 505.44      | 160.8         | 666.24  | 1 |
| 17       | 258.8          | 68.9          | 327.7          | 349,38      | 103.35        | 452.73  | 2 |
| 18       | 258.8          | 68.9          | 327.7          | 349.38      | 103.35        | 452.73  | 2 |
| 19       | 197            | 34.3          | 231.3          | 265,95      | 51.45         | 317.4   | 2 |
| 20       | 219.5          | 56.2          | 275.7          | 296.325     | 84.3          | 380.625 | 2 |
| 21       | 78.1           | 6.1           | 84.2           | 105.435     | 9.15          | 114.585 | 3 |
| 22       | 243.4          | 61.3          | 304.7          | 328.59      | 91.95         | 420.54  | 2 |
| 23       | 204.7          | 29.9          | 234.6          | 276.345     | 44.85         | 321.195 | 2 |
| 24       | 113.2          | 17            | 130.2          | 152.82      | 25.5          | 178.32  | 3 |
| 25       | 260.8          | 59.1          | 319.9          | 352.08      | 88.65         | 440.73  | 2 |
| 26       | 239.2          | 65.3          | 304.5          | 322.92      | 97.95         | 420.87  | 2 |
| 27       | 213.8          | 59.9          | 273.7          | 288.63      | 89.85         | 378.48  | 2 |
| 28       | 367.1          | 142.5         | 509.6          | 495.585     | 213.75        | 709.335 | 1 |
| 29       | 288.7          | 83.7          | 372.4          | 389.745     | 125.55        | 515.295 |   |
| 30       | 245.6          | 75            | 320.6          | 331.56      | 112.5         | 444.06  | 2 |
| 31       | 274.5          | 68.5          | 343            | 370.575     | 102.75        | 473.325 |   |
| 32       | 274.5          | <b>68.5</b>   | 343            | 370.575     | 102.75        | 473.325 | 2 |
| 33       | 245.6          | 75            | 320.6          | 331.56      | 112.5         | 444.08  |   |
| 34       | 288.7          | 83.7          | 372.4          | 389.745     | 125.55        | 515.295 | 1 |
| 35       | 276.5          | 190.6         | 467.1          | 373.275     | 285.9         | 659.175 | ' |
| 36       | 303.1          | 164.6         | 467.7          | 409.185     | 246.9         | 656.085 | ¦ |
| 37       | 423.4          | 95            | 51 <b>8</b> .4 | 571,59      |               | 714.09  |   |
| 37<br>38 |                |               |                | l           | 142.5         |         | 1 |
|          | 260.8<br>230.3 | 59.1          | 319.9          | 352.08      | 88.65         | 440.73  | 2 |
| 39<br>40 |                | 82.5          | 312.8          | 310.905     | 123.75        | 434.855 | 2 |
| 40<br>41 | 230.3          | 82.5          | 312.8          | 310.905     | 123.75        | 434.655 | 2 |
| 41       | 172.5          | 65.5          | 238            | 232.875     | 98.25         | 331.125 | 2 |
| 42<br>43 | 172.5          | 65.5<br>37.4  | 236            | 232.875     | 98.25         | 331.125 | 2 |
| 43       | 154            | 37.4          | 191.4          | 207.9       | 56.1          | 264     | 2 |
| 44       | 168.6          | 67.8          | 236.4          | 227.61      | 101.7         | 329.31  | 2 |
| 45       | 154            | 37.4          | 191.4          | 207.9       | 56.1          | 264     | 2 |
| 46       | 168.6          | 67.8          | 236.4          | 227.61      | 101.7         | 329.31  | 2 |

SEMELLES DE LA SERIE N°1 ....... Pf = 720 kN SEMELLES DE LA SERIE N°2 ....... Pf = 480 kN SEMELLES DE LA SERIE N°3 ....... Pf = 240 kN

### **BIBLIOGRAPHIE**

- Paul DINNEQUIN. Cours supérieur de béton armé.
   Règles BAEL 80, mis à jour selon les règles BAEL 83.
   350p. Paris, EYROLLES, 1983
- Georges DREUX. Calcul pratique du béton armé:
   Règle BAEL 83. 249p. Paris, EYROLLES, 1988
- Pierre CHARON. Calcul du béton armé selon les règles
   BAEL 80. 466p. Paris, EYROLLES, 1982.
- André GUERRIN et Roger-Claude LAVAUR. Traité de béton armé. Tome 4. Paris, DUNOD