REPUBLIQUE DU SENEGAL

GC. 1231

Ecole Polytechnique de Thies

PROJET DE FIN D'ETUDES

EN VUE DE L'OBTENTION DU DIPLOME D'INGENIEUR DE CONCEPTION

EN GENIE CIVIL

TITRE: ETUDE COMPARATIVE DE CHAUSSEE RIGIDE ET CHAUSSEE

FLEXIBLE DANS LE CADRE DU SENEGAL

AUTEUR :

Loubou AIDARA

DIRECTEUR : Mr Massamba S. SAMB

CO-DIRECTEUR : Mr Momodou DIAGNE

JUIN 89

Au nom d'Allah, le clément et le miséricordieux.

Au prophète Mohammed (P.S.L).

A mes chers parents.

A mes soutiens.

REMERCIEMENTS.

Nous tenons tout d'abord à exprimer nos remerciements à tous ceux qui ont contribué matériellement ou moralement à cette étude, particulièrement:

Mr Massamba-Sall-Samb, professeur à l'Ecole Polytechnique de Thiès pour avoir dirigér ce projet.

Mr Yaya Diatta , avec qui nous avons fait les premières étapes, pendant qu'il était professeur à l'école;

Mr Momodou Diagne, directeur de la production et de l'exploitation de la société Hamo, à qui nous devons ce sujet et pour ce notre co-directeur;

Mr Mbaye Dioune Wade , Professeur vacataire à l'Ecole Polytechnique de Thiès, pour ses documents précieux et ses recommandations fructueuses;

Mr Mohammadou L. Niass et Mr Lamine Cissé , tous deux ingénieurs polytechniciens aux travaux publics du Cap vert;

Mrs Mboup et Lô respectivement technicien de sol et technicien de résistance des matériaux à l'E.P.T;

Ainsi que tous mes collégues et amis qui m'ont aidé à taper ce texte en dépis de leurs calendriers tres chargés .

Que tout le monde trouve ici l'expression de notre profonde gratitude.

SOMMAIRE

Pour mener à terme l'élaboration de ce rapport, nous avons jugé essentiel de cinder les résultats auxquels nous sommes parvenus en trois grands volets:

Une partie sur le dimensionnement des chaussées, dans laquelle nous avons passé en revue bibliographique les différents types de chaussées, leurs méthodes de dimensionnement et les facteurs à considérer.

Une seconde partie consacrée à l'analyse économique et étude des coûts des différents matériaux de construction routière .

Enfin la dernière partie porte sur un cas spécifique: La cité Hamo 5.

TABLE DES MATIERES

i		Page titre	0 1
ii		Remerciements	02
iii		Sommaire	03
iv		Table des matières	04
I		Introduction	05
II		Méthodologie	07
111		Dimensionnement des chaussées	05
	3.1	Les structures de chaussées	09
	3.11	Les structures souples	10
	3.12	Les structures rigides	13
	3.13	Les structures semi-rigides	15
	3.2	Les paramètres de dimensionnement	15
	3.21	Le trafic	15
	3.22	Les matériaux	18
	3.23	L'environnement	21
	3.3	Les méthodes de dimensionnement	22
	3.31	Les méthodes théoriques	22
	3.32	Les méthodes empiriques	27
	3.33	Les méthodes semi-empiriques	27
	3.4	Le Calcul d'épaisseurs	27
	3.41	Le cas des chaussées souples	27
	3.411	Les méthodes basées sur les catalogues de design	27

	3.412	Les méthodes basées sur le CBR et le TRAFIC	30
	3.413	La méthode A.A.S.H.O.	34
	3.42	Le cas des Chaussées rigides	48
	3.421	Méthode PCA	48
	3.422	? Méthode du "Corps of Engineers U S army "	54
	3.423	Méthode A.A.S.H.O.	56
١٧		Analyse Economique	58
	4.1	Etude des coûts	58
	4.2	Estimation des quantités	60
	4.3	Coûts globaux	62
٧		Application aux cités Hamo-5	67
	5.1	Situation du site	67
	5.2	Etude géotechnique	67
	5.3	Essai sur le béton	68
	5.4	Dimensionnement	69
	5.41	Structure Rigide	69
	5.42	Structure flexible	70
	5.5	Analyse économique	70
٧I		Conclusion	73

INTRODUCTION

La route est sans conteste un facteur primordial de développement économique dans nos régions. Elle est également parmi les ouvrages d'aménagement du territoire les plus décisifs et les plus dispendieux. Toutefois, elle est devenue trés vite insuffisante et incommode au point qu'elle remplit de moins en moins la fonction qui lui est assignée. Parmi les causes notons:

- Les raccordements et aménagements le plus souvent mal coordonnés dûs au fait que le réseau étant un héritage colonial son implatation est inadaptée au développement tantôt anarchique de nos villes.
- La progression rapide des besoins de déplacement dépasse son rythme de croissance.
- L'inexistance de normes adéquates permet beaucoup de tolérences aussi bien dans la conception que dans la mise en oeuvre .
- Le manque de suivi des programmes d'entretien et de rigueur dans le contrôle des charges et leur répartition sur essieu de nos véhicules conduit aux défaillances prématurées.

Nos états démunis face à l'exigence et l'urgence financières que posent tous ces problèmes ne trouveront-ils pas dans l'introduction des chaussées en béton une solution heureuse? Etant donné que dans beaucoup de pays africains, le liant hydraulique est un produit national alors que le liant hydrocarboné est importé. La route en béton ayant une durée de vie plus importante et nécessitant peu

d'entretien ne serait-elle pas mieux adaptée aux contextes climtique et géologique de nos états?

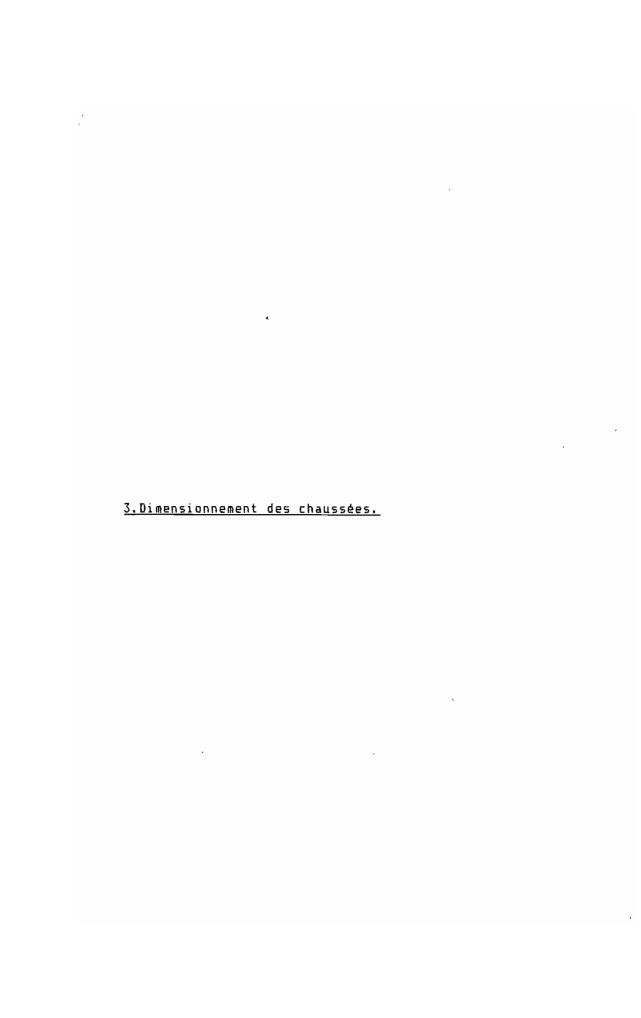
C'est pourquoi, malgré son coût d'investissement apparemment élevé nous ne saurions rester sans la moindre tentative de faire une étude objective de comparaison entre les structures rigides et les structures flexibles.

Ceci pour apporter notre contribution à ce vieux débat, nourri depuis fort longtemps de façon plus ou moins subjective voire polémique, même dans les pays producteurs d'hydrocarbures. D'ailleurs tout récemment, le 11 octobre dernier, Mr Jean Claude ROUDE, directeur général de Jean lefbévre, ne l'a t-il pas abordé sous le même thème lors du 4ème congrès de l'EAPA (European Asphalt Pavement Association) en France.

Il s'agit dans le contexte sénégalais, de faire la même étude en tenant compte des coûts locaux de construction, mais aussi des méthodes de conception et de réalisation spécifiques au Sénégal.

METHODOLOGIE .

La comparaison la plus simple est celle chiffrée. Aussi avons nous essayé d'étayer nos propos par l'étude économique de certains tronçons particuliers de la ville de Dakar. En pratique, une nouvelle construction de route ne peut se faire sans une analyse économique du lieu à desservir pour définir son niveau de service. Nous avons supposé cette phase déjà effectuée, et considéré le trafic résultant du comptage de la SONED en 1988 .


Apres avoir défini ce que nous entendons par structure rigide et structure flexible, nous avons étudié leurs différents éléments constitutifs, puis analysé leur comportement sous trafic. Mais comme la construction d'une route est bien souvent guidée par la disponibilité et la nature des matériaux, de même que l'environnement, on ne saurait faire omission de ceux-là. Ce qui nous a conduit à adopter un matériau type de construction: Les latérites.

Mais aussi nous avons estimé par simple analogie certains facteurs relatifs au contexte climatique dans le cadre du dimensionnement .

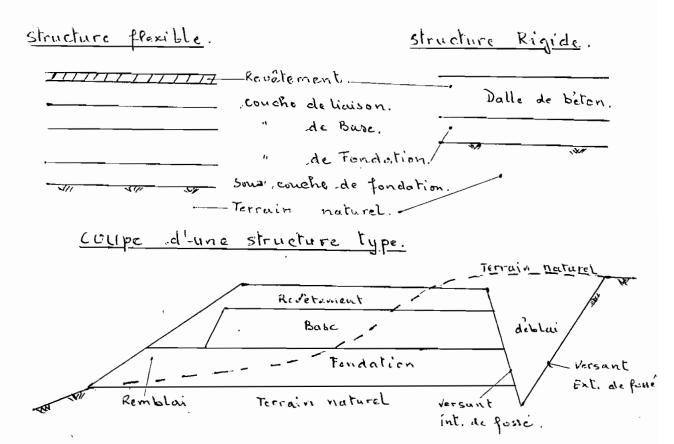
Dans cette partie nous avons passé en revue différentes méthodes pour ne retenir que ceux qui nous paraissent mieux adaptées aux conditions d'environnement. Une analyse économique nous a permis de comparer les coûts de construction. N'ayant aucune information sur les coûts d'entretien au Sénègal, ils ne sont pas

Tout au long de cette étude nous avons essayé d'être le plus réaliste possible en menant des enquêtes auprès des concepteurs et entrepreneurs de la place mais tout en nous référant aux normes de dimensionnement et de construction .

intégrés.

3. DIMENSIONNEMENT

3.1 LES STRUCTURES DE CHAUSSEE


La structure de chaussée est un emplilage de matériaux plus ou moins épais, disposé en une ou plusieurs couches bien individualisées ayant chacune un rôle déterminé.

Elle a pour fonction, de résister aux actions mécaniques des véhicules aussi longtemps que possible, d'aténuer les charges parvenant aux couches ajacentes, protéger le sol de plateforme qui est de faible capacité portante et parfois très sensible à l'eau.

Suivant le mode de transmission des charges, on peut les classer de façon un peu arbritaire en trois grandes catégories :

Les structures souples : elles ont une certaine déformabilité sous charge, mais une épaisseur largement suffisante.

- les structures rigides : en général, de faibles épaisseurs, elles sont revêtues d'une dalle en béton leur conférant un module d'élasticité assez élevé.
- Il en existe aussi qui acquiérent leur rigidité dans l'équilibre entre la cohésion améliorée des différentes couches et l'importance de l'épaisseur d'ensemble du corps de chaussée. Il s'agit des structures semi-rigides.

3.1.1 LES STRUCTURES SOUPLES.

Elles sont capables de se déformer de façon plus ou moins importante au passage des charges roulantes, permettant ainsi de localiser les pressions induites dans un faible rayon. Pour réduire les contraintes maximales parvenant au sol support, il faut donc augmenter l'épaisseur de chaussée. Ainsi les chaussées souples sont à grandes épaisseurs disposées en plusieurs couches de qualité géotechnique améliorée de bas en haut.

- Sol de plateforme.

C'est le sol dont la mise en place constitue l'exécution des terrassements. Il est soit le sol en place lorsque la route est en déblai, soit le sol rapporté lorsqu'elle est en remblai.

En général on considére la couche des 30 cm supérieurs; il est amélioré

lorsqu'il est tres compressible ou faiblement portant.

- La couche de forme.

C'est le matériau d'apport à mettre en place pour pallier l'insuffisance du sol naturel. Aussi elle permet d'améliorer la portance du sol support, à considérer dans le désign. Elle le protège contre l'action destructive des gros engins, et facilite le compactage des couches supérieures en leur fournissant un support ferme et non déformable.

- La couche de fondation.

Elle a pour rôle principal de réduire les charges qui sont transmises à la plateforme. Elle ne supporte que des contraintes verticales dés lors, sa mise en oeuvre est moins soignée que les couches supérieures. Cependant elle doit être peu déformable et plus résistante que les couches sous-jacentes. Une pratique courante consiste à rendre sa partie inférieure peu perméable afin d'évacuer les eaux qui auraient pu s'infiltrer à travers la couche base. Cette zone empêche aussi la remontée capillaire des eaux de la plateforme.

- Couche de base.

A son niveau, les efforts dûs au trafic sont encore très importants, de même, les effets des conditions d'environnement ne sont pas entièrement amortis, aussi les matériaux utilisés doivent-ils être de bonnes qualités géotechniques c'est à dire:

une granulométrie convenable pour éviter la ségrégation lors des différentes manipulations. -- 11 --

Une bonne résistance aux efforts par frottement interne, pour ce, elle doit être formée d'agrégats d'autant plus durs et résistants que les sollicitations sont importantes .

Comporter moins de fines si peu qu'elles ne soient dangereuse .

Cette couche doit avoir comme rôle principal, d'augmenter la capacité portante de la structure. Du fait de l'importance de son épaisseur et de la qualité du matériau parfois améliorée. Elle contribue à la rigidité flexionnelle et à la résistance d'ensemble à la fatigue. Elle permet également de drainer les eaux et de résister à l'érosion de toute nature.

Couche de revêtement.

C'est un mélange d'agrégats de bonne qualité et de liant hydrocarboné.Fortement associés, ces éléments constituent un tout homogéne, stable et assez monlitique. Le revêtement doit posséder une bonne résistance au poinçonnent et à l'usure puisqu'il est directement en contact avec l'atmosphére et les sollicitions. Il doit avoir un bon "uni", être peu glissant et étanche, pour le confort de l'usager. On distingue deux types de revêtement :

- les enduits superficiels : en mono, ou multicouche.
- les enrobés.

de leurs faibles épaisseurs, ils suivent exactement le profil de la couche enduite. La moindre erreur dans le dosage peut provoquer soit le ressuage du liant soit le rejet du gravillons durant les premières heures de circulation.

Le second type de revêtement est obtenu par malaxage intime du granulat et du liant, dans les conditions à l'usine. On distingue là aussi les enrobés à chaud dont les granulats sont déshydratés avant leur mise en oeuvre des enrobés à froid. Selon leurs pourcentages de vide ils sont classés en denses semi-denses et ouverts. Les bétons bitumuneux ou goudronneux dits bétons hydrocarbonés sont des enrobés denses à hautes performances.

3.1.2 STRUCTURES RIGIDES.

Grâce à leur grande cohésion, ces structures résistent par effet de dalle : elles transmetent les charges avec une surface de pression relativement importante. Ainsi les efforts parvenant au couches sous-jacentes sont d'autant plus faibles que l'épaisseur de la dalle est élevée. Elles sont constituées d'une dalle reposant, soit directement sur le sol naturel soit par l'intermédiaire d'une couche de fondation.

Sol Naturel.

Le sol de plateforme, lorsqu'il est appelé à supporter la dalle, doit être à l'abri des mouvements de retrait ou de gonflement. De même les remblais susceptibles de tassements différés sont à proscrire, ainsi que les couches hétérogénes capables de tassements différentiels.

Sol de fondation.

La présence de la fondation permet d'augmenter la portance de la structure. Cependant elle est adoptée pour d'autres raisons :

- fournir à la dalle une surface portante uniforme.
- remplacer les sols mous très compressibles ou susceptibles de gonfler.
- Empêcher la remontée des particules fines qui entraîne le phénomène de pompage au niveau des joints.

Revêtement.

Le revêtement est généralement une dalle de béton. Ce matériau est bien connu des sénégalais du fais de leurs expériences dans le bâtiment. Cependant, dans certaines conditions sa mise en oeuvre peut être très délicate et requiert des dispositions particulières aussi distingue-t-on :

- les dalles non goujonnées en béton non-armé dont le transfért des charges d'une dalle à l'autre se fait par friction intergranulats ou par emboitement au niveau des joints.
- les dalles goujonnées en béton non armé. Ces goujons sont des tiges d'acier doux qui assurent le transfért des charges.
- les dalles goujonnées en béton armé. La présence de l'acier n'a pas pour objectif d'accroître sensiblement la résistance de la dalle, mais surtout d'éviter les fissures. On utilise des armatures de retrait le plus souvent en

treillis soudés.

3.1.3. LES STRUCTURES SEMI-RIGIDES.

Ce sont des structures hybrides : on trouvera des chaussées en béton très peu dosé, recouvertes de revêtement hydrocarbonés ou encore des chaussées souples dont certaines couches sont stabilisées au bitume ou au ciment. Elles sont plus fexibles que les bétons classiques mais moins résistantes. Par contre elles reposent sur des fondations suffisamment épaisses.

3.2 LES PARAMETRES DE DIMENSIONNENT.

3.2.1 LE TRAFIC.

Dans la considération du trafic il existe deux approches différentes:

La charge de design est celle de la roue la plus sollicitée qui aborderait l'ouvrage durant sa durée de vie. Elle est obtenue aprés une analyse statistique du trafic ,intégrant le facteur économique. Elle est ensuite majorée pour tenir compte des effets dynamiques.

La deuxième approche consiste à déterminer le débit journalier ou cumulatif de véhicules. Ce comptage doit être assorti d'une enquète de pesage. Celle-ci permettant de déterminer les différents types de véhicules composant le trafic et la répétition de leurs charges par essieu.

Dans tous les cas, le trafic lourd ne doit pas échapper à la vigilence du compteur car il est plus préjudiciable aux chaussées.

D'aprés les courbes d'Asphalte Institue la fatigue de la chaussée dûe à un essieu simple de 10 Tonnes est 6 fois moindre que celle dûe à un essieu simple de 13 T et 20 à 25 fois moindre que celle dûe à un essieu de 15 Tonnes. Dans le cas particulier du Sénégal, le comptage n'est pas toujours accompagné d'une enquête de pesage. Le Trafic lourd nocture n'est pas considéré. Aussi nous avons retenu le comptage récent de juillet - août 1988. Bien que n'ayant pas été corrigé, il nous donne une idée du trafic sur les tronçons les plus sollicités du pays. Nous lui adjoignons l'enquête de pesage de la compagne de 1978, tirée du Plan national de Transport 78, volume 2, Tonne 1. Nous retenons un accroissement de 4 %, ce qui nous semble raisonnable compte tenus des taux publié dans le même volume.

COMPTAGE.

	types de venicules	
voiture particulière	VP	Jusqu'à 9 places.
Taxi brousse	ТВ	
Camionnette	CN	Type commerciale 9 pl.
Auto-cure	AC	Cu < 1.5 tonnes .
Camion	CM	1.5 t < Cu < 12 t
Semi-remorque	SR	Cu > 12 t

			irati	C		
Types de	Dakar	- Rufisque	Dakar	- Pikine	Dakar -	Rufisque
véhicule	poste	de Hann	poste	de Cambérène	poste	de Mbao
	D.R.	.н.	D.	P.C.	D.R	. м.
	Aller	Retour	Aller	Retour	Aller	Retour
VP.	4 485	4 253	8 526	8 069	2 781	2 - 893
			16			

TB.	1	34	47		270		234		2	89	2	22
CN.		952	1 002	1	081	i	267		7	47	9	01
AC.	2	875	2 456	3	447	3	208		i 5	9 3	2 1	25
CM.	;	609	633		439		482		5	11	4	88
SR.		225	246		63		71		2	21	2	10
	ŀ											
Types	de ,	Dakar -	Rufisque		Daka	ır -	Thiès		Ρi	kine -	TH	niaroye
véhicul	e	poste d	e Thiaroye	p	oste	de D	iam Ni	ado	p	oste d	e P	ikine
		D.R.	т.		D	a.T.				P.T.	Ρ.	
	A	ller	Retour	A:	ller	ı	Retour		Al	ler	Re	tour
VP.	4	207	4 196	1	027		i 535		2	989	3	166
тв.	1	221	219		162		224			6		2
· CN.	! 1	034	1 234		257		336			360		429
AC.	; 3	367	3 663		911		1 252		i	387	1	533
CM.		538	557		245		292			133		167
SR.		211	223		125	`	135			22		20
	I t											
	l I											
Trançon		D.R.H	D.R.T	D.	R.M	P.D	. C	P.T.P		D.T.D		
Total ve	hs∕j.	17817	19670	12	781	271	57	10214		6510		
Total c	ami ons	1713	1529	1	430	10	55	324		797		
% de ca	amions	10	8		11		4	3		12		

fesage:

Le concepteur est interessé de savoir si les roues et les essieux sont jumelés ou simples. L'aire de contact pneumatique chaussée et le profil de la déformée de cette dernière ne sont pas les mêmes. A défaut de précision, nous allons considérer les essieux et les roues comme simples. Notons enfin que du fait de la composition du parc en lourds et des conditions de surcharge,il est recommandé d'utiliser une charge légale de 13tonnes/essieu, pour le design des chaussées, au Sénégal (voir plan national).

I			
camions: L	2 essieux	3 essieux	4 essieux
% dans le parc	56	7	37
Distribution des charges	%.		
Jusqu'à 10 t	48	26	27
De 10 t à 11 t	10	12	9
" 11 t à 1,2 t	11	5	11
" 12 t à 1 [†] 3 t	12	18	14
" 13 t à 15 t	16	25	25
plus 15 t	3	1 4	1 4

Pourcentage retenu de camions tout essieu confondu (en %).

	Jusq	ц′à	10	t	38.69
De	10 t	à	11	t	9.77
	ii t	à	12	t	10.58
	1,2 t	à	13	t	13.16
	13 t	à	15	t	19.96
	plus	de	15	t	7.84

3.2.2 <u>Les Matériaux.</u>

Le matériau à utiliser est un élément essentiel dans la structure de chaussée. Même associé au liant sa résistance propre influence largement la tenue de l'ouvrage.Sa disponibilité est un facteur déterminant dans l'évaluation des coûts de construction . Au Sénègal On peut les classer en 3 groupes:

- Les roches en place.

Les formations rocheuses exploitables sont extrémement localisées et se situent dans le sud-Est du pays, la presqu'ile du Cap-Vert et en partie dans la région de Thiès (Pout et Khombole) . Il s'agit surtout du basalte, du calcaire et du grés .

Dans le cas spécifique du cap-vert, notre zone d'étude, on y trouve surtout des gisements de basaltes qui étaient facilement exploités. La proximité des carrières favorisa son utilisation voire son gaspillage. Aussi jusqu'à 1971 certaines couches de base étaient conçues en tout venant de basalte (0/60, 0/40, 0/31.5).

Ce phénomène incompatible avec l'extension urbaine fût interdit en 1977. Les autres gisements, au Sénégal oriental et à Thiés sont exploitables mais occasionnent des coûts exhorbitants de transport pour une construction dans la zone du Cap-Vert. La solution consiste à se tourner vers la recherche d'un matériau performant et économique. Les graveleux latéritiques, situés environ à 40 km de la ville de Dakar s'y prètent.

- les formations latéritiques.

les roches en place font l'objet d'une altération physico-chimique évolutive très complexe. Au stade ultime il se forme les latérites qui peuvent constituer soit une bonne infrastructure soit une source de matériaux routiers. Elles sont localisées surtout entre les latitudes 35 N et 35 S de façon génèral.

Au Sénégal ces sols ferrugineux couvrent environ les 2/3 de la superficie. Et ils ont des épaisseurs allant jusqu'à 10m, avec un recouvrement assez faible(1 à 2m). Les zones d'affleurement des cuirasses latéritiques se trouvent au Sénégal oriental, en bande continentale Nord-Sud, dans le plâteau de Thiès et dans le massif de NDIASS.

Du fait de leur abondance, les Latérites sont les plus utilisées en corps de chaussée.

- Les formations sédimentaires.

Certaines roches ne subissent que l'action érosive des intempéries le transport hydraulique et éclien conduit à la formation de gisements de matériaux alluvionnaires : les graves et les sables. Ils sont parfois légèrement limoneux ou argileux, parfois pratiquement crus .

On trouve aussi des dépôts naturels ou artificiels de coquillages localisés surtout dans les zones d'estuaires.

Le banco-còquillage, mélange des coquillages et de matière argileuse est aussi présent dans certains lieux.

Toutes ces formations peuvent être utilisées comme matiériau routier quand il est possible de bien les caractériser, pour prévoir leur comportement sous charges dynamiques. Les essais sont aussi nombreux que variés. Ils sont effectués soit au labaratoire ou in situ et destinés à la classification du matériau, et à l'évaluation de sa résistance mécanique.

Aussi homogène soit le sol, les résultats sont suceptibles de varier. Cette dispersion peut être liée aux mode d'essai aux conditions de l'essai mais surtout à la nature même du matériau. En particulier le sol de formation qui est

en général très hétérogène. Aussi a-t-on recours aux études statistiques pour déterminer les valeurs les plus représentatives .

En pratique le terrain est découpé en tronçons homogènes, fonction de la variation de ses caractéristiques. Plus le découpage est raffiné plus les études géotechniques requièrent d'investissements.

Dans le cadre de ce projet, les tronçons choisis ont déjà fait l'objet d'études géotechniques, et les résultats sont disponible au C.E.R.E.E.Q. Leurs sols de plateforme sont à prédominance sable-argileux. Leurs CBR peuvent variés de 10 à 30 %. Nous supposeront pour simplifier, que les chaussées flexibles aurons une couche de base et une couche de fondation en latérite avec un CBR de 80 et 30 respectivement.

3.2.3 L'environnement.

L'environnement est un facteur important. Rappelons-le, la structure s'use dans le temps du fait des conditions d'environnement, qui peuvent être :

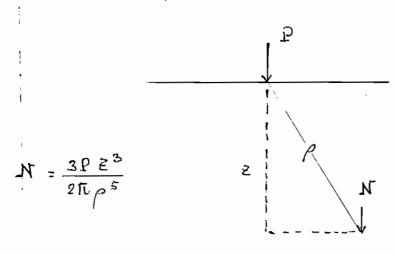
- l'érosion pluviale
- l'érosion éolinne
- les variations thermiques importantes
- la remontée de la nappe....etc.

Les méthodes de désign le plus souvent importées n'en tiennent pas | | compte.Cependant,dans le cas spécifique du sénégal, il faut reconnaître que

- Le relief peu accidenté
- la végétation moins dense
- le réseau hydrographique simple
- le climat sec 9 mois sur 3.
- Les écarts de températures assez modérés, sont autant de

facteurs favorables à la construction routière. DE même que le contexte géologique, est assez favorable partout sauf dans les estuaires, à cause de la présence de limons ou les zones marneuses qui sont malheureusement les endroits les plus péuplés .

3.3 Les Méthodes de dimensionnement.

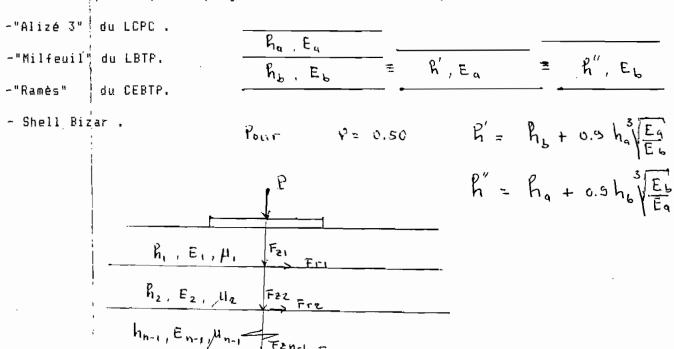

on peut distinguer 3 groupes de méthodes de dimensionnement:

3.3.1 <u>Les Méthodes théoriques.</u>

Elles se basent sur l'analyse des contraintes par la théorie de l'élasticité. En effet la structure est considérée comme un corps chargé de façon statique, dans lequel il se développe des contraintes.

Il s'agit de trouver la valeur de ces efforts aux points névralgiques, puis de les comparer aux contraintes admissibles pour un état de faillance donnée.

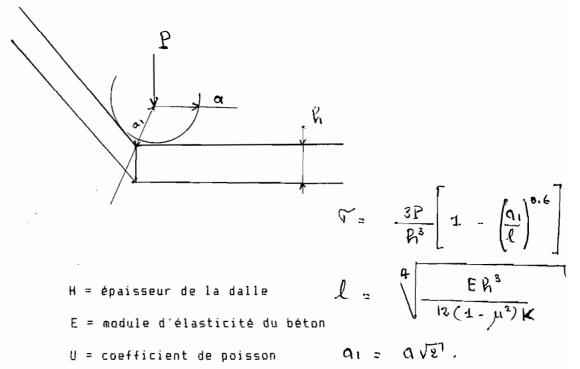
Dans le cas des chaussées souples, Boussinesq a déjà résolu le problème en considérant un milieu homogène; isotrope, élastique sollicité par une charge ponctuelle ou uniformément répartie.



Cependant ce modéle est loin de refléter la réalité à cause de la compléxité de la structure du sol. Même dans le cas des structures granulaires, où il représente une bonne approximation, est-il que, les structures de chaussée sont disposées en multicouches ayant des modules d'élasticité différents.

Aussi de nombreux chercheurs se sont penchés sur les systèmes multicouches et ont fourni des abaques ou tableaux et mieux des programmes d'ordinateur permettant de calculer :

- Fz la contrainte verticale sur le sol de terrassement.
- Fr la contrainte de traction dans le revêtement.
- W la déflexion à la surface de la chaussée.


Il suffit de ramener le système classique quadricouche en bicouche ou tricouche par un changement de variables et d'utiliser ces abaques ou de le résoudre directement, au moyen de programmes d'ordinateur tels que :

Concernant les structures rigides, la solution des dalles minces judiciables à l'hypothése de Navier, reposant sur fondation élastique était déjà connue. Pour les dalles épaisses Westergaard a examiné 3 cas de charge :

1. La charge placée au coin de la dalle :

Il proposa une formule semi-empirique donnant la contrainte maximale du traction par fléxion sur un élément de plan normal à la bissectrices de l'angle de la dalle.

K = module de réaction du sol platforme

2 - Dans les cas de charge à l'intérieur ou en bordure Westergaard part de l'hypothèse des dalles minces et proposa une correction sur le rayon de charge.

correction:

si a $\langle 1.724 h b = \langle | 1.6 a^2 + h^2 - 0.675 h \rangle$ si a $\langle 2.724 h b = a \rangle$

D'autres auteurs, notamment Hogg et Burmister ont traité respectivement les plaques et les dalles appuyées sur un milieu de Boussinesq. De même que Jeuffroy et Bachelez ont surpperposé une plaque, une dalle et un milieu de Bussinesq comme plateforme. Les résultats sont disponibles sous forme d'abaques. En pratique les méthodes sont très peu utilisées. La difficulté réside essentiellement dans l'évaluation des caractéristiques des matériaux.

-L'essai de plaque qui permet d'obtenir le module de réaction du sol est très long et onéreux.

-Le module de rigidité est très variable même dans le cas des matériaux cohésifs où il est possible de réaliser des essais de flexion sur prisme préparé ou découpé dans une chaussée.(grave ciment,béton bitumineux).

Il varie avec la température, le nombre et la durée d'application des charges.

dans le cas des sols sans cohésion il est impossible de parler de module de

rigidité flexionnelle. Les valeurs de module de rigidité obtenues par essai de

plaque ou par essai triaxial sont tributaires du mode d'essai.

Notons que certains auteurs ont cherché à relier le module de rigidité des sols

à certains paramètres usuels tels que le CBR. c'est ainsique l'on trouve dans | certains ouvrages:

 E_{dyn} (bars) = 100 CBR

Estat (bare) = 50 CBR pour matériaux à gros éléments

Emtat (bars) = 30 CBR pour matériaux avec fines d'apres <u>le CEBTP.</u>

E (bars) = 65 (CBR) \circ . 65

d'apres <u>Jeuffroy.</u>

E (psi) = 1500 CBR

voir <u>Yoder et Witczak.</u>

La diversité des solutions et leur divergence témoignent bien la difficulté de la corélation. En effet le CBR est une valeur ponctuelle de léchantillon alors que E en est une moyenne. Dans certains cas, l'essai CBR tient compte des déformations plastiques pendant que E les déformations réversibles.

Pour utiliser ces méthodes il faut connaître aussi la loi de fatigue des matériaux. Comment évaluer les contraîntes admissibles? qui dans certains cas sont des efforts de traction ou de cisaillement.

Le CEBTP a proposé les relations suivantes :

 $f = f_0(1 - a^{-1} \text{ LogN})$ Pour matériaux traités au ciment

e ,= eo(No/N):/b Pour matériaux traités au bitune

0.3 CBR

f_{rad} = ----- Pour un matériau de CBR donné

1 + 0.7 LogN

f et e — = contrainte et déformation admissibles pour N cycles.

fo et eo = contrainte et déformation admissibles pour No cycles.

avec a = 10 å 12 b = 5 å 5.25

3.3.2 Les Méthodes empiriques.

Elles se bornent à faire une correspondance entre une caractéristique des sols, le trafic et un type de chaussée. Elles sont très simples d'application mais ne sont qu'une approximation grossière.

3.3.3 Les Méthodes semi empiriques.

Elles intégrent les résultats des études théoriques, des essais et les constatations faites sur des routes déjà existantes. Elles sont plus répandues.

3.4 Calcul d'Epaisseurs.

3.4.1 Le cas des chaussées souples.

3.4.1.1 Les méthodes basées sur les catalogues de dimensinnement.

a- Le Guide du CEBTP.

En se fondant sur l'expérience africaine, le centre expérimental de Recherches et d'Etudes du Bâtiment et des Travaux publiques (CEBTP) en France, propose un tableau donnant les épaisseurs de chaussées et le type de revêtement en fonction du trafic et du CBR.

Cette expérience a consisté en une étude générale sur le comportement et le renforcement de 7 000 km de chaussées bitumées en Afrique Tropicale et en Madagascar, depuis 1969. Les paramètres d'entrée sont:

- Le Trafic
- La nature du sol de la structure.

- Le CBR.

Le trafic est défini en fonction du degré de précision des données disponibles par:

Le trafic journalier, toutes catégories de véhicule confondues.

Le trafic cumulé de poids lourd (véhicule dont la charge utile egale à 3 T).

Le trafic cumulé selon les équivalences d'essieux, tirées des

essais A.A.S.H.O.,par Liddle.

Applications:

Hypothèses:

-Nous fixons le nombre d'année à 15. Sachant que le béton a une durée de vie de 20 à 40 ans tandis que les chaussées bitumeuses durent 15 à 20 ans.

- Le trafic cumulé de poids lourds sera considéré avec un accroissement exponentiel à un taux de 4%. Ce type de véhicule sur lequel des statistiques sont disponibles étant plus agréssif. Les sols de plteforme étant tous des sables argileux à des degrés différents, seront considérés comme sol de classe 53 par souci de sécurité et d'uniformité.

Calculs:

T = trafic cumulé de poids lourds pendant 15 ans. t_i = trafic moyen journalier de la première annèe.

$$(1+i)^{n-1} \qquad (1.04)^{15}-1$$

$$T = 365t_1 ---- = 365t_1 ---- = 7 300t_1$$

$$i \qquad 0.04$$

Tançans	t, (en véhs/j 1988)	T (en 10° véhs)	classe de trafic
D.R.H.	879	6.50	Τ4
D.R.T.	780	5.77	Τ.
D.R.M.	732	5,42	T4
P.D.C.	553	4.09	T ₃
P.T.P.	187	1.38	T ₂
D.T.D.	427	3.16	12

D'aprés le guide du C.E.B.T.P.:

-	_
T	
₹ 🕰	5.5

	14 1 53	
R	béton bitumeux	7 cm
B	graveleux latéritique	20 cm
F	graveleux latéritique naturel	25 cm
	T4 , S3	
R	béton bitumeux	5 cm
В	graveleux bitumeux	20 cm
E	graveleux latéritique naturel	20 cm
	T ₂ , S ₃	
R	béton bitumeux	4 ca
В	grave ciment	15 cm
Ε	grveleux latéritique	30 cm

b Les recommendations du plan national de transport 1978.

Dans son tome un du volume deux, le plan natoinal de transport donne un exemple de structures standards, basées sur le trafic et la durée de vie de la chaussée. elles supposent le sol de portance acceptable. C'est à dire les zones argileuses nécéssitant des études spéciales sont à exclure.

c Observations:

La formule qui consiste à standardiser les structures de chaussées en se basant sur l'expérience est très simple et pratique d'utilisation. Elle évite la recherche de la haute précision dans la détermination de certains paramètres, ceux-ci étant libellés en gamme de valeurs .

Cependant cette mèthode n'est pas sans inconvénients. L'étendue des gammes de valeurs peut conduire à un surdimensionnement. En effet, bien qu'ayant plus de 25% de différence en poids lourds, les tronçons PDC et DTD auraient la même structure. Les structures du plan national de transport sont plus formels quant à 1 évaluation du sol.

3.4.1.2 METHODE DES ABAQUES basés sur le CBR et le Trafic

Elles se basent uniquement sur l'intensité du trafic et sur l'indice de portance du sol de plateforme.Les expériences acquises ont permis à differents chercheurs de constituer des abaques fournissant l'épaisseur du matériau d'apport au dessus d'un sol de CBR donné en fonction des charges transmises .

a L'abaque du "Corps of Engineers U.S Army".

Voir l'abaque de la figure 11 en annexe.

Cet abaque considére comme paramètres d'entrée :

-Les valeurs de CBR du sol support, de la fondation, et de la couche de base, ainsi que la charge de la roue. En réalité, seule l'épaisseur globale sera considérée du point de vue de la résistance structurale, cependant la méthode exige pour l'ensemble de la couche de base et du revêtement, une valeur minimale emin l'intersection de la courbe relative à la charge sur roue choisie avec la droite AB.

Hypothèses .

La charge à l'essieu retenue pour le design des chaussées au Sénègal étant de 13 tonnes (voir plan national de transport), nous allons considérer une roue de design de 6.5 tonnes.

Applications.

Les paramètres d'entrée étant les mêmes pour tous les tronçons nous aurons le même design quelque soit le niveau du trafic.

Couches.	CBR.	emin(cm)	lectures (cm)
Base	80	19	09
Fondation	30		15
Plateforme	15		25

revêtement		=	09	
Base	15 - 9	=	06	
Fondation	25 - 15	_	10	
rondation	25 - 15	-	10	
Base + revêtem	ent	=	15 > emin	NO.
<u>Epaisseurs ret</u>	enues			
Revêtement		=	05 cm	
Base		=	15 cm	
Fondation		=	05 ca	
Totale		=	25 cm	
106916		-	ZJ LIII	

= 20 cm > e_{min}

OK.

b L'abaque du "Road research laboratory"

Base + revêtement

Cet abaque tient compte du trafic en lourd et le CBR. L'épaisseur minimale est évaluée pour chaque tronçon.

voir l'abaque de la figure 12 .

Tronçons	Trafic en	e m i n	Courbes	Epaisseu	rs lues	(cm)
	lourd (Vehs/j)	(cm)		platef.	fondat.	base.
D.R.H.	1713	30	F	25	17	7.5
D.R.T.	1529	30	F	25	17	7.5
D.R.M	1430	25	Ε	22	15	7.0

	1035 324	25		22		
		20		20		
D.T.D.	797	25	E	22	15	7.0

Epaisseurs retenues (cm).

Fondation	Base	Revêtement	
0	23	07	
0	23	07-	
0	20	06	
0	20	06	
0	15	05	
0	20	06	

Exemple de calcul :

Revêtement = 7.5 cm

Base = 17 -7.5 = 9.5 cm

fondation = 25 - 17 = 8 cm

Base + revêtement = 7.5 +9.5 = 17 cm < emin

Epaisseurs retenues

Revêtement = 7 cm

Base = 23 cm

Fondation = 0 cm

Base + revêtement = 30 = emin OK.

C.Observations

Ces abaques ne tiennent pas compte des véhicules légers et partant, de l'équivalence du trafic, ni des efforts dynamiques, ni de la nature des matériaux de construction encore moins du contexte climatique.

Alors que la répétition du trafic léger pour une durée de vie de 15 ans a sans doute une incidence sur le comportement de la chaussée.

De même suivant la nature du matériau et en prévision de son comportement sous l'effet des agents météoriques on aura tendance à augmenter l'épaisseur d'une couche plutôt que celle d'une autre.

3.4.1.3 METHODE A.A.S.H.O.

a .le contexte de l'essai A.A.S.H.O.

C'est un essai de trafic accélèré, réalisé aux environs d'OTTAWA dans l'Etat l'ILLINOIS aux Etats Unis, de 1958 à 1960. Il était organisé par l'"Américan Association states of highway officials" A.A.S.H.O., dans un contexte climatique relativement sévère :

la précipitation annuelle de la zone était de 860 mm d'eau en moyenne, le gel pénétrant jusqu'à 60 cm dans le sol en hivers.

La température moyenne etait de -3°C.

Cet essai avait pour objet l'étude des effets produits par un trafic connu sur les différentes assises de la chaussée sous l'action répètée d'un essieu standard.

Il concernait des routes de structures types déterminées : une couche de roulement en béton bitumineux.

une couche de base en calcaire dolomitique concassé et non traité. Une couche de fondation en sables et graviers naturels. Un sol de plateforme en argile de CBR égal à 2.5 .

b .Notions introduites .

L'indice de viabilité ou de roulement (PSI).

Cet indice n'est autre qu'une appréciation de la chaussée. Il est obtenu à partir d'une étude statistique des diffèrentes notes données par un échantillon d'usagers Américains.

Appréciations	Indices de viabilité
Très mauvaise	0 - 1
mauvaise	1 - 2
passable	2 - 3
acceptable	2. 5
bonne	3 - 4
Très bonne	4 - 5

Il fallait relier ces notes aux paramètres physiques mesurables, ainsi elles deviennent essentiellement fonction de certaines défectuosités des profils en long et en travers mais aussi des détériorations de surface telles que :

- les fissurations.
- les réparations antérieures.
- les orniérages...etc.

DES formules empiriques ont été développées parmi lesquelles :

PSI = $5.03-1.91 \text{Log}(1+\text{SV})-1.38 \text{RD}_2 - 0.01(c+p) \%$ pour structures flexibles

PSI = 5.41-1.80Log(1+SV)-0.09(c+p)%
pour structures rigides.

SV : variance de la pente du profil en long.

C : proportion en % des surfaces fissurées.

P : proportion en % des surfaces réparées.

RD : profondeurs moyennes orniérages.

Notons que dans cette formule, la réparation de la route n'est pas conçue comme une amélioration de la qualité du service. Ce nombre doit être manipulé avec beaucoup de souplesse et son choix doit être précédé d'une prospection. Cependant le PSI constitue une approche intéressante de l'évolution de la qualité des chaussées. L'adoption d'une limite inférieure (Indice de viabilité terminale) permet de mieux définir la durée de vie de l'ouvrage.

Trafic Equivalent:

formule suivante.

Il s'agit d'établir un lien entre le comportement d'une route soumise à une charge type et une autre soumise à un trafic à charges diverses. Ce comportement étant évalué en fonction de l'indice de viabilité, on dira qu'il faut W., passages de l'essieu L., (un essieu de 18 kips = 8.15 tonnes) pour obtenir le même PSI final que W. passages de l'essieu L. Par conséquent le trafic W. avec l'essieu L et W., avec l'essieu L, sont dit "équivalents". le facteur de charge relatif à l'essieu L est obtenu de façon rigoureuse par la

-- 36 --

où 6 est une fonction de l'indice de viabilité (PSI)

β est une fonction de la charge et de l'indice d'épaisseur.

q = 4.79 , b = 4.33 pour chaussée flexible.

q = 4.32, b = 3.28 pour chaussée rigide.

L, valeur de la charge considérée.

 $L_2 = 1$ pour essieu simple $L_2 = 2$ pour essieu tandem.

Cependant l'influence du PSI et de l'indice d'épaisseur est insignifiante.Aussi certains auteurs proposent :

οù a = 4 pour les chaussées souples.

4 < a < 8 pour les chaussées rigides.

<u>L'indice d'Epaisseur :</u>

L'analyse statistique des résultats de l'essai AASHO a permis à plusieurs

chercheurs, se basant sur des modéles mathématiques différents d'établir des relations entre l'épaisseur de la chaussée, la charge qui la sollicite, et la répétition de celle-ci.

A l'origine une régréssion linéaire conduit à une équation de la forme :

$$T = a_0 + a_1 LogW + a_2 L_2 + a_3 L_1 L_2$$

$$T = \alpha_1 D_1 + \alpha_2 D_2 + \alpha_3 D_3.$$

où T est l'epaisseur équivalente

W le nombre d'applications de la charge de référence du début jusqu'à un PSI donné.

Liet L2 étant definis ci-dessus.

a,,a,,a, sont des coéfficients de régression

α1,α2,α3 sont des coéfficients d'équivalence

J.F.Shook et F.N.Finn intégrent la portance du sol et proposent la relation suivante:

$$T = (-20.5 + 5.53 \text{LogW} + 0.669 \text{L}_1 + 0.0932 \text{L}_1 \text{L}_2)(2.5/CBR)^{-4}$$

$$T = 2D_1 + D_2 + 0.75D_3$$

La notion d'indice d'épaisseur revient à Liddle qui,utilisant un modèle mathématique différent pour interpréter les résultats de l'essai A.A.S.H.O, aboutit à une formule plus complexe et plus générale:

$$SN = \alpha_1D_1 + \alpha_2D_2 + \alpha_3D_3$$

$$Log \rho = 5.93 + 9.36 Log (SN+1) - 4.79 Log (L_1 + L_2) + 4.33 Log L_2 + Log R^{-1} + 0.372 (Si-3.0)$$

où SN est l'indice d'épaisseur.

+ 0.372(Si - 3.0)

Co la valeur initiale du PSI (4.2).

C. la valeur du PSI lorsque la section est hors d'usage.

W_t le nombre total d'applications de l'essieu de référence.

Si la portance du sol support.

Pt l'indice de viabilité terminale.

β , ρ sont des fonctions de transition.

En résolvant ces équations pour un essieu simple de 18 kips on obtient :

(SN+1)5-19

Le facteur d'épaisseur traduit l'équivalence entre les différentes couches.

Ainsi on dira, en considérant la relation de Shook et Finn que par rapport à la couche de base , l'épaisseur du revêtement doit être doublée alors que celle de la couche de fondation doit être réduite au 3/4.

Alors que l'indice d'épaisseur représente la contribution des différentes couhes à la résistance de la structure.

Facteur régional.

Liddle introduit un coéfficient de pondération du trafic pour tenir compte de l'état du terrain au cours des saisons.

iratic	coetticient de	Salsons
	pondération	
•		
₩ 1	r:	hivers
₩2	Γ2	été et automne
₩s	Гз	printemps
W = W ₁	+ W ₂ + W ₃	
Wp = r1W1	+ F2M2 + F3M3	

R x W

R est le facteur régional, pris égal à 1 dans le cadre de l'essai A.A.S.H.O.

Liddle considére aussi l'état du sol par l'intermédiaire d'un coéfficient S,

dont certains auteurs publient la corrélation avec le CBR.

c-Application

Procédure à suivre.

-Evaluer le CBR et sa valeur S correspondante, puis le trafic équivalent.

-Calculer SN par la formule implicite de Liddle.

-Suivre les mêmes étapes jusqu'ici pour les couches de base, de fondation et du support.

-A l'aide des coéfficients d'équivalence, déduire l'épaisseur des différentes couches.

Hyppothéses:

-Nous estimons que le contexte climatique est meilleur par rapport celui de l'essai A.A.S.H.O.Par conséquent nous retenons un facteur régional de R = .5
-Nous considérons un PSI terminal de 1.75.Le service que l'opinion américain juge acceptable (PSI = 2.5) pourrait être mieux apprécié au Sénégal, compte tenue de la différence de nivau de vie, et du sous développement.

~Les coéfficients d'équivalence suivants seront retenus:

Pour béton bitumineux a₁ = 0.44

graves naturelles $a_2 = 0.07$

graves sableuses $a_3 = 0.11$

voir Yoder et Witczak page 512.

-La correspondance entre CBR et S est la suivante:

couches	CBR	S
base	80	8.5
fondation	30	6.5
sol naturel	15	5.0

voir L'Herminier page 190.

-La charge légale de design étant de 13 tonnes (28 kips),d'où la nécessité de reconsidérer la formule de Liddle,qui prévoyait une charge de 8.2 t.(18 kips).

$$\beta = 0.40 + ----- = 0.40 + -----$$

$$(SN+1)^{5-19} \qquad (SN+1)^{5-19}$$

$$Log \rho = 5.93 + 9.36 Log (SN+1) - 4.79 Log (28+1) + Log R^{-1} + 0.372 (Si-3.0)$$

 $Log \rho = 9.36 + Log (SN+1) - 1.075 + Log R^{-1} + 0.372 (Si-3.0)$

$$C_{o}-P_{\epsilon}$$

$$Log-----$$

$$C_{o}-C_{i}$$

$$LogW_{\epsilon \ge 0} = 9.36Log(SN+1) - 1.075 + ------ + LogR^{-1} + 0.372(Si-3.0)$$

$$4286$$

$$0.40 + ------$$

$$(SN+1)^{5-19}$$

Compte tenues des hypothèses précédentes et en posant $C_1 = 0.75$ pour les mêmes raisons que lors du choix du PSI terminal, la formule devient:

 $LogW_{t20} = 9.36Log(SN+1) - 1.075 + ------ + LogR^{-1} + 0.372(Si-3.0)$

+ Log(0.5)-1

D'où la formule I

Du fait de manque d'information sur les charges de plus de 15 tonnes et celles de moins de 10 tonnes, nous allons les considérer égales respectivement à 16 tonnes et 10 tonnes. La répartition des charges est la suivante :

Camions.	Charges	Facteurs
%.	(tonnes)	de charge
38.69	10	0.35
9.77	11	0.51
10.58	12	0.73
13.16	13	1.00
19.96	15	1.77
7.84	16	2.29

Le facteur relatif à l'essieu de charge L, est obtenu d'apres la formule suivante (voir le guide du C.E.B.T.P.) :

Le tableau suivant donne le nombre d'essieux de 28 kips correspondant à chaque catégorie de charges et pour chaque tronçon pendant toute la durée de vie de ces ouvrages.

Tronçons	Nombre total	Trafic	par caté	gorie de	charges	d'essieu(105)
	de camions(10°)	10	11	12	13	15	16
D.R.H.	6.50	8.80	3.23	5.02	8.55	22.96	11.67
D.R.T	5.77	7.79	2.87	4.45	7.59	20.37	10.33

D.R.M.	5.42	7.32	2.70	4.18	7.13	19.70	9.70
P.D.C.	4.09	5.52	2.04	3.16	5.38	14.44	7.32
P.T.P.	1.38	1.86	0.69	1.06	1.82	4.87	2.47
D.T.D.	3.16	4.27	1.57	2.44	4.16	11.15	5.66

Exemple de calcul

Pour D.R.H. Le nombre d'essieux de 10 tonnes est obtenu par 6.5 107x 38.69%, ce qui est équivalent à 6.5 107x 38.69% x0.35= 8.80 105 éssieux de 28 kips voir tableau à la page 29, pour le calcul du nombre total de camion.Le total pour chaque catégorie de charge nous donne les valeurs suivantes:

Tronçons	Trafic équivalent	à	28	tonnes
	(100)			
D.R.H.	6.02			
D.R.T.	5.34			
D.R.M.	5.07			
P.D.C.	3.79			
P.T.P.	1.28			
D.T.D.	2.93			

Le calcul des indices de structures donne le tableau suivant :

Tronçons	Indices	de structur	es (inch)
	SN ₁	SN₂	SN ₃
D.R.H.	2.91	3.76	4.54
	45		

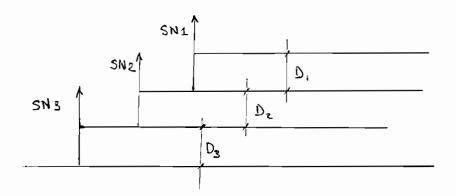
D.R.T.	2.86	3.69	4.46
D.R.M.	2.84	3.66	4.43
P.D.C.	2.72	3.51	4.24
P.T.P.	2.30	2.98	3.61
D.T.D	2.61	3.38	4.08

D'où on peut en déduire les épaisseurs des différentes couches pour chaque structure . On peut aussi utiliser le programme de calcul sur ordinateur (voir en annexe).

Tronçons		des diffé	erentes couches	(cm)
	•			
D.R.H.	16	30	18	
D.R.T.	16	30	18	
D.R.M.	16	30	18	
P.D.C.	15	29	17	
P.T.P.	13	25	15	
D.T.D.	15	28	16	

Exemple de calcul

D.R.H. Wt28 = 6.02 10° véhicules à partir de la formule I nous obtenons:


$$S_1 = 8.5$$
 $SN_1 = 2.91$ $D_1 = 2.91/0.44 = 6.61$ inchs.
 $S_2 = 6.5$ $SN_2 = 3.76$ $D_2 = (3.76 - 2.91)/0.07 = 12.14$ inchs.
 $S_3 = 5.0$ $SN_3 = 4.54$ $D_3 = (4.54 - 3.76)/0.11 = 7.09$ inchs.

Exprimées en unité SI.

 $D_1 = 16 \text{ cm}.$

 $D_2 = 30 \text{ cm}$.

 $D_3 = 18 \text{ cm}$.

Interprétation

Nous avons obtenu des résultats excessivement élevés et inhabituels, ce que la seule augmentation de la durée de vie des ouvrages ne peut justifier. Il est vrai que cette methode est bien élaborée, il reste cependant à savoir si elle s'adapte correctement au contexte Sénégalais.

On sait déjà qu'il n'existe pas de statistiques sur le trafic aussi raffinées et rigoureusement étudiées que l'exige cette méthode . on peut de même se demander, s'il y avait un essai du genre A.A.S.H.O. en Afrique, les résultats se prêterontils aux mêmes modèles mathématiques que ceux de Liddle, Shook et Finn, qui ont conduit à élaboration des formules précédentes?

Enfin la disparité climatique et géologique entre les deux continents est-elle entièrement prise en compte par le facteur régional et les coéfficients d'équivalence?

3.4.2 LE cas des CHAUSSEES RIGIDES.

3.4.2.1 La methode de la P.C.A. (Portland Cement Association).

Elle est basée sur les études théoriques de Westergaard, Pikett, Ray et autres mais aussi sur les résultats d'essais routiers sur des chaussées expérimentales soumises aux charges de trafic contrôlés, tels que ceux d'essai routiers de Bates, de Pittsburg, de Californie du Maryland et ceux d'A.A.S.H.O.à Ottawa. Elle se base aussi sur les études de comportement des chaussées construites selon les normes usuelles et soumises à un trafic normal.

a.Principes de la méthode.

L'idée consiste à évaluer la consommation de fatigue par la chaussée, pour chaque incrément de charge donné.

La fatigue résulte de la répartition des charges et elle est exprimée, pour chaque charge donnée, en terme du rapport entre le nombre d'applications de l'essieu considéré sur le nombre d'applications du même essieu conduisant à la rupture de la chaussée.

Cependant, pour une première approximation de l'épaisseur de la dalle, la méthode P.C.A. a procédé par une formule simple tabulée, ne tenant pas compte de la répartition des charges axiales. Aussi nous nous en servirons pour déterminer les épaisseurs d'essai.

b.Facteurs de design.

Facteur de sécurité.

Les charges axiales doivent être multipliées par un coéfficient de majoration FSC pour compenser les effets du dégré d'incertitude attribuable à certains faits tels que les surcharges imprévisibles sur les camions et les variations de la qualité des matériaux. En Amérique, on lui attribue les valeurs suivantes fonction de l'importance du trafic:

Routes	à	débit	dе	camions	élevé	FSC	=	1.2
Routes	à	débit	de	camions	modéré	FSC	=	1.1
Routes	à	débit	de	camions	faible	FSC	=	1.0

J.M.A.-C.

Cette méthode évalue le trafic en terme du nombre moyen de camions par jour dans les deux directions, sur une base annuelle. les camions à deux essieux quatre roues sont exclus. Cette valeur du J.M.A.-C permettra le choix de la catégorie de charge axiale, dans le cas de la méthode simplifiée. (vior le tableau 9).

Module de rupture de la dalle de béton.

Une dalle soumise à une charge axiale, à même le sol subit aussi bien des contraintes de traction que celles de compression. Cependant le rapport sollicitation sur résistance étant plus grand en traction qu'en compression, on utilisera la résistance en flexion et les contraintes de tension comme critère

de design.L'essai de flexion sur une poutre en béton permettra de déterminer le module de rupture MR.de la dalle .

<u>Indice de portance fondation-infrastructure K.</u>

La portance de l'infrastructure est mesurée par l'essai de plaque, où estimée à partir des caractéristiques usuelles du sol. Dans le cadre de ce projet nous allons utiliser le tableau de corrélation fourni par la C.P.C.A. (Association Canadienne du ciment portland) (voir figure.2). Nous estimons que cette approximation est acceptable dans la mesure où les écarts observés sur les valeurs du module de réaction, K n'ont pas d'influences appréciables sur l'épaisseur des dalles.

Il arrive qu'une couche de fondation soit adoptée pour une raison où une autre, auquel cas la valeur de K s'en trouverait affectée. Voir les tableaux 1 et 2 le module corrigé, dans ce cas nous adopterons une épaisseur de 15 cm de latérite d'autant plus nécessaire que le sol support est en sable argileux. C'est à dire possédant une quantité de particules fines appréciables, qui peut avoir des effets néfastes au nivau des joints (phénomène de pompage).

Facteur de projection du trafic.

Pour tenir compte de l'évolution du trafic, la C.P.C.A.propose de multiplier le J.M.A.(débit journalier de camions sur une base annuelle), par un coéfficient, f_pqui est fonction du taux de croissance du trafic et du nombre d'année de design (voir tableau 3).

c.Application.

Procédure à suivre.

- 1. Donner le module de réaction du sol support ajusté au besoin.
- 2. Choisir une épaisseur d'essai ou bien l'estimer par la méthode simplifiée.
 Methode simplifiée.
 - -Estimer le J.M.A.-C .
 - -Choisir la catégorie de charge axiale à partir du tableau 9.
 - -Choisir l'épaisseur de dalle. (voir tableaux 12b,13b,14b).
- 3.Choisir le facteur de sécurité approprié, FSC et majorer les charges axiales.
- 4. Calculer à l'aide des abaques des figures 7 et 8 les efforts induits dans la dalle pour chaque charge axiale, en considérant le module K et l'épaisseur d'essai.
- 5.Calculer le rapport effort induit sur module de flexion. Lorsque cette valeur est inférieure à 0.5, le nombre de répétition de la charge concernée conduisant à la rupture est illimité. Si non voir le table 17.1 pour la valeur maximale admissible de ce nombre.
- 6.Le rapport cumulé du nombre de répétition de la charge prévu durant la vie anticipée de l'ouvrage et celui admissible représante le dommage dû à la fatigue. Théoriquement cette consommation de fatigue ne doit pas dépasser 125% pour un béton dont le module de rupture est déterminé à 28 jours, où 100% pour celui dont le module est déterminé à 90 jours.

<u>Détermination des épaisseurs d'essai.</u>

 $-K = 60 \text{ MPa/m} = 6.12 \text{ Kg/cm}^3 \text{ Ce qui correspond à un CBR} = 15.$

-MR = 4.4 MPa = 4.4 $10^{6}x$ 1.4504 10^{-4} = 637.68 $1bs/po^{4}$.

Compte tenus des essais effectués au laboratoire où nous avons eu un modu le de l'ordre de 5 MPa nous estimons que la valeur maximale fournie par les abaques est acceptable.

le de l'ordre de 5.0 MPa nous estimons que la valeur maximale fournie par les abaques est acceptable.

 $-f_{
m p}$: Pour un taux d'accroissement de 4% pendant 30 ans le facteur de prévision est obtenu par interpôlation .

fp	année de design
1.5	20
fp?	30
2.2	40

$$2.2 - 1.5$$

$$f_{p} = ----- (30 - 20) + 1.5 = 1.85$$

$$40 - 20$$

Tronçons	J.M.AC	J.M.AC	J.M.AC	Voir	Epaisseur
•		prévus	ajustés	Tableau	d'essai(cm)
D.R.H.	754	1394	2091	4 b	255
D.R.T.	6 73	1245	1867	46	245
D.R.M.	629	1164	1746	3 b	235
P.D.C.	455	842	1263	3 b	225
P.T.P.	142	264	396	2b	175

	D.T.D.	350	649	974	2 b	185
--	--------	-----	-----	-----	-----	-----

NB. J.M.A.-C sont exclus les camions à 2 essieux et 4 roues qui font 56% du J.M.A.-C .

J.M.A.-C prévu = J.M.A-C x fp.

J.M.A.-C ajusté tient compte de la durée de vie de l'ouvrage étant donnée que les tableaux sont établis pour des dalles de 20 ans. (=30/20 xJMA-C prévu). Voir les fiches de calcul d'épaisseur en annexe.

Epaisseurs retenues.

	Tronçons	Epaisseurs(cm)
	D.R.H.	25.0
	D.R.T. 2	24.0
	D.R.M.	24.0
	P.D.C.	22.5
	P.T.P.	20.0
,	D.T.D.	22.0

Interprétation.

Cette méthode utilise le modèle théorique de Westergaard amélioré par la suite Nous savons déjà que les difficultés essentielles résident dans la caractérisa tion du matériau, or le béton se prête mieux aux essais concernés . La méthode est-elle adaptée au contexte sénégalais ? Nous ne pouvons rien affirmer à pri ori. Cependant nous savons que les structures en béton sont moins affectées par

les conditions d'environnement que celles en asphalte.

3.4.2.2 Methode du "corps of engineers U.S.Army".

Cette methode utilise des abaques établis à partir des formules empiriques de Gérald Pickette, basée sur la théorie de Westergaard (voir figures 9 et 10).

a.Principe .

Elle utilise une charge statique de calcul égale au poids moyen des 100 000 roues les plus chargées qui aborderont la bande de revêtement la plus fréquen tée pendant toute la durée de vie de l'ouvrage.

Cette charge sera majorée de 20% pour tenir compte des efforts dynamiques selon la PCA ou multipliée par un coéfficient dynamique obtenu à partir de l'abaque du "corps of engineers" (voir figure 7).

La dalle ainsi conçue résistera indéfiniment à l'application des charges infé rieures ou égales à celles de calcul.Il faut vérifier par la suite qu'elle ré sistera aussi à un nombre limité d'applications des charges plus lourdes à l'aide de la figure 8.

b.Application .

Rappels trafic .

Traçons	JMA-C(en	véhs./j
	aller	retour
D.R.H.	834	879
D.R.T.	749	780

D.R.M.	732	698
P.D.C.	502	553
P.T.P.	155	187
D.T.D.	370	427

Rappels répartition des charges.

juso	luʻà	10	tonnes	3 9	7.
de 1	0 à	11	u	10	11
1	1	12	n	10	ŧı
1	2	13	и	13	"
1	3	15	u	20	u
plus	de	15	ıı	8	16

Répartition du trafic par catégorie de charge .

Tronçons Trafic par 1000 véhs.

10 tonnes 11 tonnes 12 tonnes 13 tonnes 15 tonnes 16 tonnes

D.R.H.	3657	962.5	962.5	1251	1925	866.5
D.R.T.	-	-	-	-	1708	769
D.R.M.	-	-	-	-	1603	720
P.D.C.	-	-	-		1211	545
P.T.P.	-	-	-	-	410	184
D.T.D.	-	-	-	-	935	420

NB. Remarquons que, dans la colonne des 16 tonnes le trafic est partout supé rieur à 100 000 véhs. Nous allons donc considérer une charge de calcul de de 8 tonnes, majorée à 20 % (9.6 tonnes).

MR = 4.4 MPa = 1.4504
$$10^{-4}$$
 x 4.4 10^{6} = 638.176 psi
K = 60 10^{6} x 1.4504 /39.3701 = 221 pci

La charge de calcul étant la même pour tous les tronçons, le même béton et la même portance de sol considérée le design sera le même. Aussi nous utiliserons l'abaque du "corps of engineers" Voir figure 13), qui ne considére que la charge statique et prend en compte des modules de béton de l'ordre du notre.

Interpôlation.	charges(tonnes)	Epaisseurs(po)	
	8.0	Τ?	
	7.2	9.75	
	5.0	8.50	
T ~ 8.5	9.75 - 8.5	`	
=		T = 10.2 po =	26 cm
8 - 5.0	7.2 - 5.0		

3.4.2.2 Metade A.A.S.H.O.

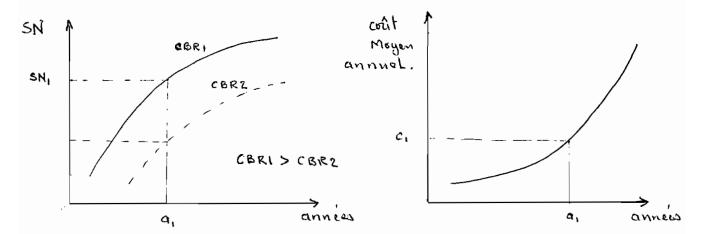
Elle se base sur l'analyse des résultats de l'essai AASHO et sur les études théoriques de Westergarrd les formules sont donc semi-empiriques. elles se reférent à une charge de calcul appliquée à 10 po (25cm) du coin de la dalle. Des abaques sont disponibles pour un PSI final de 2.0 et 2.5, avec un

coéfficient de poisson égal à 0.20 .

Le trafic total pendant la durée de vie de l'ouvrage, ou journalier sur une période de 20 ans équivalent à celui d'un essieu simple de 18 kips, sera considéré (voir figures 17.4 et 17.5).

Cependant cette méthode ne sera pas appliquée dans le cadre de cette étude, puisque les charges envisagées dépassennt largement les prévisions de ces abaques. Notons, en même temps que ces deux dernières méthodes sont tres limitées du fait de leur semi-empirisme. Elles ne prévoient pas des nivaux de trafic ou de charge à la roue aussi importants.

4.ANALYSE ECONOMIQUE .

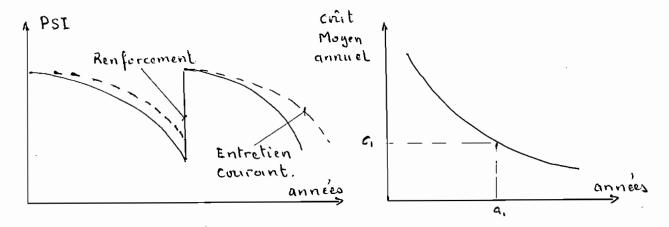

4.1 Etude des coûts .

L'estimation du coût global d'un projet de route est une des étapes de la conception les plus difficiles. Du fait des nombreux facteurs intervenant qui généralement ne sont pas maîtrisés. Le coût d'investissement se divise en deux grandes rubriques.

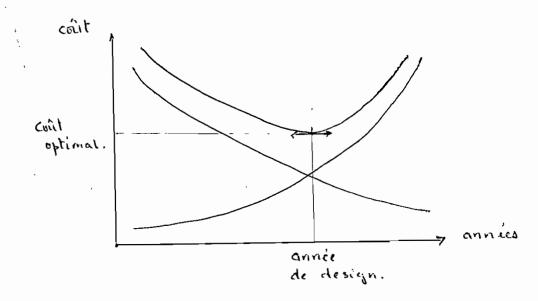
-Le coût d'investissement initial .

Il est tres déterminant, et généralement le plus considéré par nos états. Il dépend des conditions du marché, surtout de la disponibilité des différents ma tériaux intervenant dans la construction. Il dépend aussi de la durée de vie de l'ouvrage.

En effet en augmentant la vie espérée de l'ouvrage, le trafic cumulatif augmen te, l'indice de structure requis devient important, d'où le taux annuel du coût d'investissement initial augmente. C'est ce qu'exprime les diagrammes suivants.


-Coût d'entretien .

Il comprend: l'entretien courant consistant à des travaux saisonniers de débrou ssaillage, de curage des fossés, buses, et dalôts, ainsi qu'aux réparations des fissures et ornières ...etc.


L'entretien général plannifié consiste en des traveaux de renforcement de

périodicité plus longue que d'habitude .

Son coût est fonction de la durée de vie de la chaussée .Pour des ouvrages de de durée de vie importante, l'indice de structure, et la qualité des matériaux sont si soignés que l'entretien devient tres faible. (voir le graphe suivant).

Le coût totlal d'un investissement routier doit tenir compte, aussi bien du coût initial mais que le coût d'entretien actualisé. D'ailleurs, le choix de l'année de design doit être dicté par l'optimun de ces deux coûts. Comme le tra duit le figure suivante.

Dans le cadre de ce projet, n'ayant aucune donnée concernant les coûts d'entre tien; il nous est impossible de les intégrer, aussi nous nous limiterons à la comparaison des coûts d'investissement initiaux. Les prix unitaires des maté

riaux considérés sont obtenus suite à une enquête menée aupres des entrepreneurs de la place, vérifiés au niveau du bureau de la série des prix -Direction des études et de la programmation (Voir les documents en annexe).

4.2 Estimation des quantités .

Rappel des résultats du design.

Nous avons retenu, des méthodes étudiées celle du guide, pour les chaussées flexibles, et celle PCA pour les chaussées rigides. La première du fait qu'elle se rapproche au mieux du contexte Sénégalais. Elle est d'ailleurs la plus utilisée au Sénégal. Quant à la méthode de la PCA, elle est bien élaborée et se prête aux nivaux de trafic étudiés.

Trançans	Epai	.sseurs (cm)		
	Béton de ciment	Béton t	oitumine	ТХ
		fondation.	base.	revêtement
D.R.H.	25	25	20	7
D.R.T.	24	25	20	7
D.R.M.	24	25	20	7
P.D.C.	22.5	20	20	5
P.T.P.	20	30	15	4 (TC)
D. T. D.	22	20	20	5

Volume de matériaux requis pour 1 m de route.

Les chaussées sont à 3 voies , donc une largeur de roulement de 10.5 m et une largeur de plateforme de 14.5 m. (voir document du plan national de transport).

Structure flexible

T	n.,		. 1 - 1 1 - 2 1 1	
Tronçons	Bétons (m³		x latéritiquo	25 (M³)
	Bitumineux	de ciment	fondation	base
·				
D.R.H.	0.735	2.625	3.625	2.900
D.R.T.	0.735	2.520	3.625	2.900
D.R.M.	0.735	2.520	3.625	2.900
P.D.C.	0.525	2.363	2.900	2.900
P.T.P.	0.420	2.100	4.350	2.175
D.T.D.	0.525	2.310	2.900	2.900
Trançons		Quantités de la	térites	
		à transporter	(W 2)	
D.R.H.		6.525		
D.R.T.		6.525		
D.R.M.		6.525		
P.D.C.		5.800		
P.T.F.		6.525		
D.T.D.		5.800		
Structure rigide .				
Tronçons	Sable	Agrégats	Ciment	Fondation.
	(tonnes)	(tonnes)	(tonnes)	(M 3)
D.R.H.	1.320	3 .94 0	0.920	2.175

3.780 0.880 2.175

D.R.T.

1.260

D.R.M.	1.260	3.780	0.880	2.175
P.D.C.	1.180	3.540	0.830	2.175
P.T.P.	1.050	3.150	0.740	2.175
D.T.D.	1.160	3.470	0.810	2.175

NB. Nous n'avons pas tenu compte du transport du ciment et des enrobés dont les coûts sont tres variables et sont fonction du lieu d'approvisionnement. Cependant la distance de transport du sable est estimée à la moitié de celle des latérites et grés. La raison en est que le sable est le matériau le plus répandu à Dakar, même si parfois la recherche d'une qualité mailleure fait qu'il soit transporté, toujours est-il que la distance est relativement faible. Par ailleurs , nous avons adopté un dosage tres simple pour le béton , mais qui respecte les exigences de la technologie de ce matériau.

Par métre cube de béton .	Ciment		350	kg
	Agrégats	1	500	kg
	Sable		500	kg
	Eau		150	kg

4.3 Estimation des coûts des matériaux.

Prix retenus . (voir document sur enquête en annexe).

Enrobés	50 000 Frs. " /tonne
Ciment PCA 325	43 000 Frs. " /tonne ·
Graveleux latéritiques pour couche de fondation	3 300 Frs. " /m³
Graveleux latéritiques pour couche de base	3 800 Frs. " /m³
Grés 8/16	4 500 Frs. " /tonne

-Sable-de-plage

1 000 Frs. " /m³

Transport de matériaux pour chaussée

88 Frs. " /km.m³

NB. La distance de transport des latérites est estimée à 40 km . Sébikotane et Yenne où l'on exploite ces matériaux se trouvent environ à une telle distance de Dakar.

De même que pour les grés ,que l'on trouve à Packi .ces distances ont été estimées sur la carte de carrière ci jointe.

La masse volumique de tous les matériaux à transporter est estimée à 1.5 t/m³

Chaussées flexibles.

Prix des matériaux pour 1 m de tronçon exprimés en Frs. cfa.

Trançons	Enrobés	latérites		Transport
		fondation	base	de latérite
D.R.H.	55 130	11 960	11 020	22 970
D.R.T.	55 130	11 960	11 020	22 970
D.R.M.	55 130	11 960	11 020	22 970
P.D.C.	39 380	9 570	11 020	20 420
P.T.P.	31 500	14 360	8 270	22 970
D.T.D.	39 380	9 570	11 020	20 420

Prix totaux pour 1 m de tronçon, exprimés en Frs. cfa .

Tronçons	Coût	total
D.R.H.	101	080
D.R.T.	101	080
D.R.M.	101	080
P.D.C.	80	390
P.T.P.	77	100
D.T.D.	ВО	390

<u>Chaussées rigides .</u>

Prix des matériaux pour 1 m de tronçon exprimé en Frs cfa .

Tronçons	Ciment	Sable	Agrégats	Latérites
D.R.H.	39 560	880	17 730	8 265
D.R.T.	37 840	840	17 010	8 265
D.R.M.	37 840	840	17 010	B 265
P.D.C.	35 690	790	15 930	8 265
P.T.P.	31 820	700	14 170	8 245
D.T.D.	34 830	770	15 620	8 265
Trançons		Transpor	t de matériaux .	
	Agr	égats La	térites sable	Total
			•	
D.R.H.	9	250 7	650 1 550	18 450
D.R.T.	В	870 7	650 1 480	18 000
		-~ 64	1	

D.R.M.	8 870	7 650	1 480	18 000
P.D.C.	8 300	7 650	1 380	17 330
P.T.P.	7 400	7 650	1 230	16 280
D.T.D.	8 150	7 650	1 360	17 160

Prix totaux pour 1m de tronçon exprimés en Frs. cfa.

Tronçons	coût total
D.R.H.	84 885
D.R.T.	81 955
D.R.M.	81 955
P.D.C.	78 005
P.T.P.	72 045
D.T.D.	76 645

Compte tenu de la diversité des informations reçues lors de l'enquête des prix (voir annexe) et parfois de leurs contradictions, nous sommes obligés d'avancer des hypothèses en considérant l'ordre de grandeur de certains paramètres (voir NB.) Dans tous les cas, les manuels cités en annexe ont été consultés. Nous avons eu recours aux prix hors taxes , dans le cas des granulats, alors que pour le prix des liants toutes les taxtes sont incluses.

Notons qu'il existe des écarts de prix entre ces deux types de chaussée, le revê tement en béton étant moins coûteux. Nous remarquons aussi l'importance du transport de matériau. La zone de Dakar étant isolée des carrières, l'adoption d'une fondation tres épaisse peut conduire à des dépenses exhorbitantes. Tel est

le cas du tronçon P.T.P.

De façon globale l'écart diminue avec l'importance du trafic.même si dans certains cas , l'écart est important, dû au fait que ces tronçons sont surdimensionnés en revêtement flexible, par rapport à leur classe, alors qu'il ne le sont pas en béton de ciment.

Tronçons	Ecart des	coûts
	Frs.	%
D.R.H.	16 195	16
D.R.T.	19 125	19
D.R.M.	19 125	19
P.D.C.	2 385	3
P.T.P.	5 055	7
D.T.D.	3 745	5

5.APPLICATION : Le cas des cités HAMO-5.

Dans cette partie du projet nous nous intéressons à l'application de notre étude aux rues d'un des quartier de la banlieue de Dakar, HAMO, en construction sous la responsabilité de la societé du même nom .

5.1 Situation du site .

La zone est située à la côte nord de Dakar à proximité de l'océan.

Quelques rideaux d'arbres le séparant de celui-ci, le mettent à l'abri des vents. Néanmoins on note la présence des dunes de sable rendant necessaire des travaux préliminaires de terrassement. Le sol support est tres homogène. Il est constitué de sable à grains grossiers de couleur rouge sans cohésion qui s'etand à perte de vue mais aussi en profondeur jusqu'à 1.5 m au moins.

Rappelons que les carrières intéressant la construction routière n'existent pas dans la zone.

5.2 Etudes géotechniques.

L'objectif est d'évaluer certains paramètres du sol de plateforme, considérés comme entrant dans le processus de dimensionnement (Voir feuilles de mesure en annexe).

Teneur en eau .

Deux mesures ont été effectuées .

A arrivée de l'échantillon pour nous rendre compte de l'état d'humidité du sol support, en cette période de l'année.

Avant le compactage afin d'estimer la quantité d'eau à considérer .

Granulométrie.

Elle permet de classer le sol en vue d'apprécier ses caractéristiques géotechni ques par analogie avec d'autre sols mieux connus. Ainsi nous obtenons un sol SP du sable mal gradué, selon la classification unifiée (uscs) un sol A-3, selon l'A.A.S.H.T.O.

100 % de passant au tamis 4

74 % de passant au tamis 40

2.12 % de passant au tamis 200

Cu = 2.50

Cc = 1.18

D'apres les tableaux fournis par le "corps of Engineers " un sol de cette classe peut avoir les caractéristiques suivantes :

Poids sec unitaire (d.) 1699 à 2184 kg /m³

Portance (CBR) 10 à 40

Module de réaction (K) 5.5 à 8.3 kg /cm²

Coéfficient de perméabilité (k) > 10⁻³ cm /s

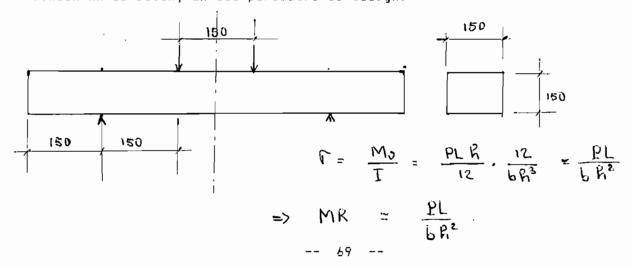
Portance du matériau CBR .

Nous avons tout d'abord procédé au compactage pour déterminer la teneur en eau optimale. Ensuite le poinçonnement est effectué en considérant 3 valeurs de teneur en eau: L'optimale et une valeur de part et d'autre.

Interprétation .

Les résultats auxquels nous sommes aboutis correspondent bien à ceux prévus apres classification du sol

CBR = 20 %


Wopt. = 9.5 %

$$d_{dmax}$$
 = 1780 t/m³

La pénétration, lors du poinçonnement est tres faible du fait du manque de cohésion du sol (sol silteux avec 2.12 % de particules fines). La courbe granulométrique tres uniforme explique toute la difficulté de compactage de ce matériau, de même que son incompressibilité à partir d'une certaine limite de teneur en eau (Voir courbe de compactage).

5.3 Essais sur le béton .

Nous avons procédé à des essais de flexion à l'école, sur du béton pris à l'usine de la société en question. Le but consiste à déterminer le module de flexion MR du béton, un des paramétre de design.

Appareil TINUS OLSEN

Moule 150 x 150 x 750

Nombre d'échantillons 2

L = 450 mm

P = 37.45 KN

b = h = 150 mm

 $MR = 4.993 \ 10^{-3} \ KN/mm^2 = 5 \ MPa$

Notons que le deuxième échantillon est brisé de façon prématurée, sur erreur de manipulation. Cependant le mode de chargement utilisé est relativement conservateur (voir schéma). Il nous donne le module dans le tiers central de la poutre d'essai, la où la rupture à lieu. Alors que la charge peut être placer en porte à faux ou au centre même de la poutre, ce qui donne une valeur ponctuelle (puisque le point de rupture est déjà choisi), et en général plus importante car le moment maximal mobilisé est plus élevé.

5.4 Dimensionnement .

5.4.1 Structure rigide .

Par manque de données sur le trafic dans ces quartiers nous allons nous en tenir aux recommandations de l'association Canadiènne du ciment portland CPCA.

Aussi utiliserons nous la procédure de design simplifiée.

Catégorie de charge axiale 1 .

MR \approx 4.4 MPa

K = 70 MPa/m

Epaisseur de dalle retenue E = 130 mm Voir tableau 11

Nous avons choisi un module de 4.4 MPa ce qui représente une marge de sécurité de 13 % sur la résistance du béton , par rapport aux résultats de nos essais. L'épaisseur correspondante est destinée à un trafic de 3 véhicules lourds par jour en moyenne (ou à 6 véhicules lourds ajustés à la durée de vie l'ouvrage). Ce que nous pensons acceptable pour une zone résidentielle. La dalle reposera sur une couche de fondation latéritique de 15 cm d'épaisseur.

5.4.2 Structure flexible.

Nous allons considérer le guide du C E B T P pour des raisons déjà évoquées. la classe T. comprend les trafics de moins de 300 véhicules/j, dont 30% de camions. C'est à dire moins de 90 véhicules lourds par jour. Même si la notion de camion n'a pas la même signification dans les deux méthodes, ce trafic peut dans certains cas correspondre au JMA-C considéré dans le design en structure rigide, aussi nous allons l'adopter et l'évaluer en bicouche.

R revêtement 3 E ou B C

B base 15 cm de graveleux latéritiques

F fondation 15 cm de graveleux latéritiques

5.5 Analyse économique .

5.5.1 Estimation des coûts unitaires .

- a. Enduits superficiels en bicouche.
 - Dosage .

1.2 kg $/m^2$ d'émulsion à 60 %.

12 l / m² de basalte 8/16.

0.8 kg $/m^2$ d'émulsion à 60 % .

 $8 \text{ l} / \text{m}^2$ de gravier 3/8.

- Prix

Emulsion 300 000 Frs /tonne

Gravier 3/8 6 500 Frs /tonne

Gravier 8/16 5 800 Frs /tonne

Transport de matériaux de chaussée 88 Frs / km m³

b. Dalle de béton (Voir \$ 4.3).

5.5.2 Estimation des quantités .

Structure flexible .

Chaussée en bicouche .

Emulsion Grviers basaltiques(tonnes) graveleux latéritiques(m³)

(tonnes) 3/8 8/16 fondation base

0.012 0.072 0.108 1.350 1.350

Chaussée en enrobés (3 cm)

 $0.03 \text{ m} \times 6 \text{ m} \times 1 \text{ m} \times 1.5 \text{ tonnes/m}^3 = 0.27 \text{ tonnes}$

Structure rigide . (avec 0.13 x 6 , 0.78 m³de béton)

Ciment Agrégats sable Latérite (tonnes) (tonnes) (tonnes) (m^3)
0.273 1.170 0.390 1.350

NB. La largeur de la chaussée est estimée à 6 m pour la classe de trafic considéré , quant à la plateforme elle est de 9 m .

5.5.3 Estimation des coûts totaux .

Structure flexible.

Chaussée bicouche .

Emulsion	Graviers basaltiques		Graveleux latér	itiques	total
	3/8	8/16	fondation	base	
3 600	470	630	4 455	5 130	14 285

<u>Chaussée en enrobés .</u>

Revêtement	Fondation	Base	Total
13 500	4 455	5 130	23 085

Coût de transport de matériaux

baslte	latérite	coût total
450	9 500	9 950

<u>Coût total pour 1 m de route .</u>

Bicouche 24 235 Frs.
Enrobés 32 585 Frs.

Structure rigide .

Ciment	Agrégats	Sable	Latérites
11 740	5 270	390	5 130

Transport de matériaux

Agrégats	Latérites	Sable	Total
2 750	4 750	460	7 960

<u>Coût total pour 1 m de route .</u>

30 490 Frs.

NB.Ce résultat est prévisible.Le niveau de trafic étant faible de telles routes sont souvent en bicouche viore monocouche qui coûtent moins que les enrobés et le béton .

6. CONCLUSION .

Contrairement à ce que pensent certains professionnels de la route, le ciment est un concurrent sérieux du bitume, dans la voirie et dans le contexte Sénégalais.

Il vrai que chaque tronçon de route à construire doit faire l'objet d'une étude particulière, en estimant avec plus de précision tous les coûts entrant en jeu à court et à long terme. Rappelons à cet égard que nous n'avons pas tenu compte des coûts relatifs à la main d'oeuvre, ni à ceux relatifs aux matériels de construction. Lesquels nous ne maîtrisons pas. Il est aussi vrai que les tronçons étudiés sont déjà construits. Cependant, il n'est pas exclus, compte tenus des besoins de déplacement dans cette zone qu'un projet de route requiért un niveau de service du même ordre de grandeur que ceux des trafics choisis. On parle déjà du projet du boulevard de dégagement nord, qui longera la corniche nord de Dakar. Dans un tel contexte il serait intéressant d'intégrer, dans la phase de recherche de solutions, toutes les variantes de types de chaussée: des structures flexibles aux rigides passant en passant par les structures mixtes. Nous nous sommes rendus compte de l'importance de la part de l'empirisme dans la conception en voirie, alors que la concertation et la collaboration font défaut aux professionnels de cette dicipline, tout au moins elles n'existe pas comme dans le bâtiment. Notons enfin, que l'avinir de la conception en voirie résident dans la possibilité et la facilité de caractérisation des matériaux de construction les plus disponibles, compte tenu des programmes d'ordinateur, les structures les structures rigides offrant les meilleures conditions d'essai méritent d'ors et déjà une attention particulière de la part des chercheurs.

74 --

BIBLIOGRAPHIE

- CEBPT Guide pratique de dimensionnement des chaussées pour les pays tropicaux (reimpression mise à jour 1984)
- R. L'ERMINIER Mecanique des sols et des chaussées

 Tomel et Tome2 (2ª Edition-EYROLLES 1970)
- H. GRIMOND et G. SAIAS Revêtements bétonnés aux U.S.A (Editions EYROLLES 1956)
- R. COOUAND ROUTES: circulation-trace-construction (5° Edition ENROLLES 1970
- YODER et WITCIAK Principles of pavement design (2° Edition 1975)
- Bacary COLY et OUSSEYNOU SAMB Entretien d'aérodromes renforcement des chaussées revêtues par les méthodes modernes.

Mémoire de fin d'études ENSUT.

ANNEXE.

CALCUL DE L'EPAISSEUR D'UNE CHAUSSE RIGIDE METHODE PCA

PROJET : D. R. H.

Module de reaction de l'infrastructure : K =

Module de rupture du beton : MR =

Facteur de securite : FSC =

IMA.C (dans la direction la plus chargee)= 879 Vehs/j

IMA.C (design) = 0.44 * 1.85 * 879 = 715 Vehs/j

IMA.C (total) = 715 * 365 * 30 . = 7.835 000 Vehs

Epaisseur d'essai E = 25.5 cm

16	20	614 264	300	< 0.50	illimite
15	18 1	563 000	280	< 0.50	
13	16 1	030 000	260		
12	1.4	829 000	nes.		
1 1	13	765 500			
10	12 3	030 000			

Epaisseur d'essai E = 8"

Charges axiales (tonnes)	Charges ajustes * 1.2	Rptitions envisages	Contraintes induites	rapport de contraintes	Rptitions admissibles
16	20	614 264	400	0.63	14 000
15	18	1 563 000	3 8 0	0.60	32 000
13	16	1 030 000	350	0.55	130 000
12	1 4	829 000	340	0.53	240 000
1 1	13	765 500	300	< 0.50	illimite
10	12	3 030 000			

Epaisseur	d'essai	E =	タップラ
-----------	---------	-----	------

(tonne)	* FSC				
16	20	614 264	315	0.49	illimitee
15	18	1 563 000			
13	16	1 030 000			
1/2	14	829 000			
1 1	13	765 500			
10	1.2	3 030 000			
	COK	E = 9.75 * 2.	.54 = 25 cm		

Repetitions Contraintes Rapport de

induites contraintes

Repetitions

admissibles

PROJET : D. R. T.

Charges

Charges

axiales ajustees envisagees

Module de reaction de l'infrastructure : K =

Module de rupture du beton : MR =

Facteur de securite : FSC =

IMA.C (dans la direction la plus chargees) = 780 Vehs/j

IMA.C (design) = 0.44 * 1.85 * 780 = 635 Vehs/j

IMA.C (total) = 635 * 30 * 365 = 6.950 000 Vehs

Epaisseur d'essai E = 24.5 cm

Charges axiales (tonne)	Charges ajustées * FSC	Repetitions envisagees	Contraintes induites	Rapport de contraintes	Repetitions admissibles
16	20	544 .880	315	< 0.50	illimitee
3.55	18	1 387 000			
16	16	915 000			
1/2	1.4	735 000			
1.1	13	679 000			
10	12	2 690 000			

	! **		5 60		•
	E D & :	isseur d'essai	E = 9"		
Charges exiales (tonne)	Charges ajustees * FSC	Repetitions envisagees	Contraintes induites	Rapport de contraintes	Repetitions admissibles
16	20	544 88 <u>0</u>	340	0.53	240 000
15	18	1 387 000	330	0.52	300 000
13	16	915 000	300	0.47	illimitee
12	14	735 000			
11	13	679 000			
10	12	2 690 000			
	Epa	isseur d'essai	E = 9"50		
Charges axiales (tonne)	Charges ajustees * FSC	Repetitions envisagees	Contraintes induites	Rapport de contraintes	Repetitions admissibles
16	20		320	0.50	illimitee
15	18				
13	16				

OK E = $9.50 \times 2.54 = 24 \text{ cm}$

12 14

5 t

12

11

10

Module de reaction de l'infrastructure : K =

Module de rupture du beton : MFR ===

Facteur de securite : FSC =

IMA.C (dans la direction la plus chargee) = 732 Vehs/j

IMA.C (design) = 0.44 * 1.85 * 732 = 596 Vehs/j

IMA.C (total) = 596 * 365 * 30 = 6 500 000 Yehs

Epaisseur d'essai E = 23.5 cm

Charges axiales (tonne)	Charges ajustees * FSC	Repetitions envisagees	Contraintes induites	Rapport de contraintes	Repetitions admissibles
16	20	509 600	326	0.51	illimitee
15	18	1 297 400			
13	16	855 400	•		
12	14	687 700			
1 1	13	635 050			
10	12	2 515 000			

Epaisseur d'essai E = 24 cm

Charges axiales (tonne)	Charges ajustees * FSC	Repetitions envisagees	Contraintes induites	Rapport de contraintes	Repetitions admissibles
16	20	509 600	322	0.50	illimite
15	18	1 297 000			
13	16				
1:2	14				
11	13				
10	12				
	F2.1.4	en			

OK = 24 cm

Module de reaction de l'infrastructure : K =

Module de rupture du beton : MR =

Facteur de securite :

IMA.C (dans la direction la plus chargee) = 187 Vehs/j

IMA.C (design) = 0.44 * 1.85 * 187 = 152 Vehs/j

IMA.C (total) = 152 * 365 * 30 = 1 665 000 Vehs

Epaisseur d'essai E = 17.5 cm

Charges axiales (tonne)	Charges ajustees * FSC	Repetitions envisagees	Contraintes Rapport de induites contraintes		Repetitions admissibles	
16	16	130 500	430	0.67	4500	
15	15	332 200	405	0.64	11 000	
13	13	219 000	360 0.56		100 000	
				`		
. 12	12	176 000	335	0.53	240 000	
11	1 1	163 000	310	0.49	illimite	
10	10	644 000				

FSC =

Epaisseur d'essai E = 8"25

Charges axiales (tonne)	Charges ajustees * FSC	Repetitions envisagees	Contraintes induites	, ,	
16	16	130 500	330	0.52	300 000
15	15	332 200	320	0.50	illimite
13	13	219 000			
12	12	176 000	·		
11	1 1	163 000			
10	10	644 000			
	OK E	= 8.25 * 2.54	4 = 20 cm		

PROJET: D. T. D.

Module de reaction de l'infrastructure : K =

Module de rupture du beton : MR =

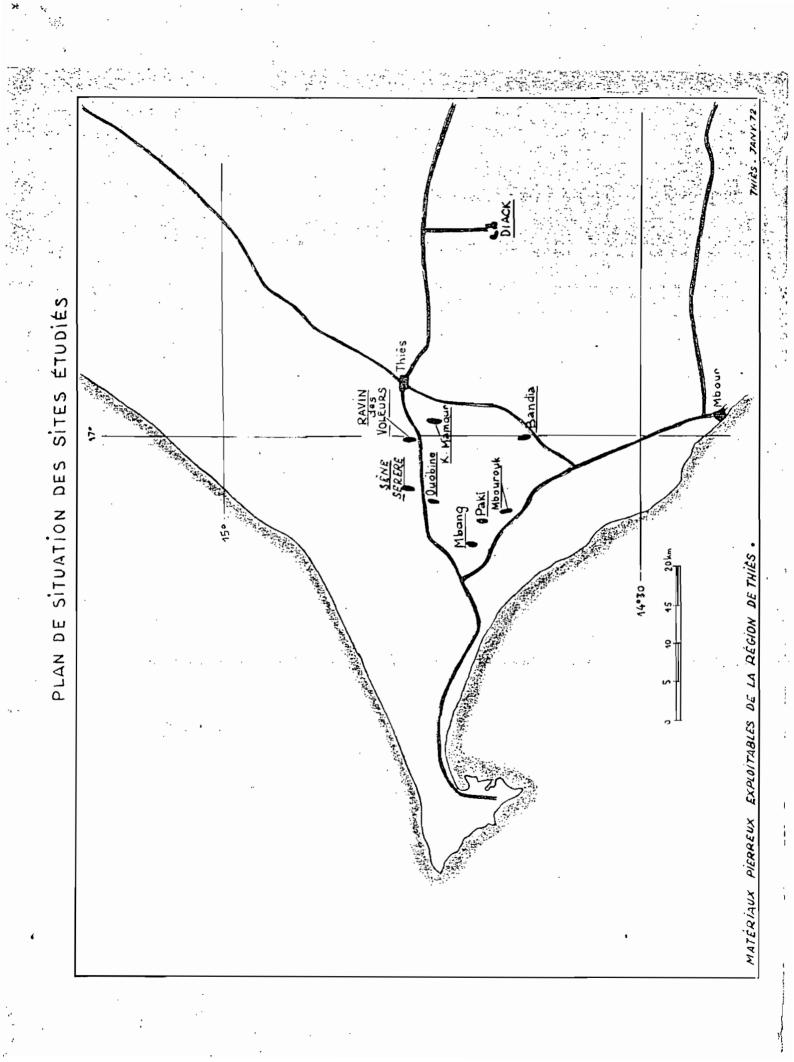
Factour de securite : FSC =

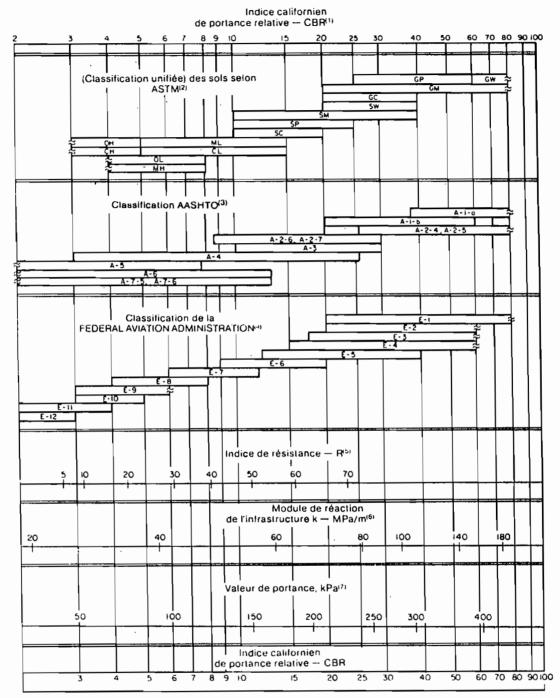
IMA.C (dans la direction la plus charge) = 427 Vehs/j

IMA.C (design) = 0.44 * 1.85 * 427 = 348 Vehs/j

IMA.C (total) = 348 * 365 * 30 = 3.800 000 Vehs

Epaisseur d'essai E = 18.5 cm

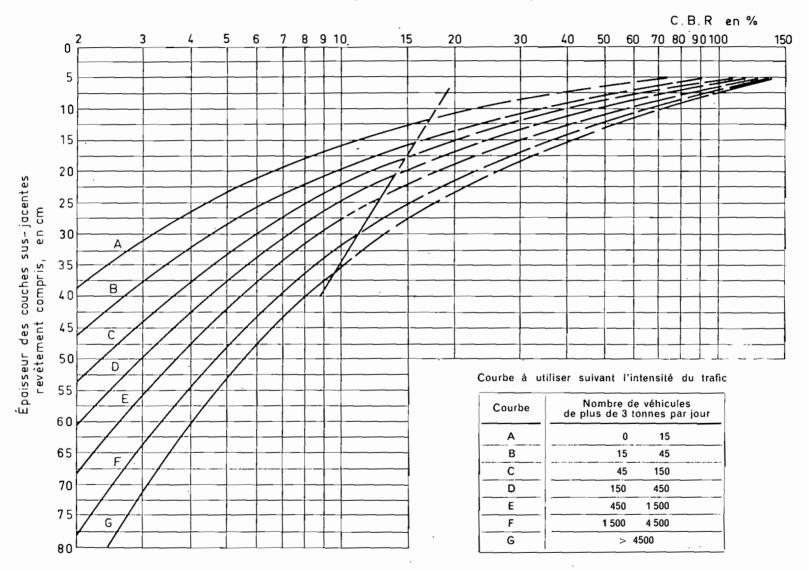

Charges exiales (tonne)	Charges ajustees * FSC	Repetitions envisagees	Contraintes induites	Rapport de contraintes	Repetitions admissibles
16	16	297 920	410	0.64	11 000
15	15	758 480	405	0.63	14 000
13	13	500 080	360	0.56	100 000
12	12	402 040	340	0.53	240 000
1 1	1 1	371 260	310	0.49	illimite
10	10	1 470 000			


Epaisseur d'essai E = 20 cm

Charges axiales (tonne)	Charges ajustees * FSC	Repetitions envisagees	Contraintes induites	Rapport de contraintes	Repetitions admissibles
16	16	297 920	348	0.54	180 000
15	15	758 480	335	0.52	300 000
13	13	500 080	30 5	305 0.48	
12	12				
11	1 1				
10	10				
		Cit.	E = 22 c	" (ü	

Epaisseur d'essai E = 8"5

Charges axiales (tonne)	Charges ajustees * FSC	Repetitions envisagees	Contraintes induites	, ,			
1 65	1 4	297 920	320 /	0.50	illimite		
15	15						
13	13						
12	12						
11	1.1						
10	10						



- (1) Consulter O.J. Porter, «Foundations for Flexible Pavernerits,» Highway Research Board Proceedings of the Twenty-second annual mueling, 1942, Vol. 22 pages 100-136
- (2) ASTM 02487
 (3) "Classification of Highway Subgrade Materials," Highway Research Board Proceeding of the Twenty-Fifth annual meeting, 1945
- vol. 25 pages 376-392 (4) Airport paving U.S. department of cominerce, Federal Aviation Agency, May 1948, pages 11-16. Estimé à partir de valeurs données dans FAA Design Manual for Airport Pavement.
- (b) C.E. Warnes «Correlation Between R-Value and k-Value» rapport non public, Portland Cement Association, Rocky Mountain Northwest Region, Octobre 1971 (correlation optimum avec corrections pour saturation).
- tb) Voir T.A. Middlebrooks and G.E. Bertram, «Soil Tests for Design of Runway Pavements,» Highway Research Board Proceedings of the Twenty-second annual meeting, 1942, Vol 22, page 152
- (7) Voir item (6), page 184.

Relations approximatives entre différentes classifications des sols et divers indices de portance.

FIG. 12. - Abaque du Road Research Laboratory

· 11 一个数字内的第三种类型

CATALOGUE DE DIMENSIONNEMENT DE CHAUSSEES

Classe	!Trafic cumulé de ! poids lourds	durée de l ! vie !	! Trafic moye		! Nombre ! de voie	! Lar	geur		Couche	
1.			Poids lourds	véhicule	, ! !	: Plateforme	- นิบนโะตะแน่	Fundation	- 8ase -	Revêlemeni
SR1	! 7 . ! plus de 10	:: ! !	! ! plus de 1500	! ! !alue do 5000	3	14.5	10.5	23 8L	20 BC	: : : : : : : :
. SRI	i pros de 10	! 20 !	: prus ue 1000	: !	 ! 2	11.0	7.0	: 23 DL	: 20 66 :	
	1 6 7	! !	: !	!	3	14.5	10.3		: 15 80 : 3 8L : ou : : 15 88 :	:
SR2	! 4 10 à 10 !	! 20 ! !	! 55 0-1500 !	! 2000-5000 !	! 2	11.0	7.0	: ∠3 BL :		: 4 DD
P07	! 6 6		. 250 750	! !	3	14.5	10.3	20 BL	: 12 8C : !uu 12 8B : 3.5 BE !uu 18 8L :	
SR3	! 1.5 10 à 4 10 !	: 19120 :	! 250-750 !	! 1000-2500 !	2	11.0	7,0			
	! 5 6				2	11.0	7.0			: : Birourke :
SR4	! 5 10 à 1.5 10 !	! 15 ! ! !	! 100-250 !	! 400-1000 !	2	7.0	φ. Û	20 BL	: 10 OL	
	. 5		moins de	muins ປະ	2	11.0	7.0	; 		: Monocoache
SR5	eoins de 5 10	! 15 ! ! !	100	: : 400	2	. 7.0	6. 0 :	; - !	20 BL	: Du : Birourhe
	! 5 !	!: ! !	moins de	ສບins de	2	11.0	7.0	:		:
ST1	! moins de 5 10 !	: ! !	100	: : 400	2	9.0	6. 0	; - ;	:	0 BL } -
	! 5 !	:: !	moins de	muins de	2	11.0	7.0			:
ST2	! mains de 5 10 !	: : ! !	50	: ! 200	2	7.0	ó.ŷ	; - ;	: 15 6L	: -

GC : Graveleux latéritiques stabilisés au ciment

GB : Graves améliorés au béton

ôt : Braveleux latéritiques

BB : Béton bitamineux.

DIRECTION GENERALE DES TRAVAUX PUBLICS

DIRECTION DES ETUDES ET DE LA PROGRAMMATION

BUREAU DES PRIX

PRIX DES TRAVAUX ROUTIERS

ACTUALISATION : OCTOBRE 1988

NB: le present document donne les valeurs pour actualiser les prix du document " LES PRIX DES TRAVAUX - ROUTIERS - EDITION 1983". Le document de base peut être consulte au Bureau des Prix de la Direction des Etudes et de la Programmation.

ACTUALISATION DES PRIX DE BASE :

	:	: DESIGNATION	:		: JANVIER 1988	: AVRIL 1988	: PRIX : JUILLET 1988	PRIX OCTOBRE 1988	
•	:	: SALAIRES DE BASE :	:		:		:		
		: - Manoeuvre lere categorie B					201.06		:
ř	: S5A	: - Ouvrier 5ema categorie A	:	HEURE	: 203.31	: 283.31	283.31		
	: ¡SM3	: - Agent de maitrise M3				: 89575	89575	89575	:
	: P2B	: - Ingenieur P2B	:	MOIS	: 131036	: 131036	: 131036	131036	
/	:	:	:		:	:	:	:	:
	:	: CHARGES SALARIALES :	:		:	:	: '	:	
	: CSO	: - Personnel ouvrier	:	7.	: 59.63	: 59.63	: 59.63	: 59.63	: .
,	: CSM	: - Agents de maitrise	:	7.	: 35.18	: 35.18	35.18	: 35.18	:
	: CSC	: - Cadres senegalais	:	7.	: 27.37	: 27.37	: 27.37	: 27.37	:
	:	1	:		:	:	:	:	: "
,ř	: .	: PRODUITS DIVERS : (prix toutes taxes compris	:		:	:	:	:	: .
	: PD.1	: ~ Essence ordinaire	;	LITRE	: 335	: 335	: 335	: 335	:
		: - Gas-oil				: 210	: 210	: 210	:
		: - Fuel-cil				: 118181	: 118181	118181	: · .
	. '								

						ara di Taran
				:		
						District Control
					7.1	
	•				# 1# : :	宣教 持續 打 12
• :	•			i		
! !	: MATERIAUX DE CONSTRUCTION : (prix hors TVA) :	:	. :	:		
1 :	:	:	:	:	:	
1 .	: 1) Produits de carrière : :	:	:	:		
: PC.01	: - Sable de plage rendu sur chantier a Dakar :	M.CUBE :	1000:	. 1000 :	1000	1000 :
	: - Basalte, depart Giack O/3:		1500 :	1500 :	1500 🖟	1500 :
: PC.11	: - Basalte, depart Diack 3/8:	TONNE :	4500 :	6500 :	6500	6500
: PC.12	: - Basalte, depart Diack 8/16:	TONNE:	5792 :	5792 :	, , , , , , , , , , , , , , , , , , , ,	5792
	: - Basalte, depart Diack 16/25:		4915 :	4915 :	+ 4915 :	
	: ~ Gres, depart Togou-Paki, 0/3:			1810 :	1810	1810
	: - Gres, depart Togou-Paki, 3/B:					557B : 3
	: - Gres, depart Togou-Paki, 8/16:				•••	4400.
	: - Gres, depart Togou-Paki, 16/25:				.,, .,	
	: - Calcaire, depart Bargny, 0/3				5 71 1	1450
	: - Calcaire, depart Bargny, 3/8:					3.017527.4
	: - Calcaire, depart Bargny, 8/16					THE CONTRACT OF THE CONTRACT O
	: - Calcaire, depart Bargny, 16/25					
. 10,00	. Calcaire, depart baryny, 10/25	N.LUDE :	4107 :	4167	4167 :	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
. :	: 2) Produits noirs :					
PN Δ1		דוואור .	1074/0	1071/0	1074/0	(071/0
	: - Bitume route, 60/70					•
	: - Bitume fluidifie 150/250					
	: - Bitume fluidifie 400/600					N. 3
	: - Bitume fluidifie 0/1					· , ·
: PN.20	: - Emulsion cationique a 60 %	TONNE :	200475 :	200475	200475 :	200475 :
• 1	:	:	:	:		
:	: 3) Materiaux pour betons et betons armes :		:	:	: :	
: CI.1	: - Ciment CPA 325, region du Cap-Vert:	TONNE	39444 :	39444 :	39444 :	39444 :
: AR.1	: - Fers a beton, lisses, 6 a 16 mm	KILD	204 :	203.17	203.17	203.17 :
: AR.2	: - Fers a beton, creneles, 6 a 16 mm	KILO	200.4 :	207.45	20,6.48	201.75 :
: AR.3	: - Fers a beton, creneles, 25 am	KILO	134.2 :	178.8	173 :	160 :
: BC.1	: - Bais de coffrage	KILO :	79364 :	79364 :	90582 :	90582 :
: `	:		: :	:	: :	
: :	: 4) Lamines du commerce :	:	:	;	: :	ş.,
: LM.1	: - Toles 0,5 a 1,5 mm	KILO	323 :	327	379	_
	: - Toles 2 a 5 mm					
	: - IPN - IPE					the state of the s
i	: - Cornieres					** .
	: - Fers en U.					. •
:	!					
	: 5) Canalisations en beton :	•			•	
. TG 1	: - Tuyau gyrocomprime, diametre 150 mm	HITN	1670 :	1670	1670	1670:
	: ~ Tuyau gyrocomprime, diametre 300 mm					
•						
	: - Tuyau gyrocomprime, diametre 500 mm					1.
	: - Buse vibree armee, diametre 600 mm					
	: - Buse vibree armee, diametre 800 mm					2 No. 3
	: - Buse vibree armee, diametre 1000 mm					1
i i	: - Buse vibree armee, diametre 1200 mm					7 A 1 A 1
: BV.5	: - Buse vibree armee, diametre 1500 mm	: M.LIN	61265	: 61265	: 61265	61265 :
: !	:	:	:	:	,	机械 建汽油 医胚
:	: 6) Peintures :	:	:	:	:	
: PT.1	: - Peinture pour marquage routier	: KILO	: 1996	: 1996	: 1996	1996 :
;	:	:	:	:	:	
+		+	·	i	<u> </u>	

ACTUALISATION DES PRIX DES TRAVAUX : (coefficients d'actualisation)

1

+	t	+	+	·	·
: CODE	: DESIGNATION	: VALEURS	: VALEURS	VALEURS :	. VALEURS
:	: +	: JANVIER 1988	: AVRIL 1988	: JUILLET 1988	DCTOBRE 1988
+	•	+	t		
: .	: 1) PRIX DE REFERENCE :	•			
: : TER	:	: : 1.256	: : 1.254	1.263	1.263
	: - Transport des materiaux				
	: - Fourniture de granulats				
	: - Fourniture de bitume				
	: - Fourniture de bitume fluidifie				
	: - Fourniture d'emulsion				
	: - Fourniture de ciment			•	
	: - Canalisation en beton				•
	: - Beton non arme			i	
	: - Beton arma				
	: - Panneaux de signalisation				
	: - Signalisation horizontale				4
:	:	:	:	1.5	Property of the second
i	: 2) PRIX PAR UNITE D'OEUVRE :	:	:	:	: 1
:	1	:	:	:	:
: PL	: - Execution des plateformes	: 1.256	: 1.254	: 1.263	1.263
: CC1	: - Corps de chaussee non traite	: 1.278	: 1.273	: 1.278	1,278
: CC2	: - Corps de chaussee traite	: 1.273	: 1.269	1.272	. 1.273
: CS1	: - Couche de surface, enrobes	: 1.151	1.148	1.149,	1.149
: CS2	: - Couche de surface, monocouche et bicouche	: 1.130	: 1.128	: 1.128	: 1.128
::AS	: - Assainissement	: 1.265	: 1.274	: 1.27B	: 1.276
: BD	: - Bordures et caniveaux	: 1.295	: 1.295	: 1.294	1.294
: SS	: - Signalisation et securite	: 1.200	: 1.192	: 1.204	1.211
:	:	:	:	: ' }	:
:	: 3) PRIX AU KILOMETRE :	:	:	:	:
:		:	:	:	:
: SRA	: - Chaussee avec revetement en enrobes				
: SRB	: - Chaussee avec revetement mono. ou multicouche				
: ST	: - Chaussee non revetue				
: SRF	: - Travaux de renforcement	: 1.185	: 1.183		
1.	:	:	:	1	•

1.5 F

-4-90 17 1 1

47.5 Y

DOCUMENT I

Enquète sur CBR au C.E.R.E.E.Q.

RN1	Bargny - D	Diam niadio	<	5	Sı	
RN1	Kaolack - K	Kaffrine			Sa	
RNI	Mbour - 9	Sindiara		15	,	
RN2	Thies - T	Tivaoune		(15)		
RN2	Louga - S	ST.Louis		(15)		
RN3	Diourbel- M	1back		(15)		
RN3	Thies - k	Khombole		15	S3	
RN4	Bignona - G	Gambie			S.	
RN4	Kaolack - N	Nioro			S ₃ à S ₄	
RN5	Kaolack - F	Passi		5		
R30	Touba – K	(ebemer		(15)		
•						
,	Dakar - R	Rufisque		15		
	Poste de Han	nne .				
	Rufisque- S	Sangal kam		15		
	Poste de San	ngalkam .				
	Thiaroye- P	Pikine		15		
	Poste de Pik	kine.				
	Thiès - D)akar		15		
	Poste de Dia	am niadio .				
-	Rufisque- D)akar		15		
	Poste de Mba	30				
	Rufisque- D)akar		15		
	Poste de Thi	iaroye				

Enquète sur les coûts des matériaux

de construction.

Jean lefbeve.

Bicouche.

Dosage :

1.2 kg /m² d'émulsion 60 % .

12 l / m² de gravier basalte 8/16 .

0.8 kg / m² d'émulsion 60 %

8 l / m² de gravier Basalte 3/8

Prix :

Enrobés 50 000 Frs.CFA /tonne

Cut back 450 000 " "

Emulsion 300 000 " "

Gravier 3/8 8/16 8 000 " "

Densité gravier 1.5 tonnes /m³

.../...

Enquète sur coût de construction . C.E.R.E.E.Q.

Coûts 1984

Débroussaillement débiosement		55	Frs.	CFA	/ m²
Déblais mouvement en dépot		950	b		/ m 3
Déblais mouvement en remblai	1	300	n		\ [@] 2
Transport de matériaux de terrassement		220	n		/m³.km
Graveleux latéritiques pour couche de fondation	3	300	4		/ M 3
Graveleux latéritiques pour couche de base	3	850	n		102
Ciment	85	000	п		/tonne
Grave bitume pour couche de base	44	000	11		i wa
Enrobés	50	000	n		/tonne
Transport de matériaux de chaussée		88	11		/m³.km
Cut back 0/1 pour imprégnation		55	u		/ m ²
Bitume 400/600	230	000	U		/tonne
Gravillons pour revêtement	18	500	11		/ m 3
Exécution monocouche		110	11		/ m ²
Exécution bicouche		190	Ü		1 10 s
Enrobés denses	75	000	n		/ m 3
Fossés		220	n		/ al

.../...

```
10
    REM
           CALCUL D'EPAISSEUR DE CHAUSSEE
           METHODE DU P.C.A. (Portland Cement Association)
20
     REM
25
    REM
30
    REM
           DEFINITION DES VARIABLES
35
     REM
40
          MR. Module de rupture du beton
    REM
50
     REM
               Module de reaction du support de la dalle
60
    REM
          FSC. Facteur de securite
70
    REM
80
    REM
               TRAFIC
90
    REM
100 INPUT "combien de classe de charges disposez-vous? "; N
          P(N): DIM NP(N): DIM NA(N): DIM DOM(N): DIM C(N)
105 DIM
110
    PRINT "Pour chaque classe de charges donner la limite superiore
                                                  et sa frequence"
120 FOR I=1 TO N
130 INPUT "CHARGE C(i) = "; C(I) : "FREQUENCE NP(i) = "; NP(I)
140 NEXT I
150
    REM
160 PRINT "Autres caracteristiques a entrer"
165 PRINT
170 INPUT "Module de rupture du beton MR ";MR
175 INPUT "Module de reaction , ameliore au besion (voir le tableau 1 et 2)";K
180 PRINT
185 PRINT "Choisir le facteur de securite approprie"
190 PRINT "
               1.0 pour trafic de camions faible"
195 PRINT "
                1.1
                      pour trafic de camions moyen "
200 PRINT "
                1.2 pour trafic de camions eleve "
205 PRINT
210 INPUT "entrer la valeur retenue de FSC ";FSC
214 REM
215 REM
               CALCUL D'EPAISSEUR
220 REM
230 INPUT "choisir une epaisseur d'essai ";E
235 FOR I = 1
                    ΤO
           P = C(I): P = P*FSC : P(I) = P
240
241 PRINT "voir fig.7 et 8 lire les efforts induits dans la dalle"
242 FOR I = 1 TO
243 PRINT
                      " Pour une charge de P = ";P(I)
244 PRINT
                          " Pour un module K = ";K
245 PRINT " Pour une epaisseur d'essai de E = ";E
246 PRINT
247 INPUT
           " Entrer la contrainte lue t(i) = ";T(I)
250
            T = T(I) : R(I) = T/MR
251 NEXT I
252 FOR I = 1 TO N
253 IF R(I) > .5 GOTO 260
254 \quad DOM(I) = 0
255 NEXT I
256 FOR
         I = I
                 TO N
260 PRINT "Lire la frequence admissible NA(I) "
262 PRINT "Voir pour le rapport R(i) = ";R(I)
264 PRINT
265 PRINT "Entrer la valeur lue ":NA(I)
           N = NP(I): A = NA(I): DOM(I) = N/A: FATIG = FATIG + DOM(I)
270
280 NEXT I
290 PRINT "Le pourcentage de fatique emmagasine FATIG = ";FATIG
300 WAIT(1)
    INPUT " Taper o pour ameliorer le design si non une autre touche ";O$
310
    IF (0\$ = "o" OR O\$ = "O") THEN GOTO 230
320
330 END
```

```
10
    REM
           CALCUL D'EPAISSEUR DE CHAUSSEE
20
    REM
           METHODE DE W. J. LIDDLE
30
    REM
        . DEFINITION DES VARIABLES
40
    REM
50
    REM
60
    REM
           SN "indice d'epaisseur" Pt "indice de viabilite terminale"
70
    REM
            R "facteur regional" W"trafic equivalent en essieu standard"
80
    REM
           Al "coeff. d'equivalence pour revetement en beton bitumineux"
            A2 "coeff. d'equivalence pour couche de base en graves naturelles"
         A3 "coeff. d'equivalence pour couche de fondation en graves sableuses"
90
    REM
100 REM
           INITIALISATION
105
        I = 0
110
        SN1 = .1 : SN2 = .1 : SN3 = .1
115 INPUT "Donner la valeur du trafic equivalent
                                                       W18 "; W18
120 INPUT "Donner l'indice de portance de la couche de base Sil
                                                             "; S1
125 INPUT "Donner l'indice de portance de la fondation
                                                        Si 2 "; S2
                                                       Si3 "; S3
130 INPUT "Donner l'indice de portance du sol support
135 INPUT "Donner le coeff. d'equiv. pour beton bitumineux A1
                                                             "; A1
140 INPUT "Donner le coeff. d'equiv. pour couche de base A2
                                                             "; A2
                                                        A3 "; A3
145
   INPUT "Donner le coeff. d'equiv. pour fondation
150 INPUT "Donner l'indice de viabilite terminale
                                                        Pt "; PT
160 INPUT "Donner le facteur regional
                                                             ": R
170
         X = SN1 : Y = S1 : GOSUB 1000
180
         W1 = A
190 IF W18 > W1 THEN SN1 = SN1 + .1 : GOTO 170
        X = SN2 : Y = S2 : GOSUB 1000
210
        W2 = A
220 IF W18 > W2 THEN SN2 = SN2 + .1 : GOTO 200
230
        X = SN3 : Y = S3 : GOSUB 1000
240
        W3 = A
250 IF W18 > W3 THEN SN3 = SN3 + .1 : GOTO 230
260
        D1 = SN1/A1 : D2 = (SN2-SN1)/A2 : D3 = (SN3-(SN1+SN2))/A3
270 REM
280 REM
            AFFICHAGE DES RESULTATS
290 REM
     I = 1 + 1
300
310 PRINT TAB(15) "***** VOICI LES RESULTATS DU DESIGN *****"
320 PRINT
330 PRINT TAB(25) "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
340 PRINT
350 PRINT TAB(25) " CHAUSSEE NO. " ; I
360 PRINT
370 PRINT TAB(25) "Epaisseur du revetement D1 = ";D1
380 PRINT TAB(25) " Epaisseur de la couche de base D2 = " ;D2
390 PRINT TAB(25) "Epaisseur de la fondation D3 = ";D3
400 PRINT
420 INPUT "Taper O pour fair le design d'une autre chaussee si non une autre to
                                                                 uche ":0$
430 IF(O$ = "O" OR O$ = "o" ) THEN GOTO 120
440 END
           SOUS PROGRAMME
1000 REM
        X1 = X+1 : Y1 = Y-3 : X2 = X1^5.19
1010
1020
       ASM1 = 4.065 * LOG(X1)
1030
       ASM2 = .4343*LOG((4.2-PT)/2.7)
       ASM3 = .4 + 1094/X2
1040
        ASM4 = .372*Y1-.4343*LOG(R)
1050
1060
        B = ASM1 + ASM2/ASM3 + ASM4 -.2
1070
        A = 10^B
1080 RETURN
```

Tableau 13a.

JMA-C permissible, catégorie de charge axiale nº 3* - Dailes avec joints goujonnés

		Sans acc	otement ou	canivesu:	x en béton			Avec acc	otements ou	caniveau	x en béton
	Épaisseur . de la	a (27)					Épaisseur de la	Porti	ance fondati (MP		ructure
	(mm) ·	' Falble (20-34)	Moyenne (35-49)	Élevée (50-60)	Très élevée (70 +)		dalle (mm)	Faible (20-34)	Moyenne (35-49)	Élevée (50-60)	Très élevée (70 +)
ro	180 190 200		57	37 160	36 170 640	r5	160 170 180	50	46 210	24 120 530	100 460 1,800
= 4.4 MPa	210 220 230	51 180 580	220 740 2,30 0	580 1,900 5,900	2,200 7,100 12,200	- 4.4 MPa	190 200 210	210 770 2,500	800 2,800 9,100	2,000 6,700	6,600
.π Ε	240 250 260	1,700 4,700 12,800	6,700 16,300 24,200	13,900° 21,100°	19,000	MR	220	7,900			
	270	23,000**	,,								
MPa	190 200 210	•	54	39 150	40 170 610	MPa	160 170 180		54	-20 140	24 120 510
1.4	220 230 240	45 150 470	200 630 1,900	530 1,600 4,800	2,000 6,100 18,400	1.4	190 - 200 210	52 210 700	210 780 2,500	640 1,900 6,100	1,890 6,300
₹ H	250 260 270	1,300 3,400 6,900	5,200 14,400	13,800		¥	220 230	2,200 6,500	7,900		
MPa	210 220 230	34	43 150	33 120 410	150 500 1,600	MPa	170 180 190		46	30 130	25 120 470
3.8	240 250 260	110 320 860	470 1,300 3,500	1,200 3,400 9,400	4,600 13,100	MR = 3.8 7	200 210 220	45 170 550	190 640 2,000	470 1,600 4,800	1,600 5,100 15,900
MB	270 280	2,200 5,400	9,300			2	230 240	1,600 4,600	5,900		

^{*} Le JMA-C exclut les camions à 2 essieux et 4 roues de sorte que le nombre total de camions permis sera supérieur - se référer au texte.

^{**}L'analyse à l'érosion contrôle le dealgn ; autrement c'est l'analyse à la fatigue qui contrôle.

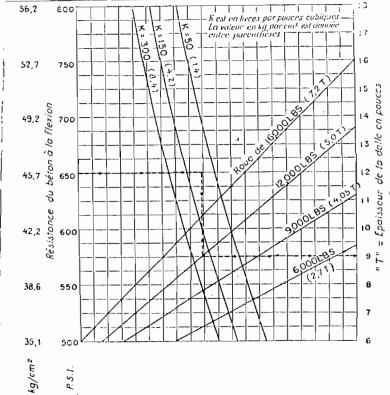


Fig. 13,

Abaque de calcul des dalles de béton pour routes.

Remanque : On utilisera la valeur de la charge statique pour cet abaque. Exemple : Résistance à la flexion du béton, 650 psi = 45,6 kg/cm². Module de réaction de la plateforme K = 100 = (2,75). Poids de la roue : 12 000 fivres (5,4T). D'où T = 9 pouces (22,8 cm).

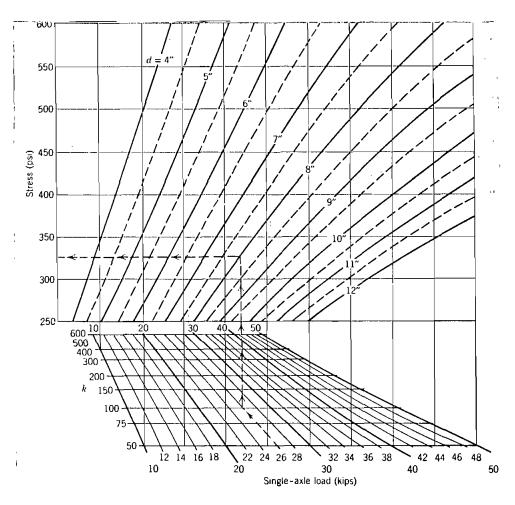
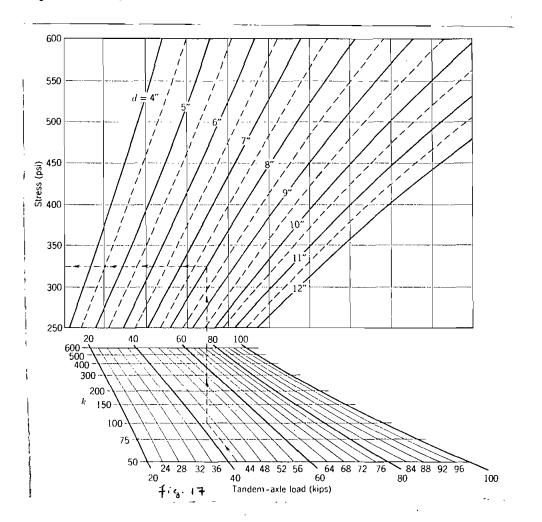
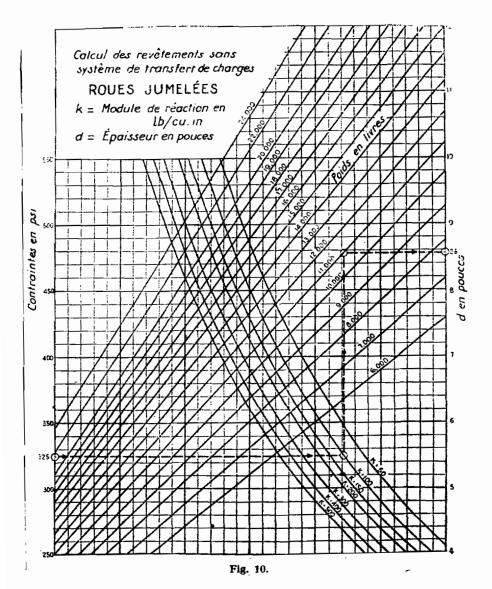


Figure 17.2. Design chart for single-axle-truck loads. (From Portland Cement Association.)




Tableau 14b.

JMA-C permissible, catégorie de charge axiale nº 4° - Dalles avec joints non goujonnés

Epailsseur Common Common		
Epalsseur de la dalle (mm) (20-34) (35-49) (50-60) (70-4) Epalsseur de la dalle (mm) (20-34) (35-49) (50-60) (70-4) Epalsseur de la dalle (mm) (20-34) (35-49) (
(mm) (20-34) (35-49) (50-60) (70-+) (mm) (20-34) (35-4)	IPa/m)	
210		
230	99.	
240 350		
250 990 1,500 2,000 3,000 2 2 2 2 830 1,500 2 2 2 2 2 2 2 2 2		1,400
260	1,500 2,200	2,300 3,800
270	3,400	6,100
280	5,200	9,600
290 2,800 4,200 5,000 3,800 a 270 4,400 9,800 a 270 4,400 3,900 a 270 4,400 3,900 a 270 330 6,300 11,100 16,800 30,400 310 15,000 37,000 330 310 15,000 37,000 330 27,200 330 37,000 370 14,500 370 14,500 2700 34,900 340 34,900 34,900 34,900 34,900 34,900 34,900 34,900 34,900	7,800	15,100
300 3,300 5,400 7,800 13,000 12,000 280 6,000 13,900 330 5,400 7,800 10,100 17,300 300 11,100 27,400 310 15,000 37,000 330 6,300 11,600 27,600 35,300 37,000	11,600	22,900
Signature Sign	17,100	34,000
330	24,800	50,300
340	34,700	73,600
350	48,600 67,900	
360	07,500	
370	1	1
180 190 120 120 130 1300 1300 14		
220		94**
240	100	
250	390	
260	1,300	2,300
270	2,200	3,800
290 2,600 4,200 6,000 9,800	3,400	6,100
290 2,600 4,200 6,000 9,800	5,200	9,600
300 3,300 5,400 7,800 13,000 270 4,400 9,80 310 4,100 6,900 10,100 17,300 280 6,000 13,90 320 5,100 8,800 13,000 23,000 290 8,300 19,70 330 6,300 11,100 16,800 30,400 310 15,000 37,00 350 9,600 17,600 27,600 52,800 320 20,200 49,90 360 11,800 22,100 35,300 330 27,200 56,90 220 330 7,51 3201 200 200 200 240 871 2501 9901 210 12 250 591 2701 7301 2,8001 220 1001 42	7,800	15,100
X 310 4,100 6,900 10,100 17,300 X 280 6,000 13,90 320 5,100 8,800 13,000 23,000 290 8,300 19,70 330 6,300 11,100 16,800 30,400 300 11,100 27,40 350 9,600 17,600 27,600 52,800 320 20,200 49,90 360 11,800 22,100 35,300 330 27,200 56,90 340 34,900 34,900 34,900 34,900 56,90 220 230 75.1 320.1 200 200 240 87.1 250.1 990.1 210 12 250 59.1 270.1 730.1 2,800.1 220 100.1 42	11,600	22,900
320 5,100 8,800 13,000 23,000 290 8,300 19,70 330 6,300 11,100 16,800 30,400 300 11,100 27,40 340 7,800 14,000 21,500 40,000 310 15,000 37,00 350 9,600 17,600 27,600 52,800 320 20,200 49,90 360 11,800 22,100 35,300 330 27,200 56,90 340 34,900 34,900 34,900 200 200 200 230 87** 250** 990** 210 12 250 59** 270** 730** 2,800** 220 100** 42	17,100 24,800	34,000 50,300
330 6,300 11,100 16,800 30,400 300 11,100 27,40 340 7,800 14,000 21,500 40,000 310 15,000 37,00 350 9,600 17,600 27,600 52,800 320 20,200 49,90 360 11,800 22,100 35,300 330 27,200 56,90 220 30 75.1 320.1 200 200 240 87.1 250.1 990.1 210 12 250 59.1 270.1 730.1 2,800.1 220 100.1 42	34,700	73,600
340 7,800 14,000 21,500 40,000 310 15,000 37,00 350 9,600 17,600 27,600 52,800 320 20,200 49,90 360 11,800 22,100 35,300 330 27,200 56,90 220 94.** 190 230 75.** 320.** 200 240 87.** 250.** 990.** 210 12 250 59.** 270.** 730.** 2,800.** 220 100.** 42	48,600	
360 11,800 22,100 35,300 330 27,200 56,90 220 340 340 34,900 34,900 230 75.1 320.1 200 240 87.1 250.1 990.1 210 12 250 59.1 270.1 730.1 2,800.1 220 100.1 42	67,900	
220 230 240 87. 250. 990. 210 250 250 250 250 250 250 250 250 250 25		
220 94.** 230 75.** 240 87.** 250 59.** 270.** 730.** 2,800.** 220 250 100.** 250 100.** 250 270.**		
230 240 87'' 250'' 990'' 210 250 59'' 270'' 730'' 2,800'' 220 100'' 42		
240 87 250 990 210 12 250 59 270 730 2,800 220 100 42		65**
250 59** 270** 730** 2,800** 220 100** 42	87	
100 100 1000 1000		
270 460** 1,900** 3,500 5,400 240 990** 3,30		
1~ 290 2,000 4,200 0,000 3,000 260 3,200 6,90	11,600	1
(m) 300 3,300 5,400 7,600 13,000 (m) 270 4,400 9,80	17,100	34,000
310 4,100 6,900 10,100 17,300 " 280 6,000 13,90		
# 320 5,100 8,800 13,000 23,000 ₹ 290 8,300 19,70 13,000 13,000 23,000 ₹ 290 8,300 19,70		
330 6,300 11,100 16,800 30,400 300 11,100 27,40		
340 7,800 14,000 21,500 40,000 310 15,000 37,00 350 9,600 17,600 27,600 52,800 320 20,200 49,90		
350 9,600 17,600 27,600 52,800 320 20,200 49,90 360 11,800 22,100 35,300 69,300 330 27,200 66,90		
340 34,900 88,50		
350 44,900		

Le JMA-C exclut les camions à 2 essieux et 4 roues de sorte que le nombre total de camions permis sera supériour - se refèrer au texte

[😶] L'analyse à la fatigue contrôle le design, autrement c'est l'analyse à l'érosion qui contrôle

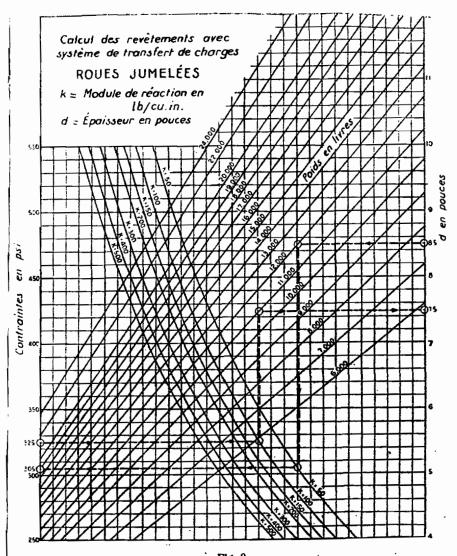


Fig. 9.

Tableau 3.

Taux de croissance annuel du trafic et facteurs de projection correspondants.*

Taux de croissance annuel du trafic en %	Facteur de projection sur 20 ans	Facteur de projection sur 40 ans
1	1,1	1.2
11/2	1.2	1.3
2	1.2	1.5
21/2	1.3	1.6
3	1.3	1.8
31/2	1.4	2.0
4	1.5	2.2
41/2	1.6	2.4
5	1.6	2.7
51/2	1.7	2.9
6	1.8	3.2

Ces facteurs correspondent à une valeur médiane pour la période telle qu'utilisée couramment. Une autre méthode de calculs utilise une valeur moyenne annuelle. Les différences entre les deux méthodes (les deux étant en intérêts composés) affectent rarement le design.

Table __ .. ij
Effet d'une fondation non traitée sur les valeurs du module de réaction k (en MPa/m et en pcl-pound per cubic inch)

Valeur de	k nour			Valeur d	e k po	ur la fonda	ation		
l'infrastru		100 m	m	150 m	m	225 m	m	300 m	m
MPa/m	pci	MPa/m	pci	MPa/m	pci	MPa/m	pci	MPa/m	pci
20	73	23	85	26	96	32	117	38	140
40	147	45	165	49	180	57	210	66	245
60	220	64	235	66	245	76	280	90	330
80	295	87	320	90	330	100	370	117	430

Tableau 2. Valeur de k pour les fondations traitées au ciment

Valeur de	k pour			Valeur d	e k po	ur la fond			
l'infrastru	ucture	100 m	m	150 m	m	200 m	m	250 m	m
MPa/m	pci	MPa/m	pci	MPa/m	pci	MPa/m	pci	MPa/m	pci
20	73	60	220	80	300	105	400	135	500
40	147	100	370	130	500	185	680	230	850
60	220	140	520	190	700	245	900		-

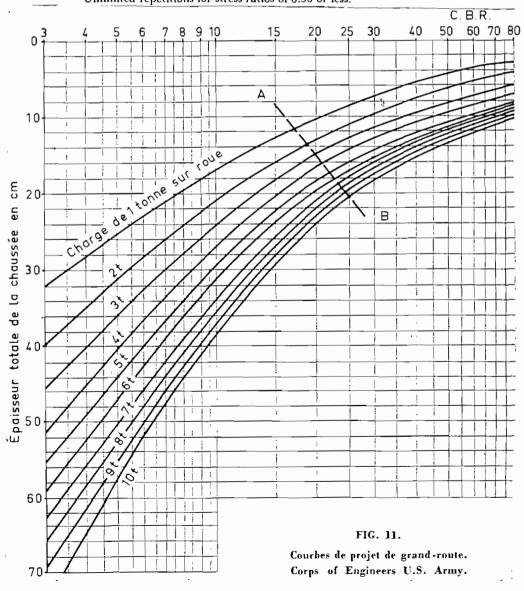
Tableau 11.

JMA-C permissible, catégorie de charge axlale nº 1* – Dalles avec joints non goujonnés (goulons non requis)

a o	Tions non	requis)					************					
	Sans acc	otements or	u caniveaux	en béton		Avec accotement ou caniveaux en bé						
	Épaisseur de la dalle (mm)	Portance for Faible (20-34)	mdation-inf (MPa/m) Moyenne (35-49)	rastructure Élevée (50-60)		Épaisseur de la dalle (mm)	Portance for Faible (20-34)	ondation-info (MPa/m) Moyenne (35-49)	Élevée (50-60)			
4.4 MPa	120 130 140 .	0.2 2	0.1 1 11	33 4 A A A A A A A A A A A A A A A A A A		100 110 120	0.3 4_	0.1 2 21	0.4 6 60			
MR = 4	150 160 170	18 110 500	77 4 07	210	MR =	130 140	38 240	160	410			
4.1 MPa	130 140 150	0.4 4	0.2 2 19	0.7 8 54	4.1 MPa	110 120 130	0.8 9	0.3 5 41	1 15 110			
MR = 4	160 170 180	27 140 600	110 530	290	MR =	140 150	65 360	260	650			
8 MPa	140 150 160	0.1 0.7 5	0.4 4 26	1 12 72 /	3.8 MPa	110 120 130	0.1 2	0.8 9	0.2 3 26			
MR = 3.	170 180	32 150	130 570	350	MR =	140 150 160	14 90 430	63 340	170			

Note: L'analyse à la fatigue contrôle le design

Note: Une fraction de JMA-C signifie que la chaussée peut supporter un nombre illimité de véhicules particulier et de camions 2 essieux et 4 roues, mais seulement quelques véhicules lourds par semaine (JMA-C de 0.3 × 7 jours signifie véhicules lourds par semaine)


² véhicules lourds par semaine)

* Le JMA-C exclut les camions à 2 essieux et 4 roues de sorte que le nombre total de camions permis sera supérieur.

	TABLE 17.1. Stress Ratios A	Vilowable Load Repetitions	
Stress b Ratio	Allowable Repetition	Stress Ratio	Allowable Repetition
0.51 *	400,000	0.69	2,500
0.52	300,000	0.70	2,000
0.53	240,000	0.71	1,500
0.54	180,000	0.72	1,100
0.55	130,000	0.73	850
0.56	100,000	0.74	650
0.57	75,000	0.75	490
0.58	57,000	0.76	360
0.59	42,000	0.77	270
0.60	32,000	0.78	210
0.61	24,000	0.79	160
0.62	18,000	0.80	120
0.63	14,000	0.81	90
0.64	. 11,000	0.82	70
0.65	8,000	0.83	50
0.66	6,000	0.84	40
0.67	4,500	0.85	30
0.68	3,500		

^a From Portland Cement Association.

^{&#}x27;Unlimited repetitions for stress ratios of 0.50 or less.

^b Load stress divided by modulus of rupture.

Tableau 13b.

IMA-C permissible, catégorie de charge axiale 3* - Dalles avec joints non goujonnés

		Sans acco	tements ou	caniveau	en béton				tements ou		
	Epaisseur de la		nce fondati (MP)	a/m)	\		Epaisseur de la dalle		nce fondatio (MPa	ı/m)	ucture Très élevée
	dalle (mm)	Faible (20-34)	Moyenne (34-49)	(50-60)	Très élevée (70 +)		(mm)	Faible (20-34)	Moyenne (34-49)	(50-60)	(70 +)
	190 200 210	51**	57··	37** 160** 580**	170** 640** 1000		160 170 180	50**	46** 210**	24** 120** 530**	100°° 460°° 830
4.4 MPa	220 230 240	180°° 580°° 920	740 · · 1100 1400	1000 1400 1900	1500 2100 2800	4.4 MPa	190 200 210	210** 540 770	620 930 1400	870 1300 2100	1400 2200 3500
MR = 4.4	250 260 270	1200 1500 2000	1900 2400 3200	2500 3300 4400	3800 5200 7000	MR = 4.4	220 230 240	1100 1500 2200	2100 3000 4500	3200 4900 7500	5700 9300
2	280 290 300	2500 3200 4000	4100 5800 5200 7500 6700	9400	250 260 270	3000 4200 5900	8600 9800				
	310	4900				<u> </u>	280	8200			
	200 210 220	45**	54	39** 530**	170°° 610°° 1500		160 170 180		51**	30°°	24'' 120'' 510''
4.1 MPa	230 240 250	150** 470** 1200	630** 1400 1900	1400 1900 2500	2100 2800 3800	4.1 MPa	190 200 210	52 700	780 · · 1400	540 · · 1300 2100	1400 2200 3500
MR = 4.1	260 270 280	1500 - 2000 2500	2400 3200 4100	3400 4400 5800	5200 7000 9400	MR = 4.1	220 230 240	1100 1500 2200	2100 3000 4500	3200 4900 7500	5700 9300
	290 300 310	3300 4000 4900	5200 6700	7500			250 260 270	3000 4200 5900	6600 9800		
						<u> </u>	280	8200			
	200 210 220		43	33	37** 500**		170 180 190		48**	30''	25** 120** 470**
8 MPa	230 240 250	34·· 110·· 320··	150°° 470°°	410°° 1200°° 2500	1600** 2800 3800	3.8 MPa	200 210 220	45** 170** 550**	190°° 640°° 2000°°	470** 1600** 3200	1600** 3500 5700
MR = 38	260	860°° 2000 2500	240Q 3200 4100 -	3300 4400 5800	5200 7000 9400	MR = 3	230 240 250	1500 2200 3000	3000 4500 6600	4900 7500	9300
	290 300 310	3200 4000 4900	5200 6700	7500			260 270 280	4200 5900 8200	9800		

[·] Le JMA-C exclut las camions à 2 essieux et 4 roues de sorte que le nombre total de camions permis sera supérieur - se

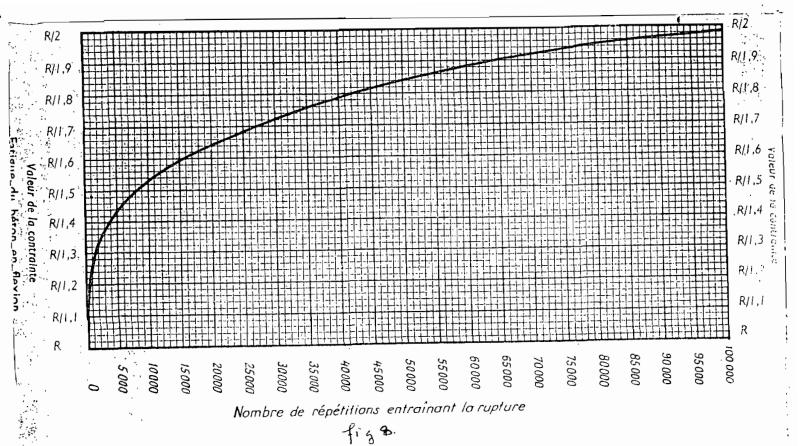
Tableau 9.

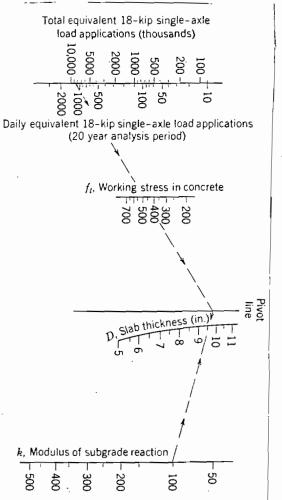
Catégories de charges axiales

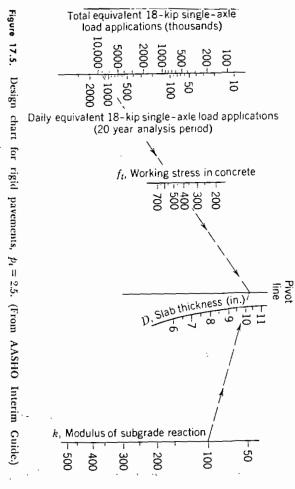
$\langle \cdot \cdot \cdot \cdot \rangle_{\mathcal{B}}$	1.34	Cir					
Catégorie de charges			J	MA-C**	Charge axiale maximale, kN		
axiales	Description	JMA	%	par jour	Essleu simple	Essieu double	
1	Rues résidentielles Chemins rurals ou secondaires (charges faibles à moyennes)*	200-800	1-3	up to 25	98	160	
2 	Collectrices Chemins rurals ou secondaires (grandes charges)* Route régionales/et artères urbaines (charges faibles)*	700-5000	5-18	40-1000	115	195	
3° 	'Artères el routes principales (charges moyennes)' Autoroutes rapides, urbaines et 'rurales (charges laibles à moyennes)'	3000-12,000 2 voies 3000-50,000+ 4 voies et plus	8-30	500-5000+	133	230	
4	"Artères urbaines, routes provinciales, autoroutes rapides, (grandes charges)" "Autoroute rurale ou urbaine interprovinciales (charges moyennes à grandes)"	3000-20,000 2 voies 3000-150,000+ . 4 voies et plus	8-30	1500-8000+	151	267	

[·] Les qualificatifs faibles, moyens, grands s'appliquent aux charges axiales pour le type de rue ou route: c'est-à-dire que ce qui est «faible» pour une route provinciale rurale serait plus lourd que ce que l'on considère comme faible pour une route secondaire.
** Camions: les camions à 2 essieux et 4 roues sont exclus.

^{••}L'analyse à la fatique contrôle le design ; autrement c'est l'analyse à l'érosion qui contrôle.




Tableau 12b.


JMA-C permissible, catégorie de charge axiale nº 2* - Dalles avec joints non goujonnés

			otement ou				2* - Dalle				
	Epaisseur de la		nce londatio (MPa	n-infrastri			Épaisseur de la				
-	dalle (mm)	Faible (20-34)	Moyenne (35-49)	Elevée (50-60)	Très élevée (70 +)		dalle (mm)	Faible (20-34)	Moyenne (35-49)	Élevée (50-60)	Très élevée (70 +)
ĸ	140 150 160	2	12	5 35	3 26 150		120 130 140	6	4 30	12 86	6 53 330
- 44 MPa	170 180 190	15 77 330	68 320 1200	190 820 1500**	740 1300 · · 2000 · ·	= 4.4 MPa	150 160 170	44 240 800**	180 800**	470 1100** 1800**	840** 1500** 2800**
X T	200 210 220	1200 1600** 2100**	1700** 2300** 3200**	2100**	3000	M.R.	180 190 200	1200 · · · · · · · · · · · · · · · · · ·	2100 · · · 3500 · ·	3100**	
	230	2900				:					
₩ Pa	150 160 170	3	2	8 47	5 38 200	МРа	130 140 150	10	7 46	2 20 130	12 87 470
1 4 1	180 190 200	18 85 330	82 350 1300	220 900 2100	870 2000 · · 3000 · ·	141	160 170 180	60` 290 1200''	240 1100 2100**	620 1800 · ·	1500**
¥.	210 220 230	1200 2100 · · 2900 · ·	3200	3100**		₹	190 200	1900	3500		
MPa	160 170 180	3	3 17	9 51	8 46 220	MPa	140 150 160	12	9 56	4 28 150	18 110 550
MR = 3.8	190 200 210	18 78 290	82 320 1100	220 840 2900	870 3000 · ·	3.8	170 180 190	67 290 1100	270 1100 3500	670 2600	2300
3	220 230	940 2900**	3200			Σ	200	2900			

^{*} Le JMA-C exclut les camions à 2 essieux et 4 roues de sorte que le nombre total de camions permis sera supérieur - se rétérer au texte.

^{**}L'analyse à l'érosion contrôle le design ; autrement c'est l'analyse à la fatigue qui contrôle.

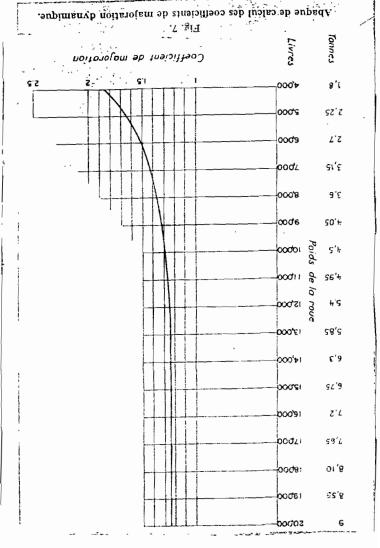


Tableau 12a.

JMA-C permissible, catégorie de charge axiale nº 2* - Dalles avec joints goujonnés

	_		tements ou				2 - 00		tements ou		
	Epaisseur de la Portance fondation-infrastructure (MPa/m)				<u> </u>	Épaisseur de la		nce londati (MP)	on-Infrastr		
	dalle (mm)	Faible (20-34)	Moyenne (35-49)	Élevée T (50-60)	rès Élevée (70 +)		dalle (mm)	Faible (20-34)	Moyenne (35-49)	Élevée T (50-60).	rès Élevée (70 +)
¥₽	140 150 160	2	12	5 35	3 26 150	MPa	120 130 140	6	4 30	12 86	6 53 330
MR = 4,4	170 180 190	15 77 330	68 320 1300	190 820 3200	740 3100	MR = 4.4	150 160 170	44 240 1000	180 890 3700	470 2200	1700
_	200 210	1200 4100	4500	•••		2	180	4100			
¥P ₂	150 160 170	3	2 16	8 47	5 38 200	MPa	130 140 150	10	7 46	20 130	12 87 470
MR = 4.1	180 190 200	18 85 330	82 350 1300	220 900 3300	870 3300	4.5	160 170 180	60 290 1200	240 1100 4100	620 2600	2100
·2	210 220	1200 3700	4400		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	¥.	190	4200	1.00		
38 MPa	160 170 180	3	3 17	9 51	8 48 220	RPa RPa	140 150 160	12	9 56	4 28 150	18 110 550
MR = 38	190 200 210	18 78 290	82 320 1100	220 840 2900	870 3100	MR = 3.8 I	170 180 190	67 290 1100	270 1100 3900	670 2600	2300
	220 230	940 2900	3600			2	200	3700			

Note: L'analyse à la fatigue gouverne le design.

Tableau 14 a. JMA-C permissible, catégorie de charge axiale nº 4* - Dalles avec joints goujonnés

		Sans acc	otement ou	caniveaux	en béton		Avec accotements ou caniveaux en béto						
	Épaisseur dela dalle (mm)	Porta Faible (20-34)	nce fondatio (MPa Moyenne (35-49)	1/m}	ucture Très élevée (70 +)		Épaisseur dela dalle (m m)	Porta Faible (20-34)	nce fondalio (MPa Moyenne (35-49)		Très élevée (70 +)		
٠	200 210 220	(20 04)	140	110	120 460 1,600		180 190 200	150	160 590	99 410 1,500	380 1,400 4,800		
= 4.4 MPa	230 240 250	110 350 990	480 1,400 4,000	1,300 3,700 10,300**	4,700 13,900** 21,700**	= 44 MPa	210 220 230	530 1,700 4,900	2,000 6,000 17,800	4,700 14,400 43,400	15,500		
ĭ	260 270 280	2,600 6,500 16,000	10,600 27,700** 40,600**	24,100°° 36,500°°	33,900**	MR	240 250	14,000 38,200**					
	290	36,800**											
_	210 220 230		120	340	120 420 1,300		180 190 200		150	100 3 9 0	94 390 1,400		
4.1 MPa	240 250 260	270 730	390 1,100 2,900	1,000 2,900 7,800	3,900 10,900 30,100	4.1 MPa	210 220 230	140 460 1,400	540 1,700 5,000	1,300 4,100 11,800	4,400 13,300 39,600		
M.R.	270 280 290	1,800 4,400 10,300	7,600 19,100	20,400		₹ RB	240 250 260	3,900 10,500 28,200	14,000 38,600	33,900			
	300	24,200											
8	230 240 250		270	250 730	320 990 2,800		200 210 220	100	120 420	87 320 1,000	330 1,100 3,400		
= 38 MPa	260 270 28 0	170 460 1,100	750 1,900 4,700	2,000 5,100 12,800	7,500 19,700	3.8 MPa	230 240 250	340 990 2,700	1,300 3,500 9,500	3,000 8,500 23,000	9,900 28,000		
MR.	290 300 310	2,600 5,900 12,9 0 0	11,400 27,300	32,000		M.R.	260 270	6,900 17,600	25,100				
1	320	28,700	İ	<u> </u>		1							

Le JMA-C exclut les camions à 2 essieux et 4 roues de sorte que le nombre total de camions permis sera supérieur - se referer au texte

^{*}Le JMA-C exclut les camions à 2 essieux et 4 roues de sorte que le nombre total de camions permis sera supérieur - se rétérer su texte.

^{**}L'analyse a l'érosion contrôle la design autrement c'est l'analyse à la fatigue qui contrôle.

LABORATOIRES.

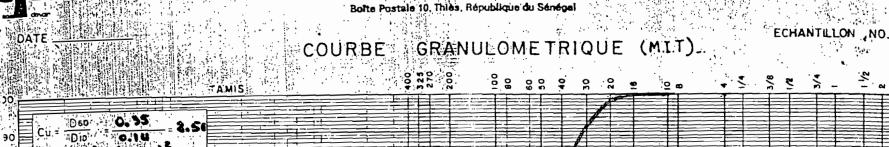
DETERMINATION AU LABORATOIRE DE LA TENEUR EN EAU DU SOL

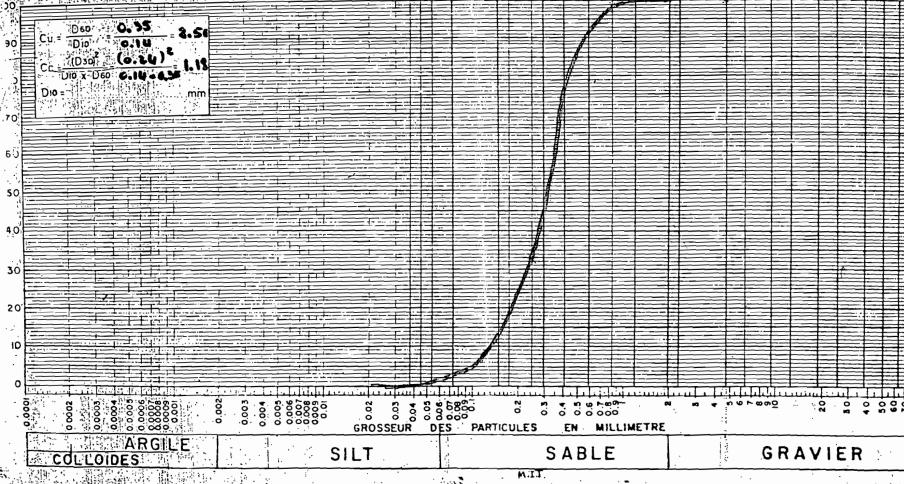
Poids minimum de l'échantillon, g.

Désignation : ASTM : D2216-66

Grosseur maximum des particules

	Tamis 1/2 po 1 po	No. 40 (42 No. 4 (4. (1	76-mm) 3 mm) 5 mm)		10 10 30 50 100	00	·		
Echantillon no.:	1 Prel	eve à: l	lamo .s	Dakar	Echantillon no.: 1	Prálo	ıvé à :	Hamo-s	· Dakar
Sondage: 1 Profondeur: 1,50 m; Elévo r				źv. m	Sondage:	Prof	ondeur:	m ; Elév	· m
Description:		Sable			Description:		sable		
Sechage A	ir 🛭 Fo	ur à Tic	: [m D	rant: 24 h	* Sechage A	r 🛭 Fo	ur à T°C	: 100 00	rant; 24 h
Essais par:	Aidara	1a:	Jendi. c	09-03-88	Essais par: A	dara	le:	Sendi 13	03.88
ESSAI no.	1	2	3	4	ESSAI no.	1	2	3	1.4
Ra if ent no.	5-14	6-17	6-18		Recipient no.	6-14	6.4	5-10	
Poid récip. + Sol hum.	524.05	517.49	517.26		Poids récip. + Sol hum Ph 9	587.54	630.02	523.37	
Poids recip + Sol sec Ps 9	517.60	511.18	510,84		Poids recip + Sol sec	581.89	623.60	518.59	
Poids recip = Tare PE 9	244.75	240.98	240.71		Poids recip. = Tare Pt	250.00	250.00	242.00	
Poids de l'eau Ph.Ps : Pe 9	6,45	6.31	6.42		Poids de l'eau Ph-Ps = Pe 9	5, 65	6.42	4.78	
Poids du sol sec Ps. Pt. Pss 9	272.85	270.20	270.13		Poids du sol sec Ps - Pt = Pss S	331.89	373.60	276.59	
Teneur on each (Pa/Pss)x100 = W%	2,36	2.34	2.38		Tengur on cau (Pe/Pss) × 100 e W%	1,7	1.7	1.7	
MOYENN	i€ W9	0 =	2.36		MOYENN	E . w3/	, . , =	1.7'	
Remarques:		:	,	,	Remarques:				


^{*} Pour le séchage au four ASTM recommande 15 à 16 heures à 110° ±5° C (60° C pour les sols hydrotes


www pury wou inique as unies

·			DE GEOTE NULOME				STM .			
	ANALI	<u> </u>		THIOLE			i			
ENTIFICATION	13				Manieu	lateur N'	4250			
Echantillon prélevé a Hamo. 5. Manipulateur Aidora Colculé Aidora Date 19-03-89.										
			Calcul	FILL	<u>ui a</u>	Date 13				
DIDS TOTAL DE L'É	CHANTILL	ON REC	J AU LA	BORATOI	ae ∉ v	V % NATU	RELLE			
scipient no.: 0-6 50										
pids de l'eau = 0.36				,						
6 de particules plus	•		•	_						
· · ·		·		OL RETENU		-	PASSANT			
POIDS DE LA	TAM	. —					•			
(si différente du poide total)	pouces	(mm) .	INDIVIDUEL	CUMULATIF.	WMULATIF .	CUMULATIF	REPORT			
	3"	(75)		· ·						
Récipient no. :	2"	(50)		·			<i>y</i> : ' '			
501 + tara = / 9.	1 1/2"	(37,5)								
501 sac = / 9	1	(25)	·		/					
	3/4" (19)	1/2" (13)				· · · · · · · · · · · · · · · · · · ·				
SECHAGE.				/_						
Air Dour	³ /8"	(9,5)								
Remarques	# 4	(4,75)								
	RESI	מע	1			PERTES				
				· · ·	P0105 =	3;	% =			
	RAYEZ LES	TAMIS NO	T		1	`	•			
POIDS DE LA FRACTION UTILISÉE	TAN	115	POIDS DU	SOL RETENU	OL RETENU % RETENU . % DU					
	Numáro	(D mm)	INDIVIDUEL	CUMULATIF	.CUMULATIF	CUMULATIF	REPORTE			
Recipient no. : C-9	# 4	(4,75)	0	0	0	100	100			
Sol + tare = 934.369	# 2	# 10	0	0	6	(00	100			
Tara = 240.949	(2/36) # (2/18)	# 20		14.08	0.59	89.41	9,9			
Sol sac = 693.429	()/(18) #30	(0,85) # 40	1. 20		· · · · · ·	7				
SECHAGE	# 50°	#60	4.08	170.37	1	75.31	75			
X Air Four	(9,30)	(0,25)	166.29	457.63	66.33	33.67	34			
TAMISAGE	# 100	# 140 (0,106)	287.26	650.89	94,33	5.67	6			
X à sec lavage	# 200	(0,075)	193.26	675.35	97.88	2.12	2			
SEDIMENTOMETRIE	RÉSI	OU	24.46	(tq u •		PERTES	 			
ovi X non		<u> </u>	14.63	619.48	Poids	3.44 8	% = 0.			
			,	·- • ·			ئىدىن سو			
REMARQUES (couleur	sec-humi	ae, torn	ne des gr	ains / mat	ieres orga	iniques, W,	raiti el			

école polytechnique de thies. Figure 8.

Bolte Postale 10, Thies, République du Sénégal

CHONWINIUS OF DEPHUSAGE DES SAFS

énne mutenhnique de thiés

ESSAI DE COMPACTAGE

ESSAI NO: CARACTÉRISTIQUES DU MATÉRIAU DESCRIPTION: PROVENANCE: REMARQUES: ESSAI STANDARO (A.S.T.M. D G99) MATERIAU DE 2.5 SESAI MODIFIE (A.S.T.M. D ISST) MARTIAU DE	PRO	JET:	Pro	set de	e fin	d'ét	ucles					
DU MATÉRIAU BROMENANCE: Canal Date	EMP	LACEMENT :								ESSA	No:	
DU MATÉRIAU REMARQUES: Carrier Province Provinc	240	46757107101150	DESCRIP	TION:			S	rble				
REMARQUES: STAIN PAR. A CIQUIC LE: 13-03-98 CALCULÉ PAR: A CIQUIC VÉRIFÉ PAR: LE.	1		PROVEN	ANCE :				(q m	2-01	Daka	<u>~</u>	
SSAI SUR			REMARC	UES :	==			<u> </u>	`			
Second S			LE: 13-	03-88 CALCL	JLÉ PA	R: Aid	ar LE:		VÉR	IFIE PART	LE	
Second S	∑ 2	ESSAI SUR	MOULE				-					
Second S	5.1	PASSANT P	VOLUME									
Second S	A 6	LE TAMIS: Cr			DE M	ATÉRIAU						
Second S	ES	A NO 4 10.										
CARACTÉRISTIQUES DE L'ESSAI ESSAI STD. MOD. MÉHODE: 1900 WARTERU SUR TAINS (3/4) NO 4: 1900 NOULE: OIAMÉTRE. -VOLUME. 1860 OOSCAVATIONS: NB DE COUPS / COUCHE: 1860 TYPE D'ESSAI: NB DE COUCHES: NB DE COUPS / COUCHE: 1860 OOSCAVATIONS: NB DE COUCHE: 1860 OOSCAVATIONS: 1860 OOSCAVAT	W Z	5 C 3/4" 10						┼				
ESSAI STD. MOD. MÉHODE : 1400 WARTENU SUR TANIS (3/4) NO 4 :	2 .8				10,0	kg			56	11,5 kg	5	56
NB DE COUCHES NB DE COUPS / COUCHE		CARACTERIS	TIQUES D	E L'ESSAI		†	[₩] ³ ⊞	TH	П			
NB DE COUCHES NB DE COUPS / COUCHE	UES	~				_	1900					
NB DE COUCHES NB DE COUPS / COUCHE	٥. ١	% RETENU SUF	E) 214AT F	14") NO	4:			+++				
NB DE COUCHES NB DE COUPS / COUCHE	NA Port					7		111				
TYPE D'ESSAI:	٠,١	· • • • • • • • • •										
TYPE D'ESSAI: TAMIS DE RÉFÉRENCE: MOULE: DIAMÈTRE: PRESSION: NB DE COUCHES: NB DE COUCHES NB DE COUCHES: NB DE COUCHES	RTS	NB DE COUCHES: NB DE COUPS / COUCHE : 5										
TYPE D'ESSAI: TAMIS DE RÉFÉRENCE: MOULE: DIAMÈTRE: PRESSION: NB DE COUCHES: NB DE COUCHES NB DE COUCHES: NB DE COUCHES	P.P.	OUI S UBSERVATIONS:										
PISTON: DIAMÈTRE . PRESSION	ធ											
PISTON: DIAMÈTRE . PRESSION	S	TYPE DIESSAL.										
PISTON: DIAMÈTRE . PRESSION	<u> </u>	TAMIS DE DÉSÉRBRUES . 90 DETENIA										
PISTON: DIAMÈTRE . PRESSION	TAT	.				_ ¬	1700					
RÉSULTATS DE L'ESSAI 1610	S	~				_						
RÉSULTATS DE L'ESSAI Yd maximum: t/m³ - w% optimum: TENEUR EN EAU w% POIDS DU SOL HUMIDE + MOULE WI (hq) 9432.1 9556.0 9688.3 9763.1 9795.6 9808.9 POIDS DU SOL HUMIDE WI - TARE (hq) 5517.3	SNC	x				•						
RÉSULTATS DE L'ESSAI Yd maximum: t/m³ - w% optimum: TENEUR EN EAU w% POIDS DU SOL HUMIDE + MOULE WI (hq) 9432.1 9556.0 9688.3 9763.1 9795.6 9808.9 POIDS DU SOL HUMIDE WI - TARE (hq) 5517.3	3810	Ξ.				_			 		 	
RÉSULTATS DE L'ESSAI Yd maximum: t/m³ - w% optimum: TENEUR EN EAU w% POIDS DU SOL HUMIDE + MOULE WI (hq) 9432.1 9556.0 9688.3 9763.1 9795.6 9808.9 POIDS DU SOL HUMIDE WI - TARE (hq) 5517.3	Ä.	<u> </u>				_					 	
## POIDS OU SOL HUMIDE WI - TARE (%) 5517.3	14.1	DÉCIII T	YC 05 1	15.55A1			1640			4	Wool.	2
SSSAI NO			,						1	O	= 4.5%	_ 16/
POIDS DU SOL HUMIDE + MOULE WI (hq) 9432.1 9556.0 9688.3 9763.1 9795.6 9808.9 POIDS DU MOULE TARE (hq) 5517.3 551	8	d moximum =	_ t/m -	w % optimum =			-			TENEUR EN	EAU ₩%	
POIDS UNITAIRE TOTAL WI X (1000) 8T (L/m3) 1843.7 1902:1 1964.4 1999.6 2014.9 2021.2 POIDS UNITAIRE SEC - 8T/1.0+(w%/100) 8d (L/m3) 1731.2 1760.4 1781.6 1783.3 1782.5 1780.8 RÉCIPIENT NO POIDS OU RÉCIPIENT TARE (0) 232.04 246.36 244.52 226.28 241.30 233.56 POIDS OU SOL HUMIDE + RÉCIPIENT WI (0) 534.68 622.89 737.53 756.38 696.57 703.91 POIDS OU SOL SEC + RÉCIPIENT W2 (0) 516.18 594.84 691.65 699.03 644.12 647.97 POIDS DU SOL SEC W2-TARE WS (0) 283.50 348.48 447.13 472.75 402.28 4144.41	S	ESSAI NO	% oppr	aximatif d'eou a	joutée	-	2		3	4	5	6
POIDS UNITAIRE TOTAL WI X (1000) 8T (L/m3) 1843.7 1902:1 1964.4 1999.6 2014.9 2021.2 POIDS UNITAIRE SEC - 8T/1.0+(w%/100) 8d (L/m3) 1731.2 1760.4 1781.6 1783.3 1782.5 1780.8 RÉCIPIENT NO POIDS OU RÉCIPIENT TARE (0) 232.04 246.36 244.52 226.28 241.30 233.56 POIDS OU SOL HUMIDE + RÉCIPIENT WI (0) 534.68 622.89 737.53 756.38 696.57 703.91 POIDS OU SOL SEC + RÉCIPIENT W2 (0) 516.18 594.84 691.65 699.03 644.12 647.97 POIDS DU SOL SEC W2-TARE WS (0) 283.50 348.48 447.13 472.75 402.28 4144.41	AIR	POIDS DU SOL HU	MIDE + MOU		-			.0	9688.	3 9763.1	9795.6	9808.9
POIDS UNITAIRE TOTAL WI X (1000) 8T (L/m3) 1843.7 1902:1 1964.4 1999.6 2014.9 2021.2 POIDS UNITAIRE SEC - 8T/1.0+(w%/100) 8d (L/m3) 1731.2 1760.4 1781.6 1783.3 1782.5 1780.8 RÉCIPIENT NO POIDS OU RÉCIPIENT TARE (0) 232.04 246.36 244.52 226.28 241.30 233.56 POIDS OU SOL HUMIDE + RÉCIPIENT WI (0) 534.68 622.89 737.53 756.38 696.57 703.91 POIDS OU SOL SEC + RÉCIPIENT W2 (0) 516.18 594.84 691.65 699.03 644.12 647.97 POIDS DU SOL SEC W2-TARE WS (0) 283.50 348.48 447.13 472.75 402.28 4144.41	LZ							3	5517.	3 5517.3	5517.3	5517.3
RÉCIPIENT NO C-3 C-8 C-13 C-14 C-6 C-16 POIDS OU RÉCIPIENT TARE (9) \$32.04 \$246.36 \$244.52 \$241.30 \$233.56 POIDS OU SOL HUMIDE + RÉCIPIENT W 1 (9) 534.68 622.89 737.53 756.38 696.57 703.91 POIDS OU SOL SEC + RÉCIPIENT W 2 (9) 516.18 534.84 691.65 699.03 644.12 647.97 POIDS DU SOL SEC W 2-TARE W 3 (9) 283.50 348.48 447.13 472.75 402.28 414.41	- 1	<u>-</u> -						_				
RÉCIPIENT NO C-3 C-8 C-13 C-14 C-6 C-16 POIDS OU RÉCIPIENT TARE (9) \$32.04 \$246.36 \$244.52 \$241.30 \$233.56 POIDS OU SOL HUMIDE + RÉCIPIENT W 1 (9) 534.68 622.89 737.53 756.38 696.57 703.91 POIDS OU SOL SEC + RÉCIPIENT W 2 (9) 516.18 534.84 691.65 699.03 644.12 647.97 POIDS DU SOL SEC W 2-TARE W 3 (9) 283.50 348.48 447.13 472.75 402.28 414.41	ő		OTAL WI	*(\(\frac{1}{\sqrt{1}}\) \(\frac{1}{\sqrt{1}}\) \(\frac{1}{\sqrt{1}}\)	E/m3)	18437	1902					
POIDS OU RÉCIPIENT TARE (9) \$32.04 246.36 244.52 226.28 241.30 233.56 POIDS OU SOL HUMIDE + RÉCIPIENT W I (9) 534.68 622.89 737.53 756.38 696.57 703.91 POIDS OU SOL SEC + RÉCIPIENT W I (9) 516.18 594.84 691.65 699.03 644.12 647.97 POIDS DE L'EAU WI-WZ-WW (9) 18.50 28.05 45.88 57.35 52.45 55.94 POIDS OU SOL SEC WZ-TARE WS (9) 283.50 348.48 447.13 472.75 402.28 414.41	-		- 0171.0+0	w%/100): 00 (E/m 3)							
POIDS DU SOL HUMIDE + RÉCIPIENT W 1 (0) 534.68 622.89 737.53 756.38 696.57 703.91 POIDS DU SOL SEC + RÉCIPIENT W 2 (0) 516.18 594.84 691.65 699.03 644.12 647.97 POIDS DE L'EAU W - W 2 - WW (0) 18.50 28.05 45.88 57.35 52.45 55.94 POIDS DU SOL SEC W 2 - TARE - W 3 (0) 283.50 348.48 447.13 472.75 402.28 414.41	AU	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·									
POIDS DU SOL SEC + RÉCIPIENT W2 (9) 516.18 594.84 691.65 699.03 644.12 647.97 POIDS DE L'EAU W1-W2:WW(9) 18.50 28.05 45.88 57.35 52.45 55.94 POIDS DU SOL SEC W2-TARE:WS (9) 283.50 348.48 447.13 472.75 402.28 414.41												
POIDS DU SOL SEC W2-TARE WS (9) 283.50 348.48 447.13 472.75 402.28 414.41	œ											
)	ĺ		- TRECIPI									
)	ENEUR		EC W					 -				
	M M										-	

AND HOLYCOUN IN INCHES

Essai 2

Essai C.B.R. (Californian Bearing Ratio)

Ou « indice de portance californien ».

	*****	Manager Alice to the part Secretary of the Control					
PROJET: Proje)t. 511 L	OCALISATION: Hamo - 5 Dakar					
		CHANTILLON No.:					
Profondeur de 30 cm	à 150cm	ÉTAT DE L'ÉCH. Remanie					
DESCRIPTION :	Sabe	e					
ESSAI PAR Aidera	le 01-05-89	vérifié par Aidora le					
ANNEAU de CHARGE	F	POIDS UNITAIRES DE L'ÉCHANTILLON (g/cm3 = t/m3)					
No. (Capacité)	(ASTM DE98 OU DIS	(57) % retanu sur tamis 4 = 0 %					
Lecture max. = div.	ESSAL STD MOI	D. D sol hum. + moule Pht = 17907 g					
Conv. (kgf/div)	MÉTHODE (A-B-C-D)	B. P sol humide (Pht-T)Ph= 4387 g					
MOULE	Martaou 4.5 H da chutta 45.						
D: 15,24 cm H= 17,78 cm	No de couches f	P unitaira sac (8t/1+w) 8 = 1.79 t/m3					
H disque aspace 5.80 cm	Coups/coucha	56 P sol sec (Ph/1+w) Ps = 3911 9					
Hauteur du sol = 1.28 cm	APRÈS DESSICCATIO	DN P Final sol humide + moule Phfz 8					
Volume du sol = 2185,33 cm3	Ovráa						
Poids (Tare) = 13 5.20 g		1					
Obs. Moule + base + disque	1 amperature	Température / º de l'eou évaporée (Pe/Ps) × 100 = / %					
Aire du poincon A = 19,35 cm	n2 (3 po2) Vilassa	de poinconnement = 1.27 mm/min (0.05 polmin)					

	IMBIBITION									
Jour, houre	Tamps ácoulá	Lacture Component.	Δh (cm)	0% Ah ×100						
	0 h		0	0						
	1 h	,								
	2 h			1						
,	4 h									
	 									
		1		<u> </u>						
Poids cau e	Poids final humide+moule Phf: 9 Poids eau absorbée (Phf-Pht)= 9 % d'eou absorbée (Paau/Ps)= %									

	POING	ONNEMENT	
	Surcharg	?a = hg	1
Enfonce mant (mm)	Lactura ANNEAU (div.)	PRESSION (lect. x conv.) (kgf)	CONTRAINTE P/A (hef/cm²)
0	0	0	0
0,5	6.8	29.82	1.54
1	18.0	78.93	4.08
1,5	31.7	140.43	7.26
2	45.1	197.76	10.22
2,5	56.1	246.00	12.71
3	·65. D	287.30	14.85
4	75.5	331.07	17.11
5			, ,
7,5			
10,0			
12,5			
Ram.			

`12 * /		TENEUR EN	EAU				
12% eau	COMP	ACTAGE	APRES	APRÉS ESSAI C.B.R			
Agonté	avant	opras	1/3 sup.	milieu	1/3 info		
Récipiant nº	C-14	c-7	C-15	6-14	C-5		
Phum. + tore	782.15	733.46	790.64	612.95	787.37		
Psec + tare	724.77	677.57	732.33	573.67	727.24		
Poids dau	57.38	55.95	58.31	34.28	60.13		
Tara	226.32	240.75	242.05	250.63	239.94		
P sol sac	498.45	436.76	490.28	323.64	487.30		
w %	11.51	12.81	11.89	12.14	12.34		
indywane is		12.16%		/2./2	7.		

RESULTATS DE L'ESSAL
I IMMÉDIAT . 🗵
ESSAL APRES IMBIBITION
APRÈS DESSICCATION
0's : 1/
Taneur en eou finalez%
anfoncement E INDICE C.B.R.
-,54 mm: 12.80 × 100 = 18%
- 08 rem: x100 =

COR DOMOCO INFOC OF

Essai 3

Essai C.B.R. (Californian Bearing Ratio)

Ou « indice de portance californien ».

	The state of the s
PROJET: Projet 51	LOCALISATION, Hamo-s. Dakar
SONDAGE: Puits - m	annel ECHANTILLON no.: 1
Profondeur de 30mm	
	Sale.
ESSAI PAR Aidora	le 01-05-82 VÉRIFIÉ PAR LE
ANNE AU de CHARGE	POIDS UNITAIRES DE L'ECHANTILLON (9/cm3 = t/m3)
No. (Capacité)	(ASTM DE98 ou DISST) % retanu sur tamis 4 = 0 %
Lecture max =1190 _ div.	ESSAI STD. MOD. MOD. D sol hum. + moule Pht = 17917 g
Conv. (hgf/div) 4.43 a 4.34	METHODE (A-B-C-D) B P sol humide (Pht-T)Ph= 4397 g
AAOUN S	Martaou 4.5 hg Punitaire total (Ph/V) 86= 2.01 t/m3
MOULE	H da chutte 45.7 cm Tanaur an eau may. 1100 18.38/
D: 15,24 cm H= 17,78 cm	Nb da couchas 5 P unitaira sac (8+/1+w)8= 1.79 t/m3
H disque aspac. = . 5.80 cm	Coups/coucha 56 Psol sec (Ph/1+w) Ps = 3913 9
Hauteur du sol = 11-18 cm	
Volume du sol = 2185.33 cm3	APRES DESSICCATION P final sol humide + moule Phf: 3
Poids (Tare) = 13520 q	Durás h Poids de l'eau dvapores (Pht-Phf)= 9
Obs. Morele + buse + disques	Température / C % de l'eau évaporée (Pe/Ps) x 100 = / %
Aire du poinçon A = 19,35 cm	n2 (3 po2) Vitessa de poinsonnament = 1,27 mm/min (0,05 po/min)

	1 M	BIBIT	10 N			POINS	ONNEMENT			
	Temps Lac	Lacture	Δh	%	Surcharga = kg					
Jour, houre	مُدمناهُ	Comparat.	(cm)	∆h H3+1	Enfonce	Lecture ANNEAU	PRESSION (lect. x conv.)	CONTRAINTE		
	0 h		0	0	(mm)	(div.)	(kgf)	(hef/cm2)		
	1 h				0	0	0	0		
	2 h		,		0,5	3.1	13.73	0.71		
	4 h				1	10.1	44.29	2,29		
					1,5	22. 0	36.47	4.99		
					2	36.0	157.86	8.16		
					2,5	50.0	219.25	11.33		
					3	63. Z	277.13	14.32		
	. /	7			4	81.0	355.19	18.36		
				4.35	*	\$3.0	363.96	18.81		
					7,5					
Poids final humide+moule Phf = 9					10,0					
Poids cou absorbée (Phf-Pht)= 9					12,5			· _ ·		
	% d'eau absorbée (Paau/Ps) =%				Ram.					

TENEUR EN EAU					
13% em comp		CTAGE	APRES ESSAI C.B.R.		
Agontal	avont	opras	1/3 sup.	milieu	1/3 inf.
Racipiant nº	c-ā	Plat 2-2	Plat 6-6	Plat z-4	Plut 5
Phum. + lare	736.69	616.57	603.40	644.26	584.58
r sec + tare	682.02	563.26	553.58	588.15	532,69
Poids vou	54.67	52.31	49.82	56.11	51.89
Tare	241.08	139,72	140.14	140.93	140.52
P sol sac	440,94	4 23.54	413.44	447.22	392.17
₩ %	12.40	12.35	12.05	12.55	13, 23
moy-nee +	12	.38 %.		12.61	7.

	ILTATS DE L'ESSAI IMMÉDIAT APRÈS INBIBITION APRÈS DESSICCATION
	5 = 4.m
Taneur	m eau finale = 12.61 %
antonce	· · · · · · · · · · · · · · · · · · ·
س 4 تدر ا	11.50 × 100 = 16%
- 08 mm	x 100 -

Essai C.B.R. (Californian Bearing Ratio)

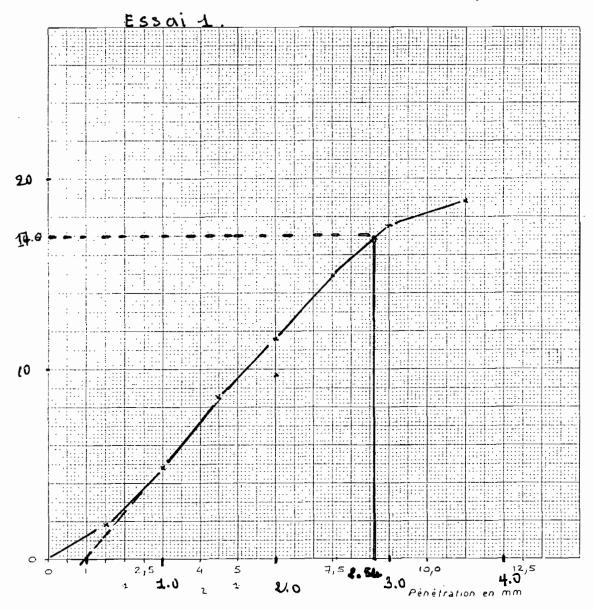
Ou « indice de portance californien ».

PROJET:	Projet 511	LOCALISATION	HAMO-5	Dakac
SONDAGE:	Parits manuel	ÉCHANTILLON NO. :	. 1	:
Profondeur de	30 cm à 1 50 a	- ÉTAT DE L'ÉCH.	REManié	- 1
DESCRIPTION :	SU	ble		
ESSAL PAR A	CORCO . In MI - DE . BI	VÉRIFIÉ PAR ATOLO	ira. le	·.

ANNE AU de CHARGE	POIDS I	JNITAIRES DE L'ÉCHANTILLON (9/cm3 = t/m3)
No. (Capacité)	(ASTM D698 00 D1557)	% retanu sur tamis 4 = 0 %
Lecture max = 1190 div.	ESSAL STD. MOD. 🛛	P sol hum. + moula Pht = 17794 g
Conv. (kgf/div.) 4.43 a 4.34	MÉTHODE (A-B-C-D)B	P sol humide (Pht-T)Ph= 4274 g
	Mortaou4.5 hg	Punitaire total (Ph/V) 86 = 1.95 t/m3
MOULE	H da chulta 457 cm	Tanaur en aau moy. / 100 0.0928.
D = 15,24 cm H = 17,78 cm	Nb de couches 5	P unitaire sec (8e/1+w)8s= 179_ t/m3
H disque aspac. = 5 80 cm	Coups/coucha _56_	P sol sec (Ph/1+w) Ps = 9
Hauteur du sol =//.93 cm	APRES DESSICGATION P	Final sol humide + moule Phfs 3
Volume du sol = 2/85.33 cm3		
Poids (Tare) = 13520 g	7.6	oids de l'eau dvaporée (Pht-Phf)= 9 /o de l'eau évaporée (Pe/Ps)x100= 9
Obs. moule + base + discours	Tampérature - C 9	10 de l'aou avapores (Pe/Ps)×100= 76

IMBIBITION			
Temps écoulé	Lacture component.	Δh (cm)	0% ∆h ×100
0 h		0	0
1 h			
2 h			
4 h			
		Ĭ.	
			3.4
1			
Poids final humide + moule Phf :			
	Tamps scould Oh 1 h 2 h 4 h	Temps Lecture component. Oh 1 h 2 h 4 h humide + moule F beorbee (Phf-F	Tamps Lecture Ah (cm) Oh O 1 h 2 h 4 h humide + moule Phf:

Aire du poinçon A = 19,35 cm2 (3 po2)


Vitessa de poinsonnament = 1,27 mm/min (0,05 po/min)					
	POINÇONNEMENT				
%		Surcharg	7a = 4.26 hg	,	
Δh ×100	Enfonce ment (mm)	Lecture ANNEAU (div.)	PRESSION (lect. x conv.) (hgf)	CONTRAINTE P/A (bef /cm²)	
,	0	0	0	0	
	0,5	8,0	35.08	1:82	
	1	21,5	94.28	4.87	
	1,5	38,0	164.92	8.52	
	2	51,3	222.64	11.51	
	2,5	63,0	279.09	14:42	
	3	77,5	339.84	17.56	
3.4	×	82,0	3 63.26	18,77	
	5				
	7,5				
?	10,0				
···· 3	12,5				
%	Ram.	Vitame de	princinament	ut = 1.23	

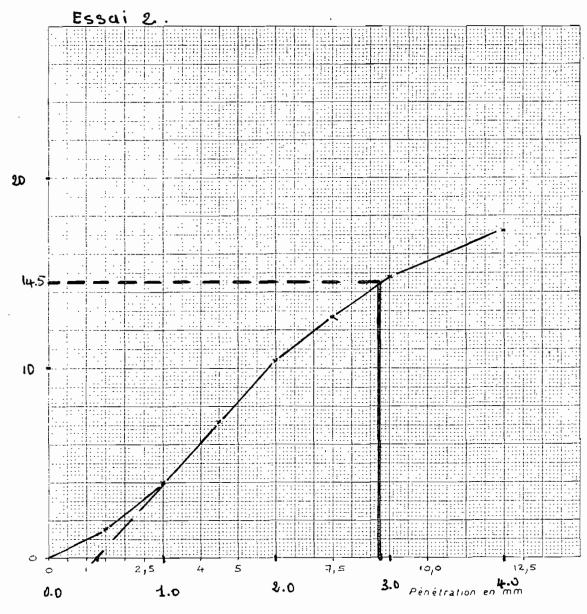
10% ear TENEUR EN EAU						
	COMPE	COMPACTAGE		APRÈS ESSAI C.B.R.		
ajon téc:	avant	apras	1/3 sup.	milieu	1/3 inf.	
Racipiant ne	C-14	C-7	C-15	6-14	C- 5	
Phum. + lare	733.37	551.47	791.00	855.77	900.53	
P sac + tare	684.60	526.11	744.77	803.48	842.92	
Poids 40u.	44.77	25.36	46.23	52.29	57.61	
Tare	226.32	240.75	2 42.05	250.03	234.94	
P sol sac	462.28	285.36	502.72	553.45	86.209	
w %	9.68	8. 84	9.20	9.45	9.55	
こいじりゅういん き	9.2	8%.		9.40	/.	

	ILTATS DE L'ESSAI IMMÉDIAT APRÈS IMBIBITION APRÈS DESSICCATION
7	t/11.3 m eau finales 3.40 %
anfonce	77
-,54 mm	14.80 × 100 = 21/
- ^B rem	105.1 be/cx12

Essai C.B.R. (Californian Bearing Ratio)

Ou « indice de portance californien »

courbes contrainte - pénétration


PROJET :	
LOCALISATION :	
SONDAGE :	ÉCHANTILLON no.
DESCRIPTION :	
CALCULÉ PAR:	LE:
	TD. MOD. MÉTHODE:
	6 retenu sur tamis =
V	vombre da, coups par couche =
Remarques:	
	<u> </u>
ESSAI no. (da	ZSCC-:
W% finale = .	%; 8s = t/m3
P(2,5)= 17.80	kof/cm2 ; CBR = . 24.147 8148
	hgf/cm² ; CBR =
Essaino. (de	scn.;
W% finale =	%; 8s = t/m3
P(2,5) = .	. kgf/cm² ; CBR =
P(5) =	kgf/cm2; CBR=
ESSAI no. (de	
W% finale =	%; 8s = £/m3
P(2,5) =	kgf/cm2; CBR=
P(5) =	kgf/cm²; CBR=
(* assai immédiat	, apras imbibition, dessiccation, durie , atc.
Remarques:	

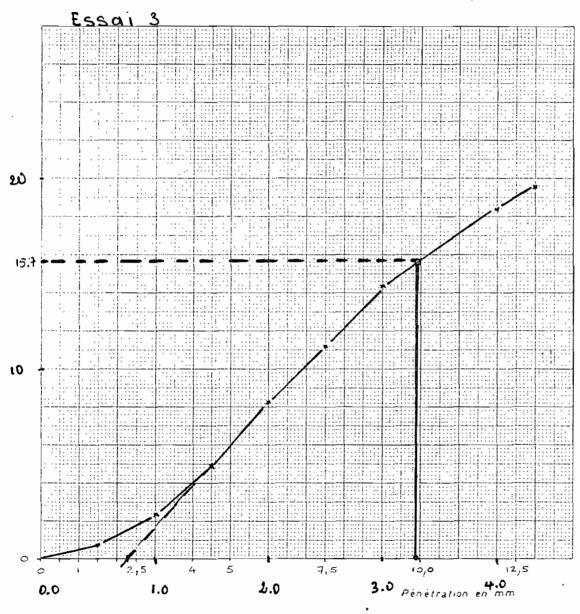
Note: P(2,5) et P(5) sont pris sur les courbes corrègées s'il y a liau. Le C.B.R. est égal au plus fort des deux rapports : $\frac{P(2,5)}{0.70} = \text{et } \frac{P(5)}{1.05}$

 $P\left(2,5\right)$ étant la pression correspondant à un enfoncement de 2,5 mm et $P\left(5\right)$ celle correspondant à un enfoncement de 5 mm.

Essai C.B.R. (Californian Bearing Ratio)

Ou « indice de portance californien »

courbes contrainte - pénétration


: T3LOAG		,
LOCALISATION	۷;	
SONDAGE :	ECHANTILLON no.	
DESCRIPTION :		
CALCULÉ PAR:	re:	
COMPACTAGE	STD MOD MÉTHOO	
	% retenu sur tamis.	
	Nombre da coups par couch	Z =
Ramorquas;		-
P(2,5) = 14.5 P(5) =	### ### ##############################	20.6
P(2,5)=.	. kgf/cm² ; CBR =	
` ,	at , après imblibition , dessiccation	durag atc
Remorques:	-	., 50.00 /210

Note: P(2,5) et P(5) sont pris sur les courbes corrigées s'il y a liau. Le C.B.R. est égal au plus fort des deux rapports :

P (2,5) étant la pression correspondant à un enfoncement de 2,5 imm et P (5) celle correspondant à un enfoncement de 5 mm.

Essai C.B.R. (Californian Bearing Ratio)

Ou « indice de portance californien »

courbes contrainte - pénétration

PROJET :	
LOCALISATION	·:
SONDAGE :	ECHANTILLON, no.
DESCRIPTION :	
CALCULÉ PAR:	LE:
COMPACTAGE	STD. MOD. MÉTHODE:
Remorques:	Nombre de coups par conche =
P(2.5)= 15.7	%; $\delta_{S} = \frac{t}{m^3}$ kgf/cm^2 ; $CBR = 22.33$ kgf/cm^2 ; $CBR = \frac{1}{2}$
W% finale = P(2,5) = . P(5) =	$. hgf/cm^{2} ; \delta s = t/m^{3}$ $. hgf/cm^{2} ; CBR = $ $. hgf/cm^{2} ; CBR = $
W% finale = . P(2,5) = . P(5) =	lascr:
Remarquas:	
Note: P(2,5) a rigaes s'il y a des deux rapport	

 $P\left(2,5\right)$ étant la pression-correspondant à un enfoncement de 2,5 inm et $P\left(5\right)$ celle correspondant à un enfoncement de 5 mm.