RÉPUBLIQUE DU SÉMÉGAL UNIVERSITÉ CHEIKH ANTA DIOP

Département du génie Électromécanique

PROJET

(m. 11285

en vue de l'obtention du diplôme d'ingénieur de conception

TITRE:

SYSTEMES D'ACQUISITION DE DONNEES

INDUSTRIELLES ET MODELISATION DU CONDENSEUR

DE LA CENTRALE THERMIQUE DU CAP DES BICHES

(SENELEC)

Auteur

: Patrick S. ACCROMBESSY

Directeur

: Igor SABATIN Co-Directeur: Serigne M. DIOP

Date

: 06 Juillet 1992

La raison de notre impuissance de prévoir les propriétés nouvelles gît dans notre connaissance incomplète des éléments constituants.

Lecomte du NOÜY

A mon père, A ma mère, A mes frères, A Justine.

REMERCIEMENTS

Nous tenons à remercier très sincèrement tous ceux qui, de près ou de loin, ont contribué à notre formation et à la bonne réalisation de cette étude. Notre gratitude va en particulier à :

- Monsieur Igor SABATIN, Ing, Ph. D., professeur à l'École Polytechnique de THIES, mon directeur de projet pour son encadrement,
- Monsieur Sérigne M. DIOP, Ing, Expert en machines thermiques et chef de la centrale thermique de Bel Air, mon codirecteur de projet, pour son dévouement et tout l'appui qu'il nous a apporté,
- Monsieur Adama D. DIARRA, Ing, professeur d'Électronique et d'Asservissement à l'École Polytechnique de THIÈS et coordonnateur des projets de fin d'études pour le département électromécanique pour son assistance.
- Monsieur Roger FAYE, ingénieur technologue aux laboratoires d'électrotechnie et de systèmes d'acquisition de données à l'École Polytechnique de THIÈS,
- Monsieur Mohammadou BA, ingénieur à la Centrale thermique de Cap des Biches,
 - tous ceux qui ont été mes professeurs.

L'auteur.

BOMMAIRE

Les systèmes d'acquisition de données et de conversion sont utilisés dans les domaines les plus divers, notamment dans les applications industrielles, médicales, spatiales, etc...

Ils constituent le plus fréquemment des interfaces avec des dispositifs d'enregistrement ou avec des ordinateurs; dans ce dernier cas, les données recueillies seront traîtées par l'ordinateur avec des logiciels de traitement statistique et de modélisation adéquats tels que: SPSS/PC+, SYSTAT, PC MATLAB ou LABTECH NOTEBOOK qui est en même temps un logiciel d'acquisition et de traitement de données.

L'objectif de l'étude réalisée est de présenter les systèmes d'acquisition de données d'une manière générale et de faire ressortir son utilité dans le milieu industriel par l'étude du comportement du condenseur de la turbine de 30MW de la centrale thermique du Cap des Biches en vue de prévoir la valeur du vide, le niveau de l'échange thermique qui s'y réalise afin de le comparer aux recommandations du constructeur et d'évaluer les pertes en consommation du fuel dues aux écarts de fonctionnement remarqués.

Le traitement statistique des données de mesure réalisé a permis d'évaluer la pondération des principaux facteurs (le vide, le coefficient de salissure, la température de l'eau de refroidissement, la charge, etc...) qui influencent les paramètres étudiés: le vide et le débit de fuel consommé.

Ce processus connu sous le nom de technique de modélisation permettra par la suite, à partir d'un programme développé pour cette raison, de faire le diagnostic en différé sur des fichiers de données ou en temps réel avec la carte d'acquisition CIO-AD08 du laboratoire d'électrotechnie de l'École Polytechnique de Thiès, un prélude au contrôle de processus industriels.

Ce rapport comporte:

- une présentation des systèmes d'acquisition de données,
- une introduction aux principes de modélisation,
- la description du système à modéliser et une analyse statistique des paramètres de ce processus,
- la description du programme d'aide au suivi du vide condenseur assisté par ordinateur **EERMES**.

TABLE DES MATIERES	
	Page
Dédicace	_
Remerciements	
Sommaire	. ii
CHAPITRE 1 INTRODUCTION	
1.1 Titre du projet	. 1
1.2 Définition du projet	. 1
1.3 Importance du projet	. 2
CHAPITRE 2 INTRODUCTION AUX SYSTEMES D'ACQUISITION DE DONNÉES	
2.1 Les capteurs	. 5
2.2 Le conditionneur de signaux	. 6
2.3 Le préamplificateur	. 7
2.4 Le multiplexeur	. 7
2.5 L'échantillonneur-bloqueur	. 9
2.6 Le convertisseur analogique digital	. 10
2.7 Le circuit d'interface	. 12
CHAPITRE 3 INTRODUCTION AUX TECHNIQUES DE MODELISATION	
3.1 Les différents types de process	. 15
3.2 Les différents types de modèles	. 18
3.3 Les étapes de la modélisation	. 20
3.4 Les techniques d'identification	. 23
CHAPITRE 4 PRESENTATION DU PROCESS ET TRAITEMENT STATISTIQUE	
4.1 Le condenseur	. 30
4.2 Modèle de régulation de température	
4.3 Modèle de regression multiple linéaire	
4.4 Modèle de regression non linéaire	. 44
4.5 Analyse de stabilité	48
CHAPITRE 5 MINI-LOGICIEL D'ACQUISITION ET D'AIDE A LA	
SURVEILLANCE ASSISTEE PAR ORDINATEUR	49
CHAPITRE 6 CONCLUSION ET PROPOSITIONS	54

LISTE DES FIGURES	 A
LISTE DES TABLEAUX	 В
LISTE DES ANNEXES	 С
LISTE BIBLIOGRAPHIQUE	 D

LISTE DES FIGURES,

Figure N°		Pa	age
- 1	Systèmes d'acquisition dans le contexte		
	des systèmes industriels automatiques	• • • • •	3
- 2	Schéma synoptique d'une carte d'acquisition		4
- 3	Capteur		5
- 4	Schéma de multiplexeur numérique	• • • • •	8
- 5	Schéma de multiplexeur analogique		9
- 6	Schéma d'un échantillonneur bloqueur	• • • • •	9
- 7	Structure d'un convertisseur A/D		10
- 8	Filtre passe-bas	• • • • •	19
- 9	Organigramme de la technique d'identificatio	n	23
-10	Vue synoptique de la centrale thermique	• • • • •	28
-11	Diagramme T-s de la vapeur	• • • • •	29
-12	Schéma de principe d'un condenseur	• • • • •	34
-1 3	Vide réel et Vide recommandé (25 Mai 92)		35
-14	Vide réel et Vide recommandé (21 Mai 92)		35
- 15	Modèle de régulation de température	• • • • •	36
-16	Vide = f(Tv)		39
-17	<pre>Vide = f(Charge)</pre>	• • • • •	39
-18	Vide = f(Te)	• • • • •	39
-18.1	Débit de fuel = f(Charge)		42
-18.2	Pression théorique f(Tvs)	• • • •	44
-19.a	Courbe de recommandation		45
-19.b	Courbe de recommandation		45
-21	Vide =f(Tv-Tc)		56
-21	Vide =f(Tg=Te)		56

LISTE DES TABLEAUX,

Tableau	N _o	P	age
- 1	Résultats des regressions linéaires multivariables VIDE = f(Tv,Ts,Te,Cs)	••••	40
- 2	Analyse de variance du modèle linéaire du VIDE	• • • • •	41
- 3	Résultats des regressions linéaires multivariables DÉBIT FUEL= f(Charge, Vide, Tv-Tc, Ts-Te)		42
- 4	Analyse de variance du modèle linéaire du DÉBIT	• • • • •	43
- 5a	Résultats du lissage (quasi-Newton) du VIDE	• • • • •	46
- 5k	Paramètres du modèle du VIDE obtenu par le lissage (Méthode de quasi-NEWTON)		46
- 6	Domaine de validité des modèles retenus		47

Liste des annexes.

		Pa	ge
- A	Tableaux des correlations	• • • • • • •	ΑO
- A1	Graphiques des distributions des variables	•••••	A1
- A2	Graphiques comparatifs des variations des paramètres réels et ceux recommandés par le constructeur (DELAS WEIR)	•••••	A3
- A3	Tableaux des résultats de regressions multivariables et de calculs des pertes en fuel dûes aux écarts de fonctionnement	•••••	A 6
- В	Tableaux du vide recommandé, des débits de admissibles et flux à évacuer (DELAS-WEIR)	_	В1
- c	Caractéristiques théoriques de la vapeur saturée dans le condenseur (thermodynamiques)	C1
- D	Listing du programme HERMES		

CHAPITRE 1

INTRODUCTION

1.1°) TITRE DU PROJET

SYSTEME D'ACQUISITION DES DONNÉES INDUSTRIELLES ET MODÉLISATION DU CONDENSEUR DE LA CENTRALE THERMIQUE DU CAP DES BICHES

1.2°) DÉFINITION DU PROJET

Le coût de l'énergie électrique produite par une centrale thermique comprend essentiellement les charges de capital, le coût de combustible brûlé et les frais annexes (l'huile, l'entretien, la conduite, etc...). Le rendement global de la centrale étant fonction de l'énergie produite et de celle consommée, il est très important de pouvoir contrôler et liser la quantité du combustible juste nécessaire à une situation d'appel de puissance du réseau donnée. La quantité de fuel consommée est dépendante bien entendu de la charge mais elle dépend aussi des conditions fonctionnement de chaque sous-ensemble du système que constitue la centrale et parmi celles-ci figure le vide du condenseur qui est un facteur de frottement et donc d'irréversibilité dans le cycle thermodynamique de la vapeur.

Parmi les systèmes industriels que l'on ne conçoit plus sans commande par ordinateur se trouvent les centrales thermiques, les usines de transformations chimiques, les raffineries de pétrole, les usines de traitement des eaux, etc...

Un préalable à la commande de procédé par ordinateur est l'élaboration d'une théorie décrivant le procédé à surveiller.

Cette étape de la mise en place d'une régulation automatique appelée modélisation a pour objectif de trouver une fonction de transfert expliquant la sortie du process en fonction de ses entrées.

1.3°) IMPORTANCE DU PROJET

"Seule la mesure permet de conduire le progrès scientifique et d'accroître la connaissance de ce qui nous entoure; les limites ne sont pas atteintes et ne le seront jamais."

Marc Desjardins

Les systèmes d'acquisition de données constituent le nerf de tout système de régulation. La figure suivante en montre tout l'intérêt:

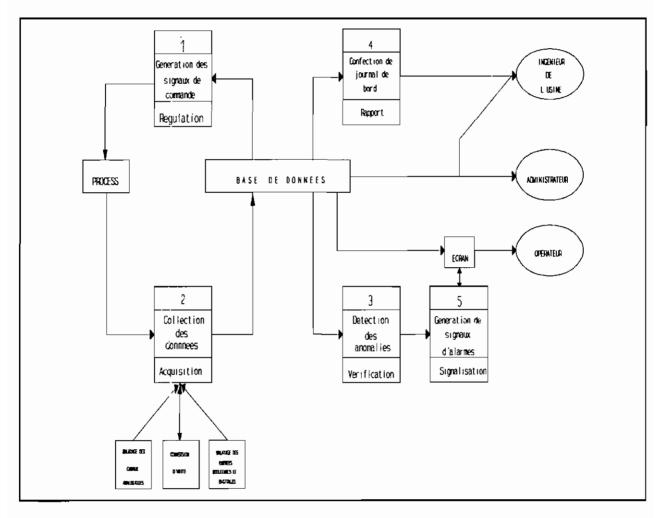


Figure 1: Système d'acquisition de données dans le contexte des systèmes industriels automatiques

CHAPITRE 2

INTRODUCTION AUX SYSTEMES D'ACQUISITION DE DONNÉES

Les systèmes d'acquisition de données et de conversion sont utilisés dans les domaines les plus divers, notamment dans les applications industrielles, médicales, spatiales, etc... Ils constituent le plus fréquemment des interfaces avec des ordinateurs ou avec des dispositifs d'enregistrement.

La structure de base d'un système d'acquisition de données à n canaux d'entrée est représentée à la figure suivante.

Figure 2: Schéma synoptique d'une carte d'acquisition

Elle est constituée par:

- un capteur spécifique à chaque entrée suivant la grandeur physique à mesurer,

- un préamplificateur différentiel d'entrée propre à chacun des n canaux,
- une cellule de filtrage,
- un étage de multiplexage comportant également y voies regroupées par 8 ou 16 ou 32,
- un amplificateur du type échantillonneur-bloqueur ("E/B"),
- le convertisseur analogique-digital proprement dit ("CAD"),
- le dispositif de contrôle permettant la sélection d'une voie déterminée, la commande d'échantillonnage puis la conversion, le transfert de la digitalisation vers un ordinateur par exemple.

2.1°) <u>LES CAPTEURS</u>

Les capteurs sont les premiers éléments de la chaîne d'acquisition et servent le plus souvent à la conversion en signal électrique, exploitable, suivant une loi connue e=f(p) ou bien y=e(t) de toute quantité, propriété ou condition physique (température, pression, force, etc...) que l'on désire mesurer.

Leur principe de fonctionnement est basé, dans la plupart

des cas sur les phénomènes physiques suivants: l'effet piézoélectrique, l'effet thermoélectrique, l'effet photo-électrique.

Ils doivent toujours être au préalable étalonnés du fait de la dispersion de leurs caractéristiques, de leur non-linéarité et du vieillissement.

Pour établir un choix correct d'un capteur donné, il convient de connaître, outre sa nature et son principe physique de fonctionnement quelques spécifications techniques d'emploi qui ont une répercussion immédiate sur la qualité et la conception de la chaîne d'acquisition. Parmi ces spécifications, nous citerons: l'étendue de mesure, la constante de temps, l'impédance d'entrée, la fonction de transfert, la résolution, le niveau de sortie, la stabilité et la fidélité.

2.2°) LE CONDITIONNEUR DE SIGNAUX

Le conditionnement de signaux dépend en grande partie du signal délivré par le capteur utilisé et de son environnement.

Son architecture peut se résumer à deux blocs fonctionnels à savoir:

Le filtrage

Il doit être introduit à l'entrée de chaque voie pour limiter les spectres fréquentiels et pour atténuer les signaux

parasites susceptibles d'être captés dans les câbles d'amenée du signal utile;

- et le calibrage

Il assure une linéarité du signal à la sortie du conditionneur.

2.3°) LE PRÉAMPLIFICATEUR

Ce sont des circuits électroniques qui doivent remplir les fonction suivantes:

- assurer la protection du système (fonction très importante lorsque le gain est unitaire),
- assurer une adaptation d'impédance afin que l'impédance de source vue par le multiplexeur soit très faible et soit définie par l'impédance de sortie du préamplificateur,
- fixer la bande passante,
- amplifier les signaux différentiels utiles
- assurer la réjection des signaux de mode commun.

2.4°) <u>LE MULTIPLEXEUR</u>

1:

Il doit présenter sur son unique sortie l'une des n tension appliquées à ses n entrées. Cette transmission s'effectue avec une certaine qualité et la voie à sélectionner est désignée au

moyen de son adresse par le circuit d'interface, géré par le microprocesseur. Un multiplexeur est donc constitué d'un ensemble de n interrupteurs électroniques, qui sont reliés à un même point (la sortie) à la suite duquel un amplificateur à gain programmable peut être éventuellement placé.

Il existe dans ce domaine deux types de multiplexeurs: le multiplexeur analogique et le multiplexeur numérique.

Les multiplexeurs numériques sont constitués essentiellement de

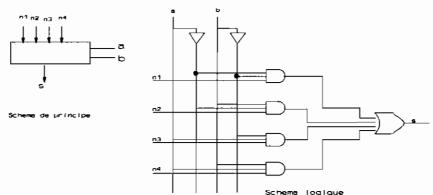


Figure 4 Schémas de multiplexeurs numériques

portes logiques alors que les multiplexeurs analogiques sont composés de résistances et de condensateurs.

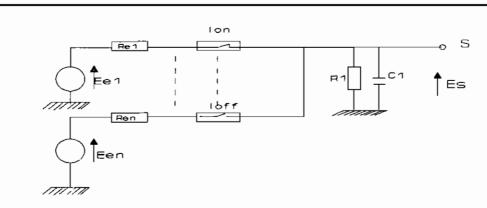


Figure 5 Schéma de principe d'un multiplexeur analogique.

2.5°) <u>L'ÉCHANTILLONNEUR-BLOQUEUR</u>

Il a pour rôle de maintenir constante la valeur échantillonnée pendant toute la durée requise pour la conversion. Son principe de fonctionnement est celui d'un interrupteur placé sur un circuit de condensateurs qui se chargent à la valeur échantillonnée quand l'interrupteur est fermé.

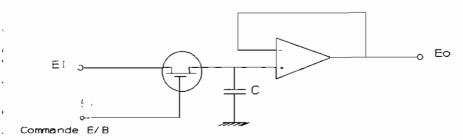


Figure 6: Schéma de principe d'un échantillonneur-bloqueur.

- En l'absence d'impulsion, le condenseur se charge à la valeur Ei et la sortie de Ei (Eo=Ei),
- Quand le circuit reçoit une impulsion par la commande E/B, l'entrée Ei est isolée; la capacité qui était chargée à la valeur instantanée de Ei impose alors sa tension de charge à la sortie Eo

2.6°) <u>LE CONVERTISSEUR ANALOGIQUE NUMÉRIQUE</u>

L'acquisition d'une grandeur analogique par un système à microprocesseur passe nécessairement par sa conversion en une valeur numérique. Cette tâche est assurée par le convertisseur A/N

Plusieurs techniques de conversion sont utilisées dans les convertisseurs existants à savoir: la conversion à essais successifs de niveaux, la conversion à essais successifs de bits, la conversion simultanées, etc...

Les convertisseurs les plus utilisés dans ce domaine opérent par approximations successives ou poids. En effet, avec leur structure on obtient une durée de conversion fixe, plus courte que dans les autres modes – par comptage d'incréments calibrés ou par intégration – et la résolution reste très bonne (tc < à 20μ s pour un CAD de 12bits).

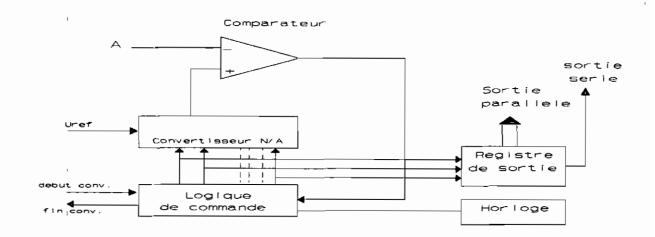


Figure 7: Structure d'un convertisseur analogique - numérique

Le principe de fonctionnement de ce convertisseur est le suivant: l'entrée analogique est comparée avec la sortie d'un convertisseur N/A, donu l'entrée!numérique est incrémentée par un circuit de logique qui positionne tour à tour chaque bit de sortie en commençant par les bits de poids forts, un peu comme une balance; ceci se poursuit jusqu'à ce que la sortie du convertisseur numérique analogique atteigne la valeur du signal d'entrée à convertir.

De nombreux paramètres sont utilisés pour les caractériser, à savoir:

- la résolution (n) qui donne le nombre d'état distincts qu'ils peuvent distinguer (2ⁿ) et la plus petite valeur de tension que le convertisseur N/A peut coder (2⁻ⁿ),

- l'erreur de linéarité, les erreurs de zéros ou de gains,
- les temps de conversion, etc.

2.7°) <u>LE CIRCUIT D'INTERFACE:</u> La Logique de contrôle.

La logique de contrôle établit une séquence programmée destinée à la commande séquentielle du multiplexeur d'entrée, de l'échantillonneur-bloqueur et du convertisseur analogique-digital. Cette logique est elle-même gérée par un microprocesseur.

Cette séquence s'établit comme suit, à la demande d'une information concernant une voie i :

- adressage et validation du multiplexeur (voie i),
- prise de l'information analogique par l'échantillonneur-bloqueur,
- fin d'échantillonnage signalée au convertisseur : début de la conversion analogique-digitale,
 - l'échantillonneur étant maintenu en position "maintien" jusqu'à la commande suivante.

CHAPITRE 3

INTRODUCTION AUX TECHNIQUES DE MODÉLISATION

L'étude rigoureuse d'une application de contrôle de processus industriel nécessite le recours à des notions de mathématiques. Pour définir le régulateur le mieux adapté à l'application ou pour prévoir son comportement, l'idéal est de disposer d'un modèle mathématique du procédé, et de faire appel à des notions mathématiques telle que la transformée de Laplace (pour la régulation analogique) ou de la transformée en Z (pour la régulation numérique) ou bien même à la statistique pour étudier le comportement des boucles de régulation ou la réponse de l'application à des entrées connues données.

Pour mettre en oeuvre tous ces outils, il faut avoir au préalable fait une description mathématique du processus à contrôler; ceci est théoriquement possible, dans la mesure où les physiciens, les chimistes, les spécialistes en thermique, en mécanique des fluides, etc... ont établi les équations ou lois régissant les phénomènes physico-chimiques. En résolvant ces équations, il est alors possible de savoir comment va réagir le processus, suite à une modification d'une de ses entrées où à l'arrivée d'une perturbation externe.

Malheureusement, il existe souvent un fossé entre la théorie à la pratique. La modélisation de ces procédés sont en effet souvent très complexes et exige de grandes compétences dans des disciplines très diverses (mathématiques, thermodynamique,

mécanique des fluides, etc...). De plus, quand bien même ces équations seraient établies, il faudrait connaître les valeurs des divers paramètres qu'elles incorporent (capacités calorifiques, viscosités, nombre de Reynolds, etc...) Un travail laborieux! A telle enseigne que mis à part quelques processus mécaniques, des études purement mathématiques ne peuvent être menées à bien. Ceci nous a donc amené à faire notre étude de modélisation en utilisant les statistiques avec quelques notions de thermodynamique.

On dit que l'on a modélisé un processus physique, si l'on est capable d'en prédire le comportement (sortie) lorsqu'on le soumettra à des sollicitations (entrées) connues. On recherche donc une relation mathématique F qui lie les variables mesurées d'entrée e et de sortie s :

$$F(e,s,p_i) = 0.$$

Cette relation mathématique revêt une certaine forme qui définit la **structure** du système modèle. Elle fait intervenir des paramètres p; dont à priori on ignore généralement les valeurs numériques.

Par exemple, un système décrit par l'équation différentielle linéaire stationnaire du premier ordre (structure) fait apparaître comme paramètres structuraux K et tels que:

$$Ts(t) + s(t) = Ke(t)$$

Structure: équation différentielle du premier ordre, paramètres: K,T.

État: variables: entrée e, sortie s (fonction du temps t)

3.1°) <u>LES DIFFÉRENTS TYPES DE PROCESSUS.</u>

D'une manière schématique, on peut classer les processus en trois grandes catégories: les processus différentiels, les phénomènes d'influence et les phénomènes de rencontre.

* Processus différentiels

Ce sont des processus dont on est capable de décrire l'évolution temporelle de façon incrémentale, le plus souvent grâce aux lois de la physique.

C'est typiquement le domaine de la mécanique, de l'électricité et de l'électromagnétisme où l'évolution de l'état, ensemble de mesures issues des capteurs, est représentable par un système d'équations différentielles du type:

$$[X] = [A.][X] + [B.][u]$$

Avec [X] = vecteur représentatif de l'état,

[u] = vecteur représentatif de l'entrée,

[A.] et [B.] = matrices.

* Processus de rencontre

Ce sont des processus actifs où il y a action (création, destruction) lorsque deux corps ou deux phénomènes sont en présence.

Par exemple, la réaction chimique crée un produit C de concentration Z si les corps A et B (de concentration X et Y) sont présents:

$$[Z] = k[X][Y]$$

Il apparaît alors un terme multiplicatif non linéaire dans l'équation qui décrit la croissance de Z. Tous les phénomènes de types économique, biologique et écologique font intervenir des relations telles que la précédente.

* Processus d'influence

Ce sont des processus où l'entrée E définie spatialement, agit sur un point de l'espace où est placé le capteur de sortie (S), par l'intermédiaire de chemins multiples qui appliquent élémentairement un effet d'affaiblissement a, et de retard T, sur la sollicitation d'entrée.

C'est essentiellement la description de la diffusion de la chaleur, ou celle de la dilution spatiale d'un corps dans un autre.

Dans une approche cinétique microscopique, on est alors amené à représenter ces systèmes sous forme d'une suite pondérée par des coefficients a; des entrées passées e(n-1) échantillonnées tous les temps T:

$$s(n) = a_0e(n) + a_1e(n-1) + a_2e(n-2) + \cdots + a_Ne(n-N)$$
.

Ces derniers se rencontrent principalement dans l'industrie, ils présentent des temps de retard pur, ils sont généralement stables et leurs réponses indicielles n'ont pas d'oscillations notables.

L'étude que nous réalisons dans ce projet s'inscrit plus dans cette dernière partie: la modélisation du fonctionnement d'un échangeur de chaleur et plus précisément d'un condenseur.

* Représentation

Tout processus réel n'appartient pas purement à l'un des types précédents. Pour un processus physique donné, il n'existe pas qu'une seule représentation mathématique; par exemple, un système dynamique linéaire stable peut parfaitement être représenté aussi bien par la représentation différentielle continue :

$$s(t) = as(t) + be(t)$$

que par la représentation discrète, séquence de pondération, tous les intervalles de temps T:

$$s(n) = \sum a_i e(n-i)$$

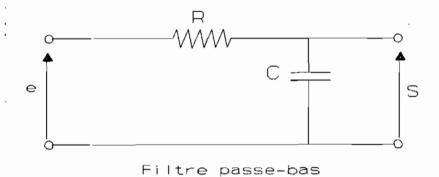
3.2°) LES DIFFÉRENTS TYPES DE MODELES.

Nous allons considérer qu'il existe deux types de modèles: les modèles de connaissance et les modèles de représentation, qui correspondent à des buts différents.

* Modèle de connaissance

Un modèle de connaissance est un modèle dont la structure a été établie en faisant appel à des modèles plus généraux (lois de la physico-chimie, etc.). Les paramètres a, de ces modèles ont alors un sens physique: longueur, résistance électrique, inertie, etc., c'est-à-dire que l'on est susceptibles de les retrouver avec la même signification dans les modèles d'autres processus. Ils sont représentés par une relation de la forme

$$s = F(e, a_i)$$
.


Ces modèles sont beaucoup plus riches de signification que les modèles de représentation et contieonent toutes les informations utiles sur le processus. Ils sont, par contre, beaucoup plus onéreux et difficiles à obtenir.

Modèle de représentation

Ces modèles n'ont aucun pouvoir explicatif de la structure de l'objet. Leur structure n'est qu'une relation mathématique qui va relier localement les mesures des différentes variables du processus. Les paramètres p_i n'ont aucun sens physique connu:

$$s = F(e, p_i)$$

Par exemple, le circuit électrique de la figure ci-après

peut être décrit par l'équation différentielle:

$$RC\overline{s}(t) + s(t) = e(t)$$

qui en est un modèle de connaissance, car les paramètres T = RC, K=1 s'expriment avec des paramètres qui ont un sens physique (résistance, capacité).

On peut aussi utiliser la représentation discrète échantillonnée:

$$s(n) = a_0 e(n) + a_1 e(n-1) + \dots + a_N e(n-N)$$

et obtenir ainsi un modèle de représentation où les paramètres \mathbf{a}_i devront être estimés spécifiquement.

Ces modèles de représentation de type « boîte noire », bien que non informatifs, sont cependant suffisant dans les problèmes de traitement de signal et commande de processus. Ils sont d'ulisation très fréquente et ceci nous pousse donc à les utiliser dans la construction de notre modèle.

3.3°) LES DIFFÉRENTES ÉTAPES DE LA MODÉLISATION.

La première étape du processus de modélisation consiste à faire une hypothèse sur la structure du système modèle, c'est-àdire à choisir un type de relation mathématique F liant entrées et sortie(s). Dans ce choix de structure, on peut être guidé par:

- une analyse physique conventionnelle du processus;
- l'expérience et le résultat qualitatif de tests simples; si par exemple, à une sollicitation en échelon du processus on obtient une réponse oscillatoire, il est inutile de rechercher une structure du modèle du côté d'une équation différentielle du premier ordre: cette dernière ne peut jamais représenter ce comportement, quelle que soit la valeur de T;

- des contraintes de calcul ou des contraintes économiques qui amènent à rechercher, par exemple, le meilleur modèle linéaire d'ordre N maximal.

Dans notre étude, nous avons essayé les modèles surtout linéaires et paraboliques.

Les paramètres structuraux, pour l'instant inconnus, seront déterminés numériquement dans l'étape suivante : l'identification.

* L'identification

A ce niveau, il s'agit surtout de déterminer la valeur numérique des paramètres du modèle qui se comportera mieux comme le processus étudié. Pour évaluer objectivement cette identité du comportement, on introduit un **critère de distance** entre le process et le modèle : D(P,M).

Pour des raisons pratiques d'éliminauion des bruits qui affectent les mesures réelles, on prend généralement comme distance une fonctionnelle de l'écart processus-modèle :

$$D(P,M) = \sum f[(S_m(n) - S_o(n)] = \sum f(\epsilon)$$

avec f > 0; f(0) = 0,

S_n: sortie processus,

Sw: sortie modèle,

N' : déterminant le nombre de points d'observation ou le nombre de données.

On prendra en pratique $f = eps^2$ ou f = |eps|. La distance D, fonctionnelle positive de l'écart, est une fonction des paramètres structuraux P^H , du modèle:

$$D = D(P^{N};).$$

Si l'hypothèse de caractérisation est correcte et si les mesures ne sont pas entachées de bruit, alors il existe $P_i^{M} = P_i^{O}$ tel que D(P,M) = 0. En fait, comme la caractérisation n'est pas parfaite et que les mesures sont bruitées, D ne peut être que minimisée, ne pouvant être annulée. Le problème se réduit donc à celui de la minimisation d'une fonction positive $D(P_i^{M})$ des variables P_i^{M} .

Plusieurs techniques de minimisation ont été utilisées lors de la phase d'identification telles l'estimation linéaire, les méthodes du modèle, etc. Le principe général est celui qu'exprime le schéma de la figure 9.

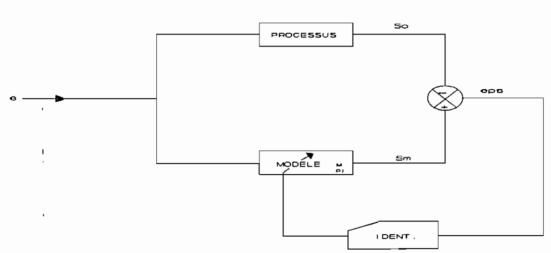


Figure 9: Organigramme de la technique d'identification

où l'on va soumettre le modèle de structure choisi par la caractérisation et de paramètres P_i^M à tester, à des entrées identiques à celles appliquées au process. On élabore un critère de qualité qu'une procédure va tenter d'à améliorer en agissant sur la structure du modèle.

3.4°) LES TECHNIQUES D'IDENTIFICATION.

* <u>L'estimation linéaire</u>

Il s'agit d'estimer la valeur numérique des paramètres du process. Cette technique que nous avons utilisée comme point de

départ est souvent utilisée dans ce domaine, car simple d'emploi bien qu'elle ne donne pas toujours des résultats pratiques très performants. Elle se fonde sur le principe suivant : on suppose que le procédé et le modèle sont représentables linéairement à l'aide d'un vecteur de composantes $x_i(n)$ qui peuvent être soit des mesures indépendantes $u_i(n)$, soit des entrées et sorties passées du procédé:

$$s(n) = \sum_{i} a_i u_i(n)$$

$$s(n) = \sum b_i s(n-i) + \sum c_j e(n-j)$$

$$s(n) = \sum d_i e(n-i)$$

On peut écrire aussi

$$s(n) = \sum_{i=1}^{n} a_i x_i(n)$$

où les $x_i(n)$ sont mesurés et stockés dans la mémoire d'un ordinateur ou sur support magnétique.

On construit une distance D(P,M) telle que:

$$D(P, M) = \sum [s_m(n) - s_o(n)]^2 = \sum e^2(n)$$

s_o(n) est mesurée expérimentalement:

s_n(n) est calculée par le modèle:

$$s_o = \sum a_i^0 x_i(n)$$

$$s_{m} = \sum a_{i}^{m} x_{i}(n)$$

$$D(P,M) = \sum \left[\sum (a_i^m - a_i^o) x_i(n)\right]^2$$

On cherche a; tel que D(P,M) soit minimal:

$$\frac{\partial D(P, M)}{\partial A_i^m} = 0$$

soit

$$2\sum_{i} \left[\sum_{j=1}^{m} a_{j}^{m} x_{j}(n) x_{i}(n) - s_{o}(n) x_{i}(n)\right] = 0.$$

On a donc à résoudre le système linéaire suivant :

Les résultats obtenus sont présentés au chapitre suivant dans le traitement statistique.

La méthode du modèle

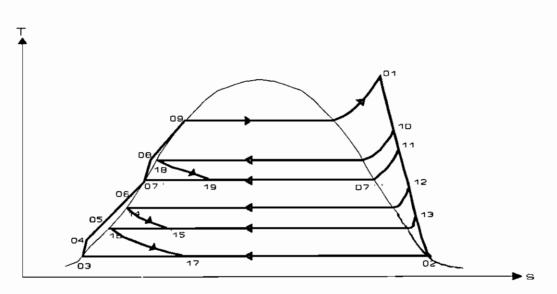
Cette méthode suit strictement, dans son déroulement, le principe de base de la modélisation.

On cherche, par une méthode itérative, à minimiser la distance D(P,M) choisie. D(P,M) étant un fonction positive des paramètres du modèle, le problème se ramène à celui de


minimisation de fonction qui, dans la présente étude, a été réalisée par les techniques de programmation non linéaire. Les résultats de cette méthode sont présentés dans le chapitre suivant; il faut seulement remarquer que, par des changements de variables adéquats, on peut d'une manière ou d'une autre ramener un problème de programmation non linéaire à un problème de programmation linéaire.

CHAPITRE 4 PRÉSENTATION DU PROCÉDÉ ET TRAITEMENT STATISTIQUE

Le principe simplifié du fonctionnement d'une installation motrice à vapeur, permettant la production de l'énergie électrique est le suivant: De l'eau amenée à la chaudière à haute pression par une pompe d'alimentation, est évaporée puis surchauffée par un générateur de vapeur; cette dernière sera détendue dans une turbine à haute pression, qui produira sur son arbre de l'énergie mécanique qui sera transformée par un alternateur en énergie électrique. La vapeur détendue sera ensuite condensée dans un échangeur de chaleur puis renvoyée à la chaudière et le cycle recommence.


Dans un cycle, pour un travail donné, plus grande est l'efficacité et plus petite est la quantité d'énergie thermique qu'il faut fournir à la machine pour obtenir le travail désiré. D'autre part, pour le même travail brut, plus grand est le rapport de travail et plus petit est le travail qu'il faut fournir à la machine dans l'étape de compression. L'idéal serait donc d'obtenir un cycle ayant le moins d'irréversibilité que possible, donc avec une grande efficacité et un grand rapport de travail. Le cycle ee Rankine ou celui de Hirn représentent le principe de base de ces installations.

Le schéma synoptique de l'installation de la SÉNÉLEC au CAP DES BICHES est le suivant:

Figure 10: Vue synoptique de la centrale thermique

Le cycle théorique de cette installation peut être représenté comme suit:

Representation, dans le diagramme T-s de l'eau du cycle thermodynamique de l'installation motricee à vapeur, avec bache d'alimentation et fuite d'eau de la vue synoptique precedente

Figure 11 Diagramme T-s de l'eau du cycle thermodynamique

D'une façon générale, le **rendement global** est défini comme étant le rapport entre l'énergie utile et l'énergie dépensée. Il est généralement admis que l'énergie-chaleur Q_a transférée entre le système et l'atmosphère ne peut être considérée ni comme utile, ni comme dépensée, étant donné qu'elle ne présente pas d'intérêt

pour le praticien. Cela revient à dire qu'elle n'a pas de valeur quand on la fournit et qu'elle est gratuite quand on la consomme. (4) $\eta_\sigma = T_\nu/Q$

En définissant l'efficience du cycle comme la capacité de rendement optimal, on peut l'augmenter par quatre facteurs:

- la diminution de la température du condenseur,
- l'augmentation de la température de la vapeur,
- l'augmentation de la pression dans la bouilloire,
- la régénération.

Seul le premier facteur sera pris en compte dans la présente étude puisqu'il est directement lié à la pression dans le condenseur.

4.1°) LE CONDENSEUR.

Le condenseur a pour rôle de condenser la vapeur saturée; il devra donc soutirer à cette vapeur une certaine quantité de chaleur, dite chaleur latente de vaporisation, et la céder à une source froide qui est dans le cas présent l'eau de mer. Cette condensation de vapeur s'effectue à une certaine pression à laquelle correspond une température dite de saturation. Il est donc entendu que dans un condenseur à eau, aussi bien la phase vapeur que la phase liquide se trouveront, à la température de saturation

correspondant à la pression régnant dans l'enceinte. Dans la réalité, un condenseur est un appareil essentiellement hétérogène. En effet, en supposant la vapeur saturée, cette vapeur contiect toujours une certaine quantité de gaz incondensables (en grosse partie de l'air, qu'il faudra donc extraire au maximun). Au fur et à mesure que la vapeur se condense, la pression partielle de la vapeur varie et la vapeur se cendensera à la température de saturation correspondant à la pression partielle de la vapeur (Loi de Dalton).

En outre, il existe toujours une certaine perte de charge entre la bride d'échappement de la turbine et le bas du condenseur. Par conséquent, la pression totale est variable le long du trajet de la vapeur, et la pression partielle également.

Ceci entraîne deux conséquences:

-la variation de pression totale due à la perte de charge entraîne, pour une pression à la bride turbine garantie, une pression globale de condensation plus basse, donc une température de saturation plus basse. La perte de charge peut atteindre 7 à 8 mbar, ce qui correspond à une perte de température de saturation de l'ordre de 1,5 à 2°C. Par conséquent, il est indispensable que la différence théorique entre la température de saturation et la température de sortie d'eau soit supérieure à cette chute, faute de quoi l'échange serait impossible;

-la variation de pression partielle de la vapeur entraîne une condensation à une température plus faible que la température de saturation théorique. Ceci est à éviter. En principe le constructeur admet un sous-refroidissment de 0,5°C à l'intérieur, d'où la nécessité d'éliminer au maximun les incondensables.

Les paramètres régissant l'échange sont donc:

- a) la tempérauure de saturation de la vapeur T_v : elle correspond à la pression de service du condenseur;
- b) la température d'entrée d'eau de refroidissement $\mathbf{T}_{\mathbf{e}}$: elle est aussi une donnée dépendante des conditions naturelles de l'eau;
- c) le débit de vapeur à condenser Q_v : c'est une donnée fondamentale;
- d) la température de sortie d'eau : elle dépend du débit d'eau dont on peut disposer, compte tenu du flux calorifique à extraire, mais cette température de sortie d'eau pour des raisons technologiques, ne doit jamais être prise trop proche de la température de saturation. [5]
- c) le coefficient de transfert U: en pratique, on le calcule par: [6]

$$K = K_o \cdot C_m \cdot C_t \cdot C_s \cdot \sqrt{V}$$

avec C_{m} , coefficient de correction pour épaisseur et matière des

tubes (=0,8),

C, coefficient de salissure,

 C_{t} coefficient de correction de température (=0,9),

 $\rm K_o$ coefficient expérimental de base fonction du diamètre extérieur des tubes, d_e (=9906,6kJ/h.m^{3/2}.°C.s^{1/2})

Dans les conditions nominales de fonctionnement, on a calculé $v = v_{propre} = 10135.5kJ/h.m^2.$ °C.

Le flux à évacuer au condenseur pouvant s'exprimer par la relation suivante:

$$\phi = S. U_{réel}. DTLM
\phi = Q_{vi}. (H_{ei}-H_{si})$$

avec DTLM la différence de température logarithmique moyenne S la surface d'échange,

 $(\mathrm{H_{ei}}$ - $\mathrm{H_{si}})$ la différence d'enthalpie à l'entrée et à la sortie du condenseur.

 Qv_i le débit de fluide à condenser, on peut évaluer le coefficient de salissure par le rapport

$$C_s = U_{reel} / U_{propre}$$

4.2°) <u>MODELE DE RÉGULATION DE TEMPÉRATURE.</u>

L'échange de chaleur est l'un des process où la commande par inférence résoud le mieux le problème de la régulation de la température ou du débit d'un fluide.

Figure 12: Schéma d'un condenseur

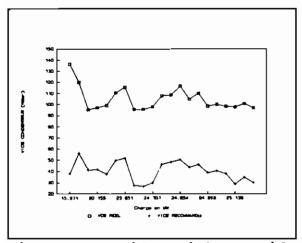
Négligeant la dynamique, l'équation caractérisant le condenseur est:

$$Q_{v}(t) = Q_{f}(t) \cdot C_{p} \cdot [T_{g}(t) - T_{g}(t)]/h$$

avec Q débit de vapeur,

Q, débit du fluide de refroidissement (eau de mer),

Cp chaleur spécifique de l'eau de mer


T_s température de l'eau de mer à la sortie

T_e température de l'eau de mer à l'entrée

h quantité de chaleur cédée par la vapeur par unité de poids.

Pour pouvoir contrôler le vide, en dehors des extractions d'air, il faut pouvoir maintenir la température de la vapeur à la valeur correspondante.

Comme le montrent les figures suivantes:

<u>Figure 13</u> Vide réel & Vide recommandé (donnée du 25 Mai 1992)

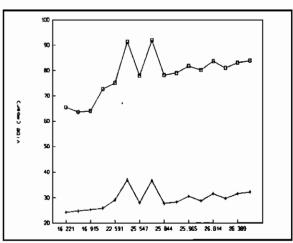
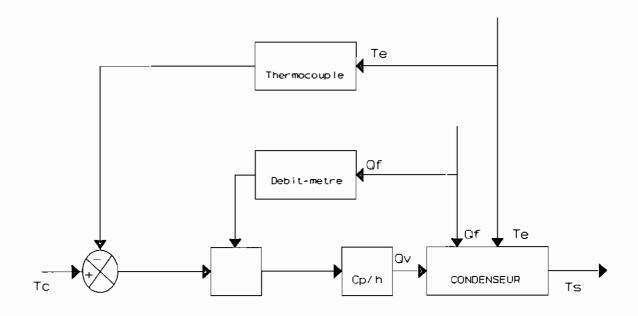



Figure 14 Vide réel & Vide recommandé (données du 21 Mai 1992)

le vide recommandé par le constructeur n'est souvent pas atteint; ceci crée bien entendu des frottements qui augmentent les irréversibilités du cycle thermodynamique, ce qui baisse le rendement de l'installation.

La température de la vapeur peut être contrôlée par le débit d'eau de refroidissement ou sa température à l'entrée ou à la sortie du condenseur puisque tous ces paramètres sont liés. Ceci peut se réaliser par la structure de commande suivante:

de fonction de transfert $T_0/T_c = 1$.

4.3°) <u>MODELE DE RÉGRESSION MULTIPLE LINÉAIRE.</u>

Un très grand nombre de méthodes de traitements statistiques peuvent se formuler à l'aide des modèles statistiques de la forme:

$$Y=\varphi(X_1, X_2, \ldots, X_k; \beta_0, \ldots, \beta_D) + \varepsilon$$

où Y représente une variable à expliquer (ou dépendantes),

♦ est une relation de structure connue,

X, sont des variables explicatives,

 β_0, \dots, β_p sont des paramètres à estimer

 ϵ est un terme d'erreur tel que $E(\epsilon) = 0$, $Var(\epsilon) = 0$ Le modèle est dit linéaire multiple dans les paramètres β_i si

$$\varphi(X_1, X_2, \ldots, X_k; \beta_0, \ldots, \beta_p) = \sum \beta_j \varphi_j(X_1, \ldots, X_k)$$

où Φ_j sont des fonctions ne contenant aucun paramètre; autrement, le modèle est dit linéaire multiple.

L'estimation des β_i se fait en adoptant **le principe des** moindres carrés dont nous avions déjà rappelé le fonctionnement (voir \$3.4).

Dans l'ajustement d'un modèle de régression multiple, il arrive fréquemment qu'une ou plusieurs variables explicatives, soient une combinaison quasi linéaire des autres variables explicatives.

Cette situation connue sous le nom de multicolinéarité, doit être détectée et corrigée afin de construire un modèle optimum avec un nombre réduit de variables explicatives (ceci présente un avantage économique pour l'exploitant et aussi un gain de temps lors de la commande en temps réel de process puisque le traitement de tous les paramètres ne sera pas nécessaire pour prédire et corriger une situation). L'élimination de ce phénomène permet en outre de pondérer l'effet de chaque paramètre dans l'évolution du modèle.

Pour éliminer la multicolinéarité, le logiciel de traitement utilisé offre plusieurs alternatives:

- la régression sur les composantes principales qui sont de nouvelles variables formées par des combinaisons linéaires de variables originelles,
- l'élimination des variables par des techniques de sélection (sélection avant, arrière, pas à pas, maximun \mathbb{R}^2 , minimun \mathbb{R}^{12}).

* le Vide

Les graphiques suivantes,

¹ Coefficient de détermination

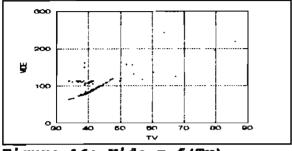


Figure 16: Vide = f(Tv)

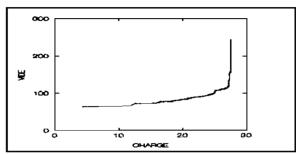


Figure 17: Vide = f(Charge)

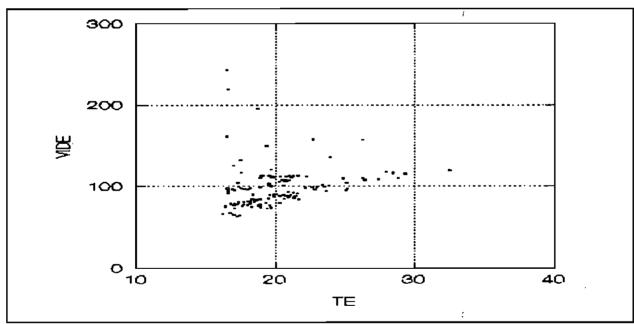


Figure 18: Vide = f(Te)

nous ont permis lors de la phase d'identification, de supposer dans un premier temps que le vide varie d'une manière quasi linéaire en fonction:

- de la température de l'eau de mer à l'entrée Te,
- de la température de saturation Tv et sensiblement linéaire de la charge,
- de la température de l'eau de mer à la sortie du condenseur,
- de la charge délivrée par l'alternateur. De cette cette première constatation, la méthode d'élimination de variables par le technique de sélection arrière a donné les résultats suivants:

(les détails sont présentés en annexe)

LE MODELE NE CONTIENT PAS DE CONSTANTE.

, .

VARIABLE DÉPENDANTE: VIDE

Nobservation: 153 R_{MULTIPLE} : 0.989 R_{MULTIPLE} AU CARRE: 0.979

RMULTIPLE AJUSTE R: 0.979

DISPERSION DU MODELE

VARIABLE	COEFFICIENT	ECT/RESIDUEL	ECT/COEFF.	TOLERANCE	T	P(2 TAIL)
TV	1,351	0,230	0,555	0,0156370	5,867	0,000
Ts	2,566	0,430	0,736	0,0092309	5,974	0,000
Te	-1,556	0,405	-0,305	0,0222420	-3,838	0,000

TABLEAU 1: COEFFICIENTS DU MODÈLE MULTIVARIABLE DU VIDE

ANALYSE DE VARIANCE

SOURCE DE VARIATION	SOMME DES CARRES	DEGRE DE LIBERTE	CARRES MOYENS	F-RATIO	Р
MODELE ERREUR	1612234.653 34619.612	3 150	537411.551 230.797	2328.499	0.000

TABLEAU 2: Analyse de variance du modèle linéaire du VIDE

Ce modèle peut donc s'écrire :

$$VIDE = 0,351.T_v + 2,566.T_g - 1,556.T_e + 1/C_s - 10$$

 C_s = Coefficient de salissure (1 à 0.5)

Pour un degré de confiance de 95%, le vide va varier entre 85 et 115 mbar.

$$\mu \pm Z_{\alpha}/2.\sigma/\sqrt{N}$$
 avec Z_{α} = 2,776 et N = 123

* Le Débit de fuel consommé

Il est tout à fait normal de penser que le débit du combustible (fuel) consommé varie d'une manière linéaire avec la charge produite.

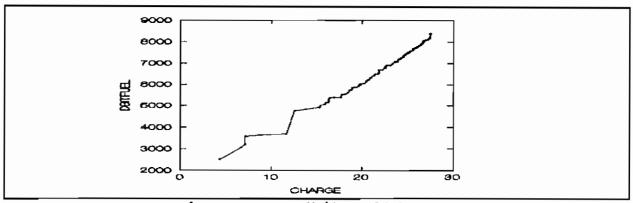


Figure 18.1 Débit = f(Charge)

De plus, l'analyse en composantes principales permet de prendre aussi comme paramètres explicatifs le vide, les différences de températures entre la sortie de l'eau de mer et son entrée, de même qu'entre la vapeur à sa sortie et à son entrée du condenseur.

LE MODELE NE CONTIENT PAS DE CONSTANTE

VARIABLE A EXPLIQUER: DEBIT Nobservation: 153 R MULTIPLE: 1.000 R MULTIPLE AU CARRE: 1.000 R MULTIPLE AJUSTE: 1.00 DISPERSION DU MODELE: 151.399

VARIABLE	COEFFICIENT	ECT/ERREUR	ECT/COEFF.	TOLERANCE	T	P(2 TAIL)
CHARGE	286.470	1.733	0.950	0.0913438	165.259	0.000
VIDE	1.835	0.667	0.027	0.0312860	2.752	0.007
TVTC	33.256	3.546	0.026	0.3880113	9.379	0.000
TSTE	7.489	4.315	0.011	0.0783775	1.736	0.085

TABLEAU 3: Paramètres du modèle <u>linéaire</u> du DÉBIT

ANALYSE DE VARIANCE

SOURCE DE VARIATION	SOMME DES CARRES	DEGRE DE LIBERTE	CARRES MOYENS	F-RATIO	P
RÉGRESSION RESIDUAL	.759094E+10 3415331.131	4 149	.189773E+10 22921.685	82792.094	0.000

TABLEAU 4: Analyse de variance du modèle linéaire du BÉBIT

Ce modèle est exprimé par le relation

$$D\acute{e}bit = 286,47.Charge + 1,835.Vide + 33,256.(T_v-T_c) + 7,489.(T_s-T_e)$$

Pour le même degré de confiance, il varie entre 6675 et 7212 Kg/h.

Un deuxième modèle a été déterminé en fonction du Vide et de la Charge; il présente l'avantage d'avoir été exprimé en fonction d'un nombre plus réduit de variables et celui d'être aussi performant que le précédent. Son équation est

Sa variation avec un degré de confiance de 95% est d'environ 6640 à 7300 Kg/h.

4.4°) MODELE DE RÉGRESSION MULTIPLE NON LINÉAIRE.

L'approche utilisée à ce niveau à été de concilier la théorie thermodynamique de la pression de vapeur d'eau saturante, les abaques du constructeur du condenseur et les valeurs réelmes obtenues du process.

La figure suivante montre l'évolution du vide en fonction du vide

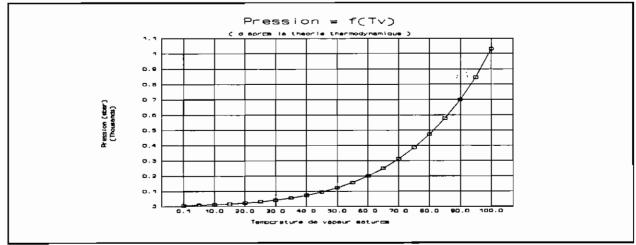
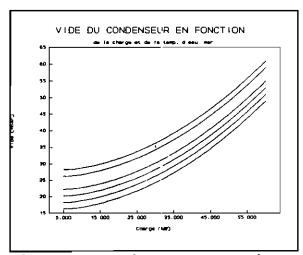



Figure 18.2: Vide = f(Temp. vap. sat.) [d'après la théoriquement]

Cette loi peut être approximée par la relation suivante:

$$P = 0.061/T + 0.8917 \cdot 10^{-5} \cdot T + 1.34T$$
 (mbar)

Les figures suivantes représentent le vide recommandé par le constructeur en fonction de la charge délivrée, de la salissure et de la température de l'eau de mer.

<u>Figure 19a:</u> Vide recommandé par le fournisseur en fonction de la charge

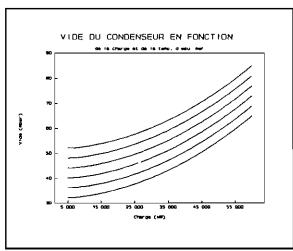


Figure 19b: Vide recommandé en fonction de la charge et de la température de l'eau de mer (source DELAS-WEIR)

Un lissage par les méthodes de quasi-Newton permet d'obtenir le résultat suivant:

$$Vide = 0.009.Charge^2 + 6.182/Charge + 1.527.log(Charge) + 2.(Te-20)$$

En se basant donc sur ces modèles, nous avons essayé de construire un modèle réel du process avec le logiciel SYSTAT. Les résultats obtenus sont les suivants:

VARIABLE A EXPLIQUER : VIDE

SOURCE	SOMME DES CARRES	DEGRE DE LIB.	MOY. DES CARRES
RÉGRESSION	1610493.568	3	536831.189
ERREUR	36360.620	150	242.404

		TABLEAU 5a
TOTAL	1646854.265	153
CORRIGE	91849.731	152

R	BRUT	(1-ERREUR/TOTAL)	=	0.978
R	CORRIGE	(1-ERREUR/TOTAL) (1-ERREUR/CORRIGE)	==	0.604

PARAMETRE	ESTIMATION	INF	<95%> SUP.
AO	0.262	0.013	0.512
A2	11.626	5.699	17.554
A3	2.558	2.153	2.962

TABLEAU 5b

Ce qui se traduit par la relation:

$$Vide=0,262.Charge.((T_v-T_c)/(T_s-T_e)^1,5)+11,626.T_v/T_e+2,58.T_s$$

Ces modèles trouvés sont valables, dans les conditions de l'intervalle de confiance de 95% avec les variations suivantes pour les autres paramètres qui y interviennent

	MIN.	MAX.
Température de l'eau de mer (Te)	16,20	32,50
Température de sortie de l'eau de mer(Ts)	21,41	52,55
Température des vapeurs entrée du cond. (Tv)	33,82	86,01
Température du condensat (Tc)	27,50	62,60
La différence de température Ts-Te	03,92	35,97
La différence de température Tv-Tc	00,76	27,90
La différence de température Tv-Ts	06,03	35,60
	l	

4.5°) <u>STABILITÉ.</u>

L'analyse de stabilité permet d'examiner le changement des paramètres du modèle suite à de "petites" perturbations des entrées. Une approche pour effectuer une analyse de stabilité consiste à éliminer tour à tour chaque observation et à observer l'effet produit sur les paramètres du modèle ou même sa structure. Cette analyse permet de mesurer l'effet de chaque observation sur le modèle.

Dans le cas présent, l'analyse de l'erreur type de l'estimation de chaque paramètre qui permet en fait de quantifier le degré de variation possible associé à chaque paramètre obtenu (Voir les tableaux 1 3 5) nous permet de conclure que!les modèles trouvés sont effectivement stables dans les domaines fixés au tableau 7.

CHAPITRE 5

MINI-LOGICIEL D'ACQUISITION ET DE SUIVI DU CONDENSEUR

Dans l'industrie, la notion de «temps réel» est étroitement liée à la nature même du processus. Que celui-ci soit continu ou discontinu, complexe ou non, rapide ou lent, la notion de «temps réel» change du tout au tout.

Le système ou l'utilisateur doivent être capables de répondre à une sollicitation du processus sous contrôle dans des délais qui soient compatibles avec celui-ci; si ce n'est pas fait, cela peut entraîner de graves perturbations dans le processus, voire l'endommager définitivement. Pour s'en convaincre, il suffit de considérer l'exemple d'une centrale nucléaire (l'exemple de Tchernobyl est à cet égard édifiant), pour laquelle, même si le processus est très lent -des centaines d'heures par exemple- il faut pouvoir acquitter les alarmes à temps.

Dans cet exemple, se pose le problème de la sécurité, avec en cas d'«incidents» la possible destruction de la centrale, sans parler des éventuelles atteintes à l'environnement et aux personnes.

Dans le cas qui fait l'objet de notre étude, un mauvais fonctionnement d'un élément de la chaîne de production de vapeur entraînerait, du point de vue consommation spécifique, de grandes pertes économiques.

Quel que soit le processus industriel sous surveillance, la notion de temps réel est la même.

Elle se résume facilement en quelques lignes :

- Le système de surveillance ou de contrôle doit pouvoir prendre en compte les interruptions "non prévues" en provenance du processus. Celles-ci peuvent provenir des capteurs, de soussystèmes en défaillance, etc...
- Le système doit, juste après avoir pris en compte ces interruptions, sauvegarder la configuration dans laquelle il se trouve à ce moment-là, afin de pouvoir la retrouver une fois les problèmes réglés. Le système doit enfin changer de configuration (changement de contexte), afin d'être à même de traiter les interruptions reçues : ouvrir ou fermer des vannes, acquitter des alarmes, etc...
- Une fois les problèmes réglés, le système doit revenir à sa configuration initiale, afin de poursuivre son contrôle.

Dans le cadre de cette étude, nous nous limiterons, à du diagnostic en temps réel avec la carte d'acquisition CIO-ADO8 de ComputerBoards, inc. qui possède huit (8) entrées analogiques, trois (3) entrées numériques et quatre (4) sorties numériques, deux (2) entrées horloge, trois (3) sortie horloge et un interface de communication parallèle le PIO-12, ou en différé du process sur des fichiers recueillis par le module d'acquisition SAM de la centrale du Cap des Biches.

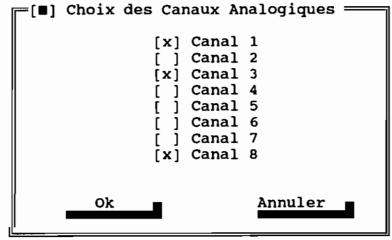
Le programme en fait automatise certains des calculs effectués dans le projet avec les équations des modèles trouvés .

Au démarrage apparaît l'écran suivant

- Fichier Acquisition Contrôle Simulation Traitement Option 09:34:51

Ensuite le choix - permet d'avoir le copyright qui s'affiche alors comme suit:

- Fichier Acquisition Contrôle Simulation Traitement Option 09:38:


-- <u>HERMES</u> -Logiciel de suivi du condenseur
Par Patrick Sam. ACCROMBESSY
Copyright (c) 1992
École Polytechnique de Thies

Les options disponibles étant affichées en haut de l'écran.

L'option **Acquisition** permet par le choix des canaux et des fréquences de lectures, l'acquisition des mesures.

- Fichier Acquisition Contrôle Simulation Traitement Option 09:35:

- Fichier Acquisition Contrôle Simulation Traitement Option 09:36:

L'option simulation permet de simuler l'évolution ou de comparer

Fichier Acquisition Contrôle Simulation Traitement Option 09:36:5

F6

Modèle Réel Modèle Recommandé F5 Process Ctrl-F5

L'option traitement permet de faire quelques traitements élémentaires en temps différé sur les données recueillies par le logiciel.

Fichier Acquisition Contrôle Simulation Traitement Option 09:37:

Fichier	F3
Moyennes	Ctrl-F5
Variances	F 5
Écart-types	F6
Coefficient	s F7
Corrélation	s Alt-F3

L'option contrôle qui y est inscrite n'est pas encore opérationnell

CHAPITRE 6

CONCLUSION &
PROPOSITIONS

Au terme de cette étude, nous ferons d'abord remarquer l'économie que permettra de réaliser le contrôle du vide du condenseur. En effet, les écarts observés entre les pressions recommandées par le constructeur (DELAS-WEIR) et les pressions de fonctionnement sont relativement élevés et correspondent, comme nous avons essayé de le chiffrer à de pertes de fuel allant d'une à quelques dizaines de tonnes par jour. Le prix de la tonne étant d'environ 50.000 FCFA (source SÉNÉLEC), on imagine facilement l'intérêt que revêt ce projet.

L'analyse des mesures effectuées du 15 au 27 Mai 1992 permet, comme l'indiquent les figures suivantes,

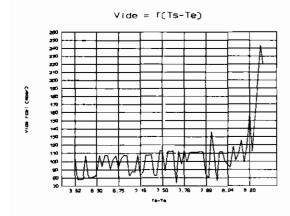


Figure 20: Vide =f(Ts-Te)

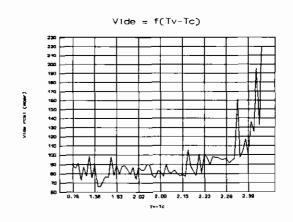


Figure 21: Vide = f(Tv-Tc)

de conclure:

- qu'une température d'eau de mer élevée est source de mauvais vide sans pour autant le déterminer complètement. Elle entraîne aussi une baisse de l'échange thermique au niveau de
- condenseur et donc affaiblit le rendement;
- qu'une élevation de la différence de température de sortie et d'entrée de l'eau de mer provoque une élevation du vide, ce qui n'est pas souhaité.

En outre, on remarque par l'observation des mesures (voir les annexes A3), que le coefficient de salissure est un paramètre qui baisse quand la différence de température entre la vapeur échappement basse pression et l'eau de mer sortie du condenseur augmente.

Les calculs effectués ont montré que la pression correspondante à la température de la vapeur saturée à l'intérieur du condenseur ne correspond ni aux prescriptions du constructeur, ni aux conditions actuelles de fonctionnement; cela peut paraître surprenant mais en fait, la prescription du constructeur correspond à des niveaux de charge, de température d'eau de mer et de propreté du condenseur donnés. Il faudra donc prendre ces données du constructeurs comme consigne pour l'entrée d'un système de régulation de débit de l'eau de mer pour abaisser la température de la vapeur saturée à la température correspondant à la pression du constructeur. Ceci nous amène à proposer un système de pompes à vitesses variables où de vannes motorisées pour contrôler le débit

de l'eau de mer et contrôler ainsi l'échange thermique qui s'effectue au niveau du condenseur.

Il serait judicieux de faire une étude générale sur les autres sous-systèmes du système de production de l'énergie électrique en analysant les données sur toute une année pour avoir des modèles plus riches et plus représentatifs de la réalité du fonctionnement de la centrale.

La modélisation et les systèmes d'acquisition sont d'une grande utilité lorsque l'on veut faire de la simulation, établir ou vérifier des lois physiques. Vus sous cet angle, ils représentent un outil indispensable aux laboratoires de recherche. ANNEXES

Annexe A: TABLEAUX DE CORRELATIONS (METHODE DE PEARSON)

			TABLEA	U DES CORR	ELATIONS F	CHIER 1505.7	RI (IS MA) 1	1992)	ì		
1	Vide	Charge	Coef. salissure	Débit fuel	TC	TE	TS	TSTE	TV	TVTC	TVTS
Vide	1.000										
Charge	0.043	1,600									
Coef. salissure	0.408	0.534	1.000								
Débit fuel	0.081	0.993	0.513	1.000							_
TC	0.218	0.541	0.243	0.536	1.000						
TE	-0.073	-0.287	0.086	-0.316	0.473	1,000					
TS	0.735	0,187	0.550	0.195	0.689	0.508	1.000				
TSTE	0.886	0.446	0.547	0.479	0.385	-0.251	0,706	1.000			
TV	0.142	0.846	0.265	0.857	0.847	0.007	0.423	0.470	1.000		
TVTC	-0.107	0.660	0.083	0.689	-0.119	-0.793	-0.382	0.222	0.427	1.000	
TVTS	-0.489	0.690	-0.207	0.683	0.251	-0.428	-0.437	-0.139	0.630	0.751	1.000

			TABLEAU	DESCORRE	LATIONS FIG	CHIER 1905A.	TRI (19 MAI	1992)	l		
Γ	Vide	Charge	Coef. salisaure	Débit fuel	TC	TE	TS	TSTE	TV	TVTC	TVTS
Vide	1.000		_			· · · - · · ·					
Charge	0.735	1.000									
Coef. salissure	0.881	0.801	1.000								
Débit fuel	0.713	0,996	0.797	1.000							
TC	0.552	0,890	0.769	0.911	1.000						
TE	0.273	0.350	0.612	0.388	0.688	1.000					_
TS	0.751	0.798	0.950	0.806	0.889	0.783	1.000				
TSTE	0.905	0.904	0.891	0.882	0.723	0.261	0.804	1.000			
TV	0.532	0.921	0.688	0.932	0.961	0.548	0.800	0.719	1.000		
TVTC	-0.165	-0.048	-0.409	-0.090	-0.308	-0,599	-0.459	-0.141	-0.031	1.000	
TVTS	-0.454	0.042	-0.552	0.043	-0.051	-0.484	-0.470	-0.267	0.154	0.709	1.000

			TABLEAU	DES CORRE	LATIONS FIG	CHIER 2003.TI	RI (20 MAI 19	P92)	1	•	
	Vide	Charge	Coef. salissure	Débit fuel	тс	TE	TS	TSTE	TV	TVTC	TVTS
Vide	1.000										
Charge	-0.468	1,000									
Coef. salissure	-0.480	0.924	1.000								
Débit fuel	-0.437	0.997	0.894	1.000							
TC	0.422	-0.632	-0.872	-0.577	1,000						
TE	-0.617	0.588	0.409	0.602	-0.112	1.000					
TS	-0.589	0.678	0.478	0.694	-0.130	0.938	1.000				
TSTE	-0.547	0.691	0.490	0.707	-0.133	0.864	0.985	1.000			
TV	0.414	-0.610	-0.858	-0.556	0.998	-0.105	-0.123	0.127	1.000		
TVTC	-0.379	0.687	0.768	0.651	-0.717	0.158	0.170	0.168	-0.675	1.000	
TVTS	0.497	-0.702	-0.908	-0.652	0.986	-0.256	-0.284	-0.285	0.986	-0.680	1.000

				DESCORRE	LATIONS FIG	THIER 2105.TI		19 2)			
								-			
	Vide	Charge	Coef. salissure	Débit fuel	TC	TE	TS	TSTE	TV	TVTC	TVTS
Vide	1.000										
Charge	0.876	1.000									
Cocf. salissure	0.918	0.929	1.000								
Débit fuel	0.880	0,999	0.938	1.000		_					
1C	0.998	0.854	0.908	0.859	1,009						
TE	0.744	0.356	0.604	0.372	0.773	1,000					
TS	0.947	0.717	0.874	0.729	0.959	0.906	1.000				
TSTE	0.907	0.993	0.959	0,995	0.889	0.440	0.779	1,000			
TV	0.989	0.937	0.939	0.939	0.981	0,640	0.898	0.956	1.000		
TVTC	0.418	0.794	0.569	0.783	0.373	0.276	0.153	0.734	0.546	1.000	
T∨TS	0.517	0.809	0.537	0,794	0.480	-0, 181	0.223	0.742	0.629	0,939	1.000

			TABLEAU	DESCORRE	LATIONS FIG	HIER 2305,TI	RI (23 MA) 19	192)	i		
Γ	Vide	Charge	Coef. salissare	Débit (uel	тс	TE	TS	TSTE	TV	TVTC	TVTS
Vide	1.000	T		_							
Charge	-0.508	1.000									
Coef. salissure	-0.021	0.366	1.000								
Débit fuel	-0,457	0.997	0.352	1,000							
TC	0.861	-0,409	0.444	-0.376	1.000						
TE	0.626	-0.371	0.665	-0.360	0,923	1.000					
TS	0.709	-0.418	0.583	-0.401	0.963	0.983	1,000				
TSTE	0.576	0.331	-0.306	-0.293	0.401	0.111	0.293	1,000			
TV	0.924	-0.590	-0.365	-0.535	0.646	0.350	0.463	0.679	1.000		
TVTC	0.381	-0.378	0.899	0,338	-0.112	0.425	0.316	0,502	0.686	1.000	
TVTS	0.054	-0.070	-0.923	0.042	-0.450	-0,726	-0,647	0.278	0.377	0,920	1.000

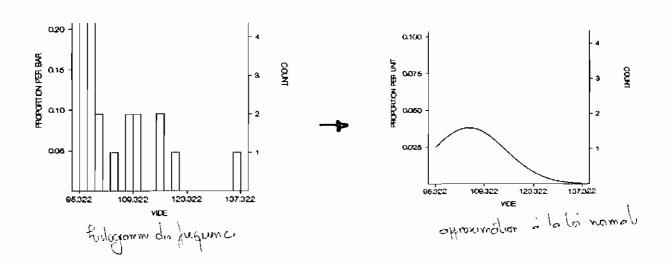
Annexe A (suite)

TABLEAU DES CORRELATIONS FICHIER 2505.TRI (25 MAI 1992)

	Vide	Charge	Coef. salissure	Débit fuel	TC	TE	TS	TSTE	TV	TVTC	TVTS
Vide	1.000										
Charge	-0.508	1.000			,						
Coef. salissure	-0.021	0.366	1.000								
Débit feel	-0.457	0.997	0.352	1.000							
TC	0.861	-0.409	0.444	-0.376	1.000						
TE	0.626	-0.371	0.665	-0.360	0.923	1.900					
TS	0.709	-0.418	0.583	-0.401	0,963	0.983	1.000				
TSTE	0.576	-0.331	-0.306	-0.293	0.401	0,111	0.293	1.000			
TV	0.924	-0.590	-0.365	-0.535	0.646	0.350	0,463	0.679	1.000		
TVTC	0.381	-0.378	-0.899	-0.338	-0.112	-0.425	-0.316	0.502	0.686	1.000	
TVTS	0.054	-0,070	-0.923	-0.042	-0.450	-0.726	-0.647	0.278	0.377	0.920	1.000

TABLEAU DES CORRELATIONS FICHIER 2605.TRI (26 MAI 1992)

	Vide	Charge	Coef. salissure	Débit fuel	TC	TE	TS	TSTE	TV	TVTC	TVTS_
Vide	1.000										
Charge	-0.636	1.000									
Coef. satissure	-0.715	0.962	1.000								
Débit fuel	-0.565	0.993	0.938	1.000							
TC	0.977	-0.553	-0.625	-0.476	1.000						
TE	-0.179	0.578	0,595	0.603	0.001	1.000					_
TS	0.928	-0.496	-0.525	-0.425	0.970	0.084	1.000				
TSTE	0.959	-0.685	-0.719	-0.627	0.935	-0.278	0.934	1.000			
TV	0.874	-0.848	-0.850	-0.792	0.834	0.314	0.804	0.888	1.000		
TVTC	0.488	-0.863	-0.796	-0,847	0.398	0.523	0.378	0.552	0.838	1.000	
TVTS	0.484	-0.869	-0.844	-0.850	0.377	0.587	0.299	0.500	0.808	0.971	1.000


TABLEAU DES CORRELATIONS FICHIER 2705.TR1 (27 MAI 1992)

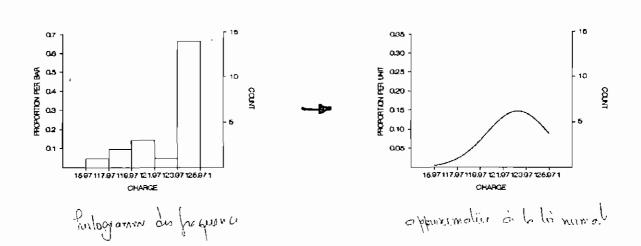
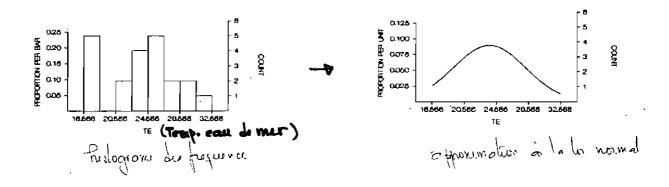
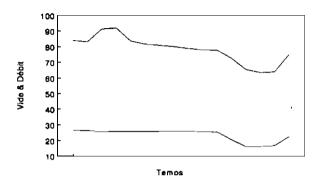
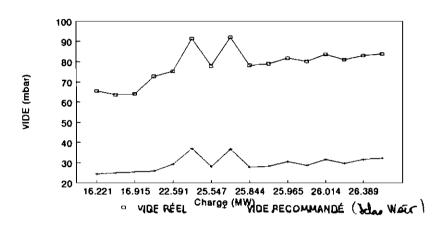

									_		
	Vide	Charge	Coef. salissure	Débit fuel	TC	TE	TS	TSTE	τv	TVTC	TVTS
Vide	1.000										
Charge	-0.115	1									
Coef. salissure	-0.254	0.241	1.000								
Débit fuel	-0.112	0.973	0.209	1.000							
TC	0.916	-0.116	0.046	-0.116	1.000						
TE	0.505	-0.386	0.543	-0.402	0.734	1.000					
TS	0.454	-0.063	0.695	-0.067	0.728	0.935	1.000				
TSTE	-0.115	0.882	0.455	0.913	0.022	-0.127	0.233	1.000			
TV	0,956	0.141	-0.178	0.148	0.910	0.424	0.475	0.165	1.000		
TVTC	-0.318	0.544	-0.451	0.558	-0.604	-0.913	-0.800	0.265	-0.220	1.000	
TVTS	0.148	0.167	-0.903	0.177	-0.191	-0.758	-0.796	-0.148	0.154	0.747	1.00

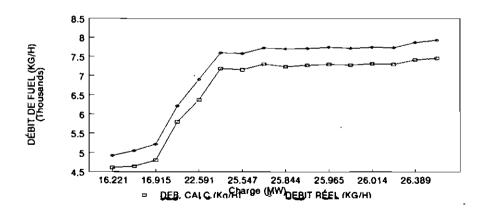
TABLEAU DES CORRELATIONS FICHIER 2805,TRI (28 MAI 1992)

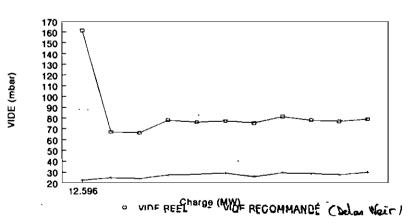

	Vide	Charge	Coef. salissure	Débit fuel	TC	TE	TS	TSTE	TV	TVTC	TVTS
Vide	1.000										
Charge	-0.194	1.000									
Coef. salissure	-0.421	0.387	1.000				1				
Débit fuel	-0,068	0.951	0.342	1.000							
TC	0.656	0.073	-0.036	0.237	1.000						
TE	0.062	0.035	0.546	0.154	0.702	1.000					
TS	0.679	0.003	0.270	0.141	0.865	0.714	1.000				[
TSTE	0,858	-0.038	-0.310	0.003	0.316	-0.265	0.485	1.000			
TV	0.765	0.158	-0.196	0.323	0.960	0.505	0.793	0.462	1.000		
TVTC	0.337	0.289	0.556	0.282	-0.204	-0.728	-0.308	0.487	0.080	1	
TVTS	-0.065	0.211	-0.709	0.211	-0.104	-0.478	-0.552	-0.163	0.070	0.613	

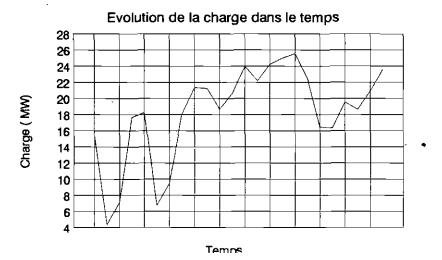
Annexe A1 (Aushabahin des Vouendles Vide, Charge at Temp. eau Le mer)

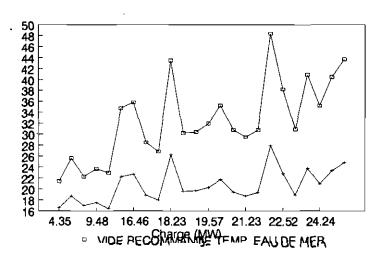


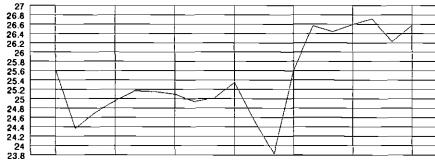


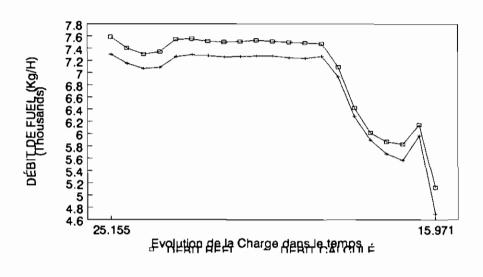

Anuxe A1 (suite et fin)

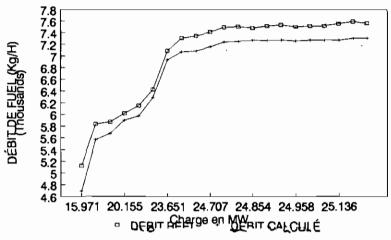


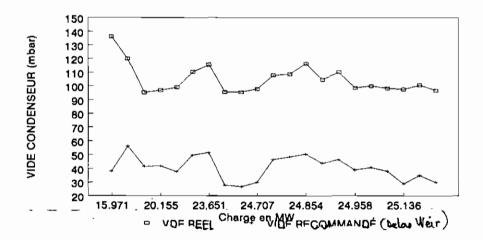

(comparaison des paramètre roit et du paramètre rocommanda par le constancteur)

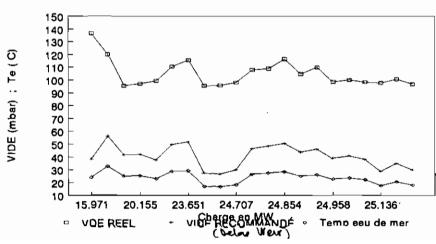











Evolution de la Charne dans le temns

Ennexe A3 Tableaux ples resultate ple regressions multiples et caloule des partes deise aux ecante de

EXTRAIT DU FICHIER 1505.TRI (15 MAI 1992) DUREE D'ACQUISITION : 15 HEURES

Surface (m²) = 1636
Débit d'eau de refroidissement (kg/h) = 6000000
Débit nominal de vapeur à condenser (kg/h) = 89805

Débit calculé	Débit fuel	Vide recommandé	Vide théorique	Vide réel	Charge	Te	Ts	Tv	Tc	Cs	Ts-Te	TV-Tc	Tv-Ts	Flux évacué	DTLM	V
(g/Kwb)	(Kg/b)	Delas-WEIR		(mbar)	(MW)	(℃)	(°C)	(°C)	(°C)		(C)	(°C)	(3)	(kJ/h)	(°C)	(kJ/h.m².°C
3086.86	4767.00	23,74	59.18	99.85	11.68	17.34	22.43	44.33	30.38	0.27	5.10	13.95	21.90	7.75E+07	17.09	2770.71
6789.56	7888.60	32.73	51.44	112.80	26.85	19.08	27.31	38.53	36.09	0.77	8.24	2.44	11.22	1.78E+08	13.92	7821.44
6795.65	7906.10	33,32	51.69	150.00	26.84	19.37	27.31	38.72	36.37	0.77	7.93	2.35	11.42	1.78E+08	14.02	7759.85
6311.06	7218.90	31.71	49.87	112.80	24.88	19.04	27.31	37.35	35.12	0.78	8.27	2.24	10.04	1.65E+08	12.82	7865.80
6767.15	7947.20	33.55	52.09	85.00	26.70	19.52	27.29	39.02	36.75	0.75	7.77	2.27	11.73	1.77E+08	14.30	7570.80
5321.56	6489.20	31.09	55.38	112.80	20.72	19.62	27.28	41.48	39.77	0.49	7.66	1.71	14.20	1.37E+08	17.00	4939.70
5560,68	6404.80	30.29	48.37	112.80	21.78	19.01	27.29	36.23	34.13	0.74	8.28	2.10	8.94	1.44E+08	11.76	7505.44
4051.52	5002,40	29.40	65.20	100.00	15.43	19.68	27.31	48.84	47.38	0.25	7.63	1.45	21.53	1.02E+08	24,49	2555.01
4915.17	5737.10	29.23	49.22	112.80	19.11	18.99	27.26	36.87	34.81	0.61	8.26	2.06	9.61	1.27E+08	12.46	6215.83
6621.21	7822.20	32.14	50.72	111.50	26.17	18.95	27.26	37.99	35.43	0.78	8.31	2.56	10.73	1.74E+08	13.40	7915.21
5310.71	5966.30	29.70	46.62	111.00	20.76	18.92	27.24	34.92	32.95	0.79	8.32	1.97	7.68	1.38E+08	10.54	7982.90
4750.61	5533.50	28.76	49.03	110.00	18.44	18.68	27.20	36.73	34.79	0.59	8.32	1.94	9.53	1.22E+08	12.45	6003.66
4593.31	5384.90	28.70	50.49	110.00	17.77	18.96	27.15	37.82	36.31	0.52	8.19	1.51	10.67	1,18E+08	13.74	5244.66
5047.29	5875.30	29.40	45.24	112.80	19.66	18.98	27.13	33.89	31.86	0.83	8.15	2.03	6.76	1.30E+08	9.50	8390.70
4309.85	5388.00	29.70	66.81	121.00	16.51	19.67	27.24	50.05	48.42	0.26	7.57	1.63	22.80	1.09E+08	25.66	2608.13
4220.30	5334.40	29.29	66.51	112.80	16.16	19.52	27.15	49.82	48.26	0.25	7.64	1.56	22.67	1.07E+08	25.59	2559.44
						STATISTIQUE	S DES MESU	IRES								
5278.28	6291.62	30.17	53.62	111.75	20.59	19.09	26.95	40.16	37.43	0.59	7.85	2.74	13.21	1.37E+08	15.55	5981.83
1091.25	1085.56	2.29	6.79	12.64	4.50	0.54	1.17	5.09	5.49	0.21	0.76	2.92	5,45	2,99E+07	5.03	2169.67
6795.65	7947.20	33.55	66.81	150.00	26.85	19.68	27.31	50.05	48.42	0.83	8.32	13.95	22.80	1.78E+08	25.66	8390.70
3086.86	4767.00	23.74	45.24	85.00	11.68	17.34	22.43	33.89	30.38	0.25	5.10	1.45	6.76	7.75E+07	9.50	2555.01
84452.48	100665.90	482,77	857,68	1787.95	329,44	305.51	431.15	642.59	598.81	9,44	125.64	43.78	211.44	2.18E+09	248.74	95709.29

MOYENNE DISPERSION (ÉCART TYPE) MAX MIN SOMME

MOYENNE TOTALE DE LA CONSOMMATION DE FULE PENDANT CES 13 HEURES : MOYENNE TOTALE DE LA CONSOMMATION D'APRES LE MODELE :

100665.9 84452,48

PERTES DE FUEL DUES A CET ECART DE FONCTIONNEMENT:

16213.4213 Kg

U = Coefficient d'échange global

Cs = Coefficient de salissure

DTLM = Difference de température logarithmique moyenne

Te = Température entré eau de mer

Ts = Température sortie eau de mer

Tv = Température vapeur échappement Basse pression

Tc = Température eau extraction condenseur

Flux à evacuer = Flux à evacuer par le condenseur

Sortie de la Regression mu	ltiple linéaire	
Constante		0.00
Écart type d'estimation sur	Y = Débit	225.52
R _{multiple} au carré		0.96
Nombre d'observations		16,00
Degrés de liberté		14,00
	X1=Vide rée)	C2 = Change
	(mbar)	(MW)
Coefficient(s) de(s) X	14.06	235.74
Écart type des coefficients	2.44	11.87

Sortie de la Regression mu	itiple linéaire					
Constante		0.00				
Écart type d'estimation sur	Y = Vide	0.35				
R _{mutupée} au ca rré		0.99				
Nombre d'observations		16.00				
Degrés de liberté		10.00				
	X1 = Charge	X2 = Te	X3 = Ts	X4 = Tv	X5 = Tc	X6 = C
	(MW)	(°C)	(°C)	(° C)	(° C)	
Coefficient(s) de(s) X	-0.04	1.57	2,94	2.03	-2.26	-5.
Écart type des coefficients	0.05	0.58	0.38	0.08	0.07	2.:

Annexe A3 (seets)

EXTRAIT DU FICHIER 2505.TRI (25 MAI 1992) DURÉE DE L'ACQUISITIQN : 20 HEURES

 U proper (kJ/h.m² °C)
 a
 10135.5

 Surface (m²)
 =
 1636

 Débit d'eau de refroidissement (kg/h)
 =
 6000000

 Débit nominal de vapeur à condenser (kg/h)
 =
 89805

Débit fuel	Débit fuel	Vide	Vide	Charge	Te	Ts	Tv	Te	Cı	Ts-Te	Tv-Tc	Tv-Ts	Flux à évacuer	DTLM	U
cakulé	(kg/h)	recommande	(mbar)	(MW)	(°C)	(°C)	(°C)	(°C)	i	(°C)	(°C)	(°C)	(kJ/h)	(°C)	(kJ/h.m².°C)
4692.77	5125.7	38.07	136.35	15.971	23.936	34.169	60.26	45.288	0.27	10.23	14.97	26.09	1.06E+08	23.64	2738.55
5570.85	5834.7	56.15	119.9	18.817	32,504	39,734	47.588	46.255	0.71	7.23	1.33	7.85	1.25E+08	10.53	7245.28
5674.28	5871.7	41.45	95.322	19.371	25.054	31.615	42.361	40.051	0.61	6.56	2.31	10.75	1.28E+08	12.75	6157.40
5899.28	6018	41.87	96,975	20.155	25.119	31.835	42.825	40.71	0.61	6.72	2.12	10.99	1.34E+08	13.16	6210.34
5970.01	6147.3	37.65	99,198	20.458	22.952	32.716	43.254	40.991	0.59	9.76	2.26	10.54	1.36E+08	13.95	\$943.48
6289.00	6422.8	49.68	110.55	21.421	28.773	35.965	45.597	43.928	0.70	7.19	1.67	9.63	1.42E+08	12.19	7126.43
6932.06	7087.7	51.70	115.6	23.651	29.315	37.102	46,725	44.975	0.76	7.79	1.75	9.62	1.57E+08	12.40	7733.84
7069.18	7306.3	27.56	95.546	24,446	17.064	24.177	42.673	37.375	0.50	7.11	5.30	18.50	1.62E+08	19,39	5111.21
7087.86	7345.7	26.60	95,493	24.524	16.566	23.643	42.661	37.076	0.50	7.08	5.59	19.02	1.63E+08	19.75	5032.71
7152.17	7405.8	29.88	97.854	24.707	18,165	25.471	43.17	38.344	0.52	7.31	4.83	17.70	1.64E+08	18.91	5296.20
7234.41	7488.6	46.39	107.84	24.781	26.401	34.402	45.35	43.301	0.72	8.00	205	10.95	1.64E+08	13.71	7327.94
7244.54	7498.4	48.43	108.78	24.79	27.419	35.312	45.569	43.649	0.76	7.89	1.92	10.26	1.64E+08	13.02	7721.10
7270.56	7476.8	50.53	116.45	24.854	28.455	36.521	46.894	44,967	0.75	8.07	1.93	10.37	1.65E+08	13.21	7629.97
7263.16	7511.8	43.84	104.79	24,915	25.095	32.856	44.539	41.984	0.71	7.76	2.55	11.68	1.65E+08	14.13	7150.00
7272.56	7532.4	46.14	109.98	24.918	26.248	34,174	45.748	43.657	0.70	7.93	2.09	11.57	1.65E+08	14.29	7067.28
7257,44	7503.5	38.99	98.516	24.958	22.659	30.37	43,346	40.608	0.65	7.71	2.74	12.98	1.66E+08	15.33	6600.78
7271.95	7514.7	40.67	99.918	24.987	23.495	31.293	43.679	41.024	0.67	7.80	2.66	12.39	1.66E+08	14.81	6840.20
7276.45	7515.6	38.04	98.343	25.037	22.168	29.752	43.272	40.113	0.64	7.58	3.16	13.52	1.66E+08	15.63	6494.59
7270.48	7552.9	28.81	97.721	25.136	17.532	24.892	43.185	38.014	0.52	7.36	5.17	18.29	1.67E+08	19.37	5261.57
7298.67	7586.6	34.96	100.75	25.155	20.6	28.1	43,9	39,9	0.58	7.50	4.00	15.80	1.67E+08	17.49	5830.05
7301.30	7561	29.98	96.901	25.229	18.092	25.55	43.037	38.339	0.54	7.46	4.70	17.49	1.67E+08	18.83	\$430.66
		·			STATISTIOUE	S DES MEST	RES								

MOYENNE DISPERSION (ECART TYPE) MAX MIN

					STATISTIQU	ES DES MEST	IRES								
6776.14	7014.67	40.35	104.89	23.25	23.70	31.41	45.03	41.45	0.62	7.72	3.58	13.62	1.54E+08	15.55	6283.31
746.12	741.89	8.37	10.23	2.64	4.36	4.53	3.73	2.73	0.12	0.84	2.87	4.34	1.75E+07	3.24	1177.65
7301.30	7586.60	56.15	136.35	25.23	32.50	39.73	60.26	46.26	0.76	10.23	14.97	26.09	1.67E+08	23.64	7733.84
4692.77	5125.70	26.60	95.32	15.97	16.57	23.64	42.36	37.08	0.27	6.56	1.33	7.85	1.06E+08	10.53	2738.55

Moyenne totale de la consommation de fuel pendant ces 20 heures (K_g): moyenne totale de la consommation prévue d'après le modele (K_g):

147308.00 142298.97

PERTES DE FUEL DUES A CET ECART DE FONCTIONNEMENT: 5009.03 Kg

U = Coefficient d'échange global

Cs = Coefficient de salissure

DTLM = Difference de température logarithmique moyenne

Te = Température entré eau de mer

Ts = Température sortie eau de mer

Tv = Température vapeur échappement basse pression

Tc = Température eau extraction condenseur

Flux à evacuer = Flux à evacuer au niveau du condenseur

Sortie de la Regression multi	ple	
Constante		0.000
Écart type d'estimation sur	Y = DÉBIT	45.300
R _{m shuple} au carré		0.997
Nombre d'observations		21.000
Degrés de liberté		19,000
	X1 = Vide	X2 = Charge
	(mbar)	(MW)
Coefficient(s) de(s) X	3.705	284,999
Écart type des coefficients	0.516	2.323

Sortie de la Regression multi	ple					
Constante		0.000				
Écart type d'estimation sur	Y = VIDE	2.430				
R _{m aktorie} au carré		0.960				
Nombre d'observations		21.000				
Degrés de liberté		15.000				
	X1 = Charge	X2 ≈ Te	X3 =Ts	X4 = Tv	XS = Tc	X6 = C
	(MW)	(°C)	(°C)	(°C)	(°C)	
Coefficient(s) de(s) X	2.442	2.991	0.967	1.335	-1.388	-89.86
Écart type des coefficients	1.380	1.383	1.066	1.071	1.145	62.20

Annune A3 (sente)

EXTRAIT DU FICHIER 2305.TRI (23 MAI 1992) DUREE D'ACQUISITION : 12 HEURES

 U propre (k/h.m² °C)
 =
 10135.3

 Surface (m²)
 =
 1636

 Surface (m²)
 =
 6000000

 Dbit nominal de vapeur à condenser (kg/h) =
 89805

Débit calculé	Débit fuel	Vide	Vide	Charge	Te	Ts	Tv	Tc	Ca	Ts-Te	Tv-Tc	Tv-Ts	Flux à évacuer	DTLM	U
	(kg/h)	recommande	(mbar)	(MW)	(°C)	(°C)	(°C)	(°C)		_(°C)	(°C)	(°C)	(kJ/h)	(°C)	(kJ/h.m².°C)
5196.09	6052.10	23.89	66.25	19.78	16.2	23.1	34.7	31.7	0.59	6.90	3.00	11.60	1.31E+08	13.46	5959.85
2075.48	3651.20	23.29	132.56	7.13	17,49	21.412	54.023	27.503	0.15	3.92	26.52	32.61	4.73E+07	19.14	1509.87
4287.00	5127.00	27.98	77.21	15.86	18,905	24.55	37.668	33.829	0.45	5.65	3.84	13.12	1.05E+08	14.00	4590.88
4926.78	5732.30	27.96	80.63	18.46	18,474	24.647	38.844	34,802	0.48	6.17	4.04	14.20	1.22E+08	15.24	4910.72
5660.52	6551.60	28.84	89.70	21.39	18.36	25.114	41.052	36.321	0.51	6.75	4,73	15.94	1.42E+08	16.93	\$122.60
5742.88	6692.50	26.88	104.46	21.84	17.291	24.187	44.59	37.069	0.43	6.90	7.52	20.40	1.45E+08	20.09	4406.73
5700.09	6465.20	25.48	91.52	21.74	16.609	23.331	41.56	35,449	0.47	6.72	6.11	18.23	1.44E+08	18.53	4755.95
5719.30	6498.70	25.50	94.29	21.82	16.603	23.151	42.504	36.136	0.45	6.55	6.37	19.35	1.45E+08	19.44	4549.40
5320.21	6202.40	24.76	97,42	20.24	16.546	22.845	43.02	35,585	0.41	6.30	7,44	20.18	1.34E+08	19.60	4185.60
5603.59	6560.10	25.85	96.48	21.33	16.876	23.412	42.892	35.978	0.44	6.54	6.91	19.48	1.41E+08	19.29	4482.38
6286.36	7230.00	28.74	97.19	23.94	17.77	24.928	43.166	37.911	0,50	7,16	5.25	18.24	1.59E+08	19.17	5062.12
6423.27	7448.20	32.75	100.75	24.27	19.7	27	43.6	39.3	1.86	7.30	4.30	16.60	1.61E+08	18.06	5449.06
					CTATISTICITY TO	SE THES MISSI	DEC								

MOYENNE DISPERSION (ECART TYPE) MAX MIN

U = Coefficient d'échange global

Te = Température entré cau de mer

Ts = Température sortie eau de mer

DTLM = Difference de température logarithmique moyenne

Tv = Température vapeur échappement basse pression
Tc = Température eau euraction condenseur

Flux à evacuer = Flux à evacuer au niveau du condenseur

Cs = Coefficient de salissure

	STATISTIQUES DES MESURES															
	5138.03	6069.37	26.29	93,43	19.41	17.37	23.70	42.18	34.75	0.44	6.32	7.43	18,49	1.29E+08	17.72	4503,28
PE)	1087.64	925.25	1.84	16.17	4.37	0.86	1.05	4.65	2.78	0.10	0.86	6.21	5.30	2.90E+07	2.30	1050.03
J	6286.36	7230.00	28.84	132.56	23.94	18.91	25.11	\$4.02	37.91	0.59	7.16	26,52	32.61	1.59E+08	20.09	5959.85
[2075.48	3651.20	23.29	66.25	7.13	16.20	21.41	34.70	27.50	0.15	3.92	3.00	11.60	4.73E+07	13.46	1509.87

MOYENNE TOTALE DE LA CONSOMMATION DE FUEL PENDANT CES 12 HEURES (Kg): MOYENNE TOTALE DE LA CONSOMMATION PRÉVUE D'APRES LE MODELE (Kg):

74711.30 62941.57

PERTES DE FUEL DUES A CET ECART DE FONCTIONNEMENT: 11269.73 Kg

Regression Output: Constant 0.00 Std Err of Y Est 141.53 R Squared 0.98 No. of Observations 12.00 Degrees of Freedom 10.00 X Coefficient(s) 13,84 245.95 Std Err of Coel 1.35 6.34

Regression Out	put:						
Constant		0.00					
Std Errof Y Est		68.07					
R Squared		1.00					
No. of Observations		12.00					
Degrees of Freedom		5.00					
X Coefficient(s)	13.64	247.22	-55.08	156.07	-5.88	-72_10	18.69
Std Err of Coef.	11.66	55.24	184,99	151.30	39,15	46.14	97.58

Annexe A3 (seute)

EXTRAIT DU FICHIER 1905.TRI (19 MAI 1992)

DUREE D'ACQUISITION : 15 HEURES Upropre (kJ/h.m² °C)

Surface (m²)

Débit d'eau de refroidissement (kg/h)

Débit nominal de vapeur à condenser (kg/h) =

10135.5 1636 6000000 89605

Débit calculé	Débit fuel	Vide recommand	Vide théorique	Vide réel	Charge	Te	Ts.	Τv	Te	Cı	Ts-Te	Tv-Tc	Tv-Ts	Flux à évacuer	DTLM	U
(kg/h)	(kg/h)	Delas-WEIR	(mbar)	(mbar)	(MW)	(°C)	(°C)	(°C)	(°C)	I	(℃)	(°C)	(°C)	(kJ/h)	(°C)	(kJ/h.m².°C)
4000.74	8131.90	37.93	81.28	112,90	27.02	21.63	30.65	41.35	39.42	0.77	9.02	1.93	10.70	1.79E+08	13.94	7853,99
3940.68	8226.20	36.71	79,93	112.87	27.12	21.00	30,20	41.00	39.00	0,77	9.20	2.00	10.80	L80E+08	14.09	7799,40
3975.51	8144.00	37.35	80.63	112.75	27.11	21.32	30.62	41.18	39.13	0.78	9.30	2.06	10.57	1.80E+08	13.87	7922.96
3979.94	8 169.00	37.34	80.64	112.47	27.18	21.30	30,55	41.19	39.21	0.78	9.25	1.97	10.64	1.80E+08	13.96	7891.35
3942.63	8083.50	36,95	79.72	112.46	26.96	21.16	30.55	40.94	38.84	0.79	9.39	2.10	10.40	L79E+08	13.72	7966.75
3932.09	8107.00	36.36	79.57	112.29	27.28	20.78	30,46	40.90	38.74	0.79	9.68	2.16	10.45	1.81E+08	13.87	7975.04
3893.95	8092.00	35.53	79.68	112.09	27.39	20.34	30.36	40.93	38.66	0.78	10.02	2.27	10.57	1.82E+08	14.09	7877.90
3837.51	8109.40	34.40	78.00	111.89	27,48	19.75	30,21	40.48	38.11	0.79	10.45	2.37	10.28	1.82E+08	13.93	7995,78
3960.83	8263.40	37.05	80.05	11 L72	27.14	21.16	30.43	41.03	39.01	0.78	9.27	2.02	10.60	1.80E+08	13.91	7909,14
3830.34	8110.60	34.29	77.68	11L60	27,47	19.70	30,07	40.40	37.98	0.79	10.38	2.41	10.32	1.82E+08	13.93	7995,67
3830.39	8105.80	34.29	77.86	111.42	27.46	19.70	29,97	40.45	38.05	0.78	10.27	2.39	10.47	1.82E+08	14.04	7927.13
3844.15	8120.60	34.50	78.42	111.28	27.50	19.79	29.91	40.60	38.21	0.77	10.11	2.38	10.69	1.82E+08	14.21	7847.25
3846.18	8 107.00	34,58	78.84	111.23	27,46	19.85	29,86	40.71	38.37	0.77	10.01	2.34	10.85	L82E+08	14.34	7760, 10
3809.46	8065.20	34,34	78.27	111.15	27.13	19.81	29.81	40.56	38.22	0.76	10.00	2.34	10.74	1.80E+08	14.23	7725.09
3815.37	8056.80	34.38	78.56	111.04	27.18	19.82	29,78	40.64	38.36	0.76	9.96	2.27	10.86	1.80E+08	14.36	7673.05
3819.57	8079.10	34.35	78.06	110.93	27.26	19.78	29.74	40.50	38.19	0.77	9.96	2.31	10.76	1.81E+08	14.25	7757.56
					•	STATISTIQUE	ES DES MESU	RES								
3891.21	8123.22	35.65	79.20	111.88	27.26	20.43	30.20	40.80	38.59	0.78	9.77	2.21	10.61	1.81E+08	14.05	7867.39
66.47	53.81	1.35	1.10	0.66	0.17	0.71	0.31	0.29	0.45	0.01	0.45	0.16	0.18	1.15E+06	0.18	96.92
4000.74	8263,40	37.93	81.28	112.90	27,50	21.63	30,65	4 L35	39.42	0.79	10.45	2.41	10.86	1.82E+08	14.36	7995.78
												_				

MOYENNE
DISPERSION (ECART TYPE)
MAX
MIN

MOYENNE TOTALE DE CONSOMMATION DE FUEL PENDANT CES 15 HEURES (K_g) : MOYENNE TOTALE DE CONSOMMATION DE FUEL PREVUE PAR LE MODELE (K_g) :

29,74

19.70

12997 L50 62259.36

PERTES DE FUEL DUES A CET ECART DE FONCTIONNEMENT:

40.40

37.98

67712.14 Kg

9.02

U = Coefficient d'échange global
Cs = Coefficient de salissure
DTLM = Difference de température logarithmique moyen
Te = Température entré eau de mer
Ts = Température sortie eau de mer
Tv = Température vapeur échappement basse pression
To = Température eau extraction condenseur
Flux à evacuer = Flux à evacuer au niveau du condenseur

3809.46

8056.80

34.29

77.68

T 10,93

Sortie de la l	Regression:	
Constante		0.00
Écart type d'estimation sur	y= Débia	52.26
R _{multiple} au carré		0.17
Nombre d'observations		16.00
Degrés de liberté		14,00
	Vide	Charge
	recommandé	(MW)
Coefficient(s) de(s) X	55.51	70.16
Ecart type des coefficients	10.95	44,96

Sortie de la R	egression:					
Constante		0.00				
Écart type d'extimation sur y	= Vide	0.35				
R _{multiple} au carré		0.82				
Nombre d'observations		16.00				
Degrés de liberté		10.00				
	Charge	Te	T,	Tv	Τc	C ₄
	(MW)	(°C)	(°C)	(°C)	(°C)	
Coefficient(s) de(s) X	-2.05	-2.02	-1.33	1.07E+00	3.63	84.39
Écart type des coefficients	1.86	1.54	2.07	2.95E+00	3.49	50.60

1.93

10.28

1.79E+08

13.72

7673.05

AMPLERE A3 (Rm)

EXTRAIT DU FICHIER 1805.TRI (18 MAI 1992) DUREE D'ACQUISITION : 17 HEURES

 U proprie (kJ/h.m² °C)
 =
 10135.5

 Surface (m²)
 =
 1636

 Débit d'eau de refroidissement (kg/h)
 =
 6000000

 Débit nominal de vapeur à condenser (kg/h)
 =
 89805

Débit calculé	Débit fuel	Vide recomma	Vide théorique	Vide	Charge	Te	Ts	Τv	Tc	Cs	Ts-Te	Tv-Tc	Tv-Ts	Flux à évacuer	DTLM	U
	(kg/h)	Delas WEIR		(mbar)	(MW)	(°C)	(°C)	(°C)	(°C)		(°C)	(℃)	(℃)	(kJ/h)	(°C)	(kJ/h.m².℃)
7580.45	7812.50	33.38	51.67	102.12	26.44	19.50	28.20	38.70	36.40	0.79	8.70	2.30	10.50	1.75E+08	13.45	7971.58
7630.83	7870.60	33,58	51.97	103.86	26.62	19.56	28.33	38.93	36.66	0.78	8.77	2.26	10.60	1.77E+08	13.59	7937.63
7673.69	7916.80	35,08	55.14	105.72	26.75	20.28	28.74	41.30	37.42	0.73	8.46	3.88	12.56	1.77E+08	14.73	7360.10
7653.42	7975.60	35,80	53.40	106.39	26.67	20.65	29.00	40.00	37.81	0.77	8.35	2.19	11.00	1.77E+08	13.85	7806.28
7603.07	7897.40	35.95	53.50	106.91	26.49	20.78	29.16	40.07	37.92	0.77	8.39	2.15	10.91	1.76E+08	13.79	7784.61
6941.91	7200.30	34.80	51.74	107.12	24.16	20,75	29.30	38.76	36.70	0.78	8.55	2.05	9.45	1.60E+08	12,42	7883.43
7684.92	8017.80	35.78	53.70	107.22	26.78	20.62	29.32	40.22	37.96	0.77	8.70	2.26	10.90	1.78E+08	13.87	7824.99
7579.89	7896.90	36.29	53.67	107.25	26.40	20.97	29.30	40.20	38.07	0.77	8.34	2.13	10.90	1.75E+08	13.77	7771.68
7225.91	7472.60	35.10	52.50	107.39	25.16	20.67	29.33	39.33	37.27	0.77	8.66	2.06	10.00	1.67E+08	13.02	7832.70
7405.72	7689.30	35.20	52.81	107.52	25.80	20.57	29.34	39.56	37.47	0.78	8.77	2.09	10.22	1.71E+08	13.28	7873.43
7584.41	7861.70	36.22	53.59	107.55	26.42	20.93	29.38	40.14	38.02	0.77	8.45	2.12	10.76	1.75E+08	13.68	7826.30
7415.44	7694.40	35.09	52.82	107.57	25.83	20.51	29.34	39.56	37.41	0.78	8.84	2.15	10.22	1.71E+08	13.28	7884.32
7433.48	7713.40	34.96	52.74	107.62	25.90	20.42	29.35	39.51	37.31	0.78	8.93	2.20	10.16	1.72E+08	13.24	7932.07
7379.63	7724.80	34.87	52.56	107.66	25.71	20.43	29.37	39.37	37.14	0.79	8.95	2.23	10.00	1.71E+08	13.07	7975.27
7614.40	7950.80	35.97	53,48	107.69	26.53	20.78	29.41	40.06	37.89	0.78	8.63	2.17	10.65	1.76E+08	13.63	7889.31
7680.18	7957,80		53.63	107.76	26.76	20.74	29.43	40.17	37.94	0.78	8.69	2.23	10.74	1.77E+08	13.72	7906.77
7629.03	7895.70		53.30	107.81	26.59	20.47	29.41	39.93	37.67	0.78	8.94	2.25	10.51	1.76E+08	13.58	7933.96
7676.44	7955.10	35.56	53.44	107.83	26.75	20.52	29.42	40.03	37.79	0.78	8.91	2.24	10.61	1.77E+08	13.67	7933.18
			•													

MOYENNE DISPERSION (ECART TYPE) MAX MIN

53.09	106.83	26.21	20.51	29.17	39.77	37.49	0.77	8.67	2,28	10_59	1.74E+08	13.54	7851.53
0.82	1.48	0.67	0.39	0.36	0.61	0.49	0.01	0.20	0.40	0.62	4.43E+06	0.46	133.38
55.14	107.83	26.78	20.97	29.43	41.30	38.07	0.79	8.95	3,88	12.56	1.78E+08	14.73	7975.27
51.67	102.12	24.16	19.50	28.20	38.70	36.40	0,73	8.34	2.05	9.45	1.60E+08	12.42	7360,10

MOYENNE TOTALE DE LA CONSOMMATION EN FUEL PENDANT CES 17 HEURES : MOYENNE TOTALE DE LA CONSOMMATION D'APRES LE MODELE :

140503.50 135392.81

PERTES DE FUEL DU A CETECART DE FONCTIONNEMENT:

5110.69 Kg

U = Coefficient d'échange global

Cs = Coefficient de salissure

DTLM = Difference de température logarithmique moyenne

7521.82

188.85

7684,92

6941.91

7805.75

197.68

8017.80

7200.30

35.28

0.78

36.29

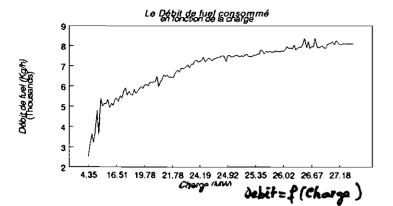
33.38

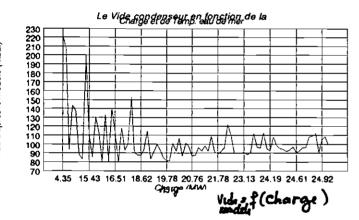
Te = Température entré eau de mer

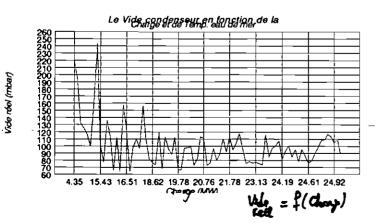
Ts = Température sortie eau de mer

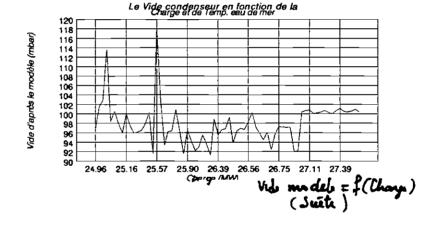
Tv = Température vapeur échappement basse pression

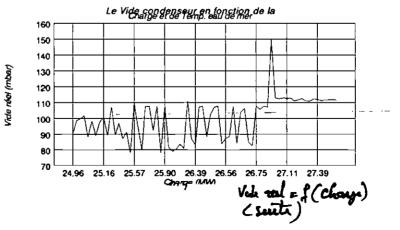
Tc = Température eau extraction condenseur

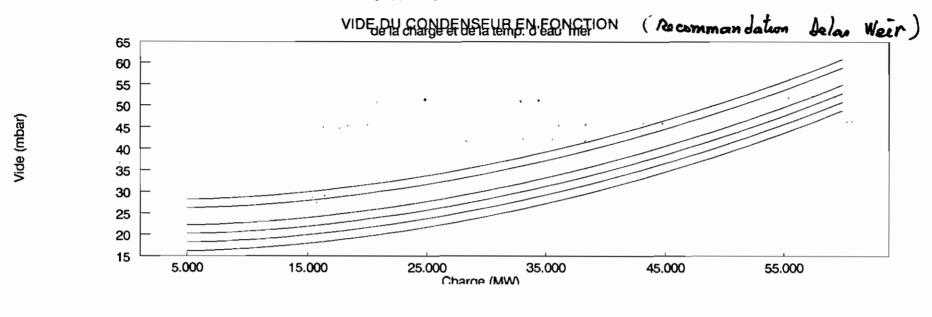

Flux à evacuer = Flux à evacuer au niveau du condensuer

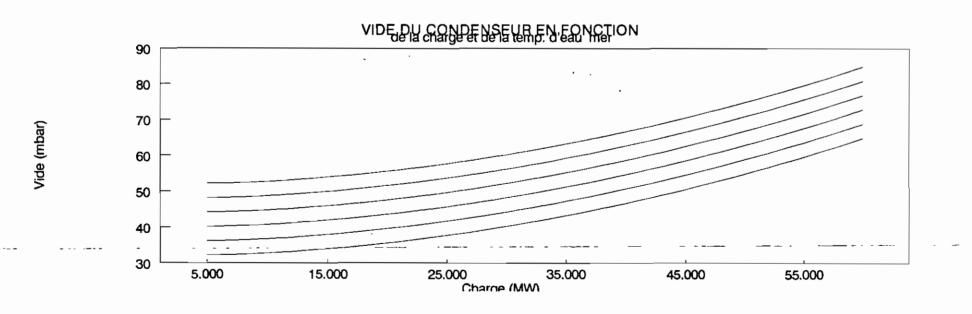

Sortie de la Regression	multiple linéa	ire
Constante		0.00
Écart type d'estimation sur '	Y = Débit	34.66
R _{mumple} au carré		0.97
Nombre d'observations		18.00
Degrés de liberté		16.00
	$X1 = V_1 de$	X2 = Charge
	(mbar)	(MW)
Coefficient(s) de(s) X	3.97	281.67
Écart type des coefficients	2,45	9.98


Sortie de la Regressio	n multiple linéai	re				
Constante		0.00				
Écan type d'estimation sur	Y = Vide	0.26				
R _{multiple} au carré		0.98				
Nombre d'observations		18.00				
Degrés de liberté		12.00				
	X1 = Charge	X2 = Te	X3 = Ts	X4 = Tv	X.5 = Tc	X6 = Cs
	(MW)	(°C)	(°C)	(°C)	(°C)	
Coefficient(s) de(s) X	-0.21	-1.16	4.54	-0.18	0.74	-21.73
Écart type des coefficients	0.64	1.18	0.63	0.28	1.19	8.77


Caloul des moyennes par fichier


				I I						<u> </u>					Im		
		Débit calculé	Débit réel	Vide recommandé	Vide reel	Charge	Te	Ts office	Tv (PC)	Tc	Cs.	Ts-Te	Tv-Tc	TV-Ts	Flux à évacuer	DTLM	U (kJ/h.m².°C)
4505 4453 541 1000	A + C- 0 (F100A) F1	(Kg/b)	(Kg/b)	(mbar)	(mbar)	(MW)	(°C)	(°C)	(°C) 40.16	(°C) 37.43	0.00	(°C)	(°C) 2.74	(°C)	(kJ/h) 1.37E+08	(°C) 15.55	(kJ/H.m=".*C) 5981.83
1505 (15 MAI 1992)	MOYENNE DISPERSION (ÉCART TYPE)	5278.28	6291.62 1085.56	30.17	111.75	20.59 4.50	19.09	26.95 1.17	5,09	5.49	0.59 0.21	7,85	2.92	13.21		5,03	2169.67
Nb Observations = 15	(1091.25		33,55	12.64 150.00	26.85	0.54 19.68	27.31	50.05	48,42	0.83	8.32	13.95	22,80		25,66	8390.70
	MAX MIN	6795.65 3086.86	7947,20 4767,00	23.74	85.00	11.68	17.34	27.43	33,89	30,38	0.83	5.10	1.45	6.76		9,50	2555.01
1005 / 10 14 / 1 1007)		7521.82	7805.75	35.28	106.83	26.21	20.51	29.17	39.77	37,49	0.23	8,67	2.28	10.59		13,54	7851.53
1805 (18 MAI 1997)	MOYENNE			0.78		0.67	0.39	0,36	0.61	0.49	0.77	0.20	0.40	0.62		0.46	133.38
No Observations = 17	DISPERSION (ECART TYPE)	188.85	197.68		1.48	26.78		29,43	41,30	38.07	0.79	8.95	3.88	عمدن 12.56		14,73	7975.27
	MAX	7684.92	8017.80	36.29 33.38	107.83	24.16	20.97	28.20	38,70	36.40	0.73	8.34	2.05	9,45		12.42	7360.10
1006 (40 24 1 1002)	MIN	6941.91	7200.30	35.65	102.12	27,26	19.50 20.43	30,20	40.80	38.59	0.78	9.77	2.03	10.61		14.05	7867.39
1905 (19 MAI 1992)	MOYENNE	3891.21	8123.22 53.81	1,35	0.66	0.17		0.31	0.29	0.45	0.78	0.45	0.16	0.18		0.18	96,92
Nb Observations = 15	DISPERSION (ECART TYPE)	4000.74	8263.40	37,93		27.50	21.63	30.65	41,35	39.42	0.79	10.45	2.41	10.86		14,36	7995.78
	MAX				112-90						0.79		1.93	10.86		13.72	7673.05
2405 (2415 14100)	MIN	3809.46	8056.80	34.29	110.93	26.96	19.70	29.74	40,40	37.98	0.76	9.02 8.06		10.28		14.73	6467.71
2105 (21 MAI 1992)	MOYENNE	6653.42	7087.29	29.47	78,30	23.63	18.14	26.21	38,65		0.06		3.22 0.53				613.87
Nb Observations = 15	DISPERSION (ECARTTYPE)	1034.11	1057.11	3.63	8.24	3.74	1.41	2.01	2.52	2.28		0.95		1.14		1,28	
	MAX	7462.47	7930.20	37.00	91.97	26.53	21.57	30.27	42.15	39.47	0.71	9.00	3.92 2.40	13.71		15.94	7204.49 5061.88
7205 122 11 1 1007	MIN	4603.25	4921.70	24.33	63.63	16.22	16.82	23.19	33.82	31.41	0.58	6,16 7,58	3.59	10.08		11.98 15.05	5921.53
2205 (22 MA1 1992)	MOYENNE	6677.48	6582.00	26.94	83.39	21.95	17.24	24.83	37,98	34.40							908.36
Nb Observations = 11	DISPERSION (ÉCART TYPE)	1059.71	1089.54	2.36	25.06	3.47	0.68	1.37	1.49	1.57	0.09	0.82	1.14	1.30		0,79	
	MAX	7509.34	7387.90	29.97	161,36	24.68	18.22	26.56	39.55	35.98	0.66	8.34	7.08	16,71		15,89	6664.96
	MIN	3820.57	3581.10	22.30	66.25	12.60	16.20	21.98	34.70	31.61	0.32	5.47	2.71	11.60		13.46	3212.97
2305 (23 MAI 1992)	MOYENNE	5138.03	6069.37	26.29	93.43	19.41	17.37	23.70	42_18	34,75	0.44	6.32	7.43	18.49		17.72	4503.28
Nb Observations = 12	DISPERSION (ÉCART TYPE)	1087.64	925.25	1.84	16.17	4,37	0.86	1.05	4,65	2.78	0.10	0.86	6.21	5.30		2.30	1050.03
	MAX	6286.36	7230.00	28.84	132.56	23,94	18.91	25.11	54,02	37.91	0.59	7.16	26.52	32.61	1.59E + 08	20.09	5959.85
	MIN	2075.48	3651.20	23.29	66.25	7.13	16.20	21.41	34,70	27.50	0.15	3,92	3.00	11.60		13.46	1509.87
2505 (25 MAI 1992)	MOYENNE	6776.14	7014.67	40.35	104.89	23.25	23.70	31.41	45.03	41.45	0.62	7.72	3.58	13.62		15.55	6283.31
Nb Observations = 20	DISPERSION (ÉCART TYPE)	746.12	741.89	8.37	10.23	2.64	4_36	4.53	3,73	2.73	0.12	0.84	2.87	4.34		3.24	1177.65
	MAX	7301.30	7586.60	56.15	136.35	25.23	32.50	39.73	60.26	46.26	0.76	10.23	14.97	26.09		23.64	7733,84
	MIN	4692.77	5125.70	26.60	95.32	15.97	16.57	23.64	42,36	37,08	0.27	6.56	1.33	7,85		10.53	2738.55
2605 (26 MAI 1992)	MOYENNE	5241.28	5755.73	32.60	115.21	18.24	20.67	35.59	48,49	42.79	0.53	14.92	5.70	12.90		16.82	5355.59
Nb Observations = 23	DISPERSION (ÉCART TYPE)	1633.37	1384.52	7.10	45.91	5.79	3.00	8.05	13.05	7.76	0.24	8.35	7,85	8.13		7,22	
	MAX	7335.32	7807,20	48.37	243.50	25.57	27.96	52.55	86.01	62.60	0.80	35.98	27.90	35.60		37.35	8060.06
	MIN	1330.86	2509.60	21.40	72.72	4.35	16.50	25.88	36.82	34.03	0.05	6.30	0.76	6.03		10.99	471.62
2705 (27 MAI 1992)	MOYENNE	8749.61	7673.48	35.18	87.22	25.45	20.64	29.07	41.00	37,82	0.71	8.43	3.18	13.93		14,40	
Nb Observations = 19	DISPERSION (ÉCART TYPE)	322.78	389.67	2.14	3.12	9.83	1.13	1.15	0.71	0.86	0.04	0.41	0.37	1.03		0.90	
	MAX	9291.55	8405.70	41.30	94,14	26.72	23.66	32.31	42,47	39.93	0.79	9.25	3.91	13.70		15.81	8027.78
	Min	8120.54	7083.40	31.11	79.75	23.83	18.33	27.25	39.10	35.90	0.64	7.90	2.55	10.17	1.58E+08	12.94	6447.99
	MOYENNE DES MOYENNES	6214.14	6933.68	32.44	99.21	22.89	19.75	28,57	41.56	37.79	0.63	8.91	3.77	13,00	1.52E + 08	15.27	6380.24
	MOYENNE DES ECARTS TYPE		256.48	1.11	4.57	0.97	0.48	0.74	1.19	0.90	0.03	0.51	0.83	1.02		0.79	333.82
	MAX. DES MOYENNES	8749.61	8123.27	40.35	115.21	27.26	23.70	35.59	48.49	42.79	0.78	14.92	7.43	18,49		17.72	
	MIN, DES MOYENNES	3891,21	5755,73	26,29	78.30	18,24	17.24	23.70	37.98	34.40	0.44	632	2_21	10.59		13,54	4503.28
Pour un de gré de confins ce de		3031,21	2,22,13	2023	70.30	10.124	11-43	200	250	215	2344			, 327			
Z = 1,96 et on a l'encadrement																	
poet on a reaceaste ment	servent hoes see tholesages	Min 5689.28	6430.97	30,27	90.24	20.98	18.81	27.12	39.23	36.02	0.56	7,82	2.14	11.00	1.39E+08	13.71	5725.96
Moyenne comprise entre :	cl	7009.20	3430.97	30.27	30.24	20.96	16.61	27.112	39.22	5002	0.30	1,02	2_14	1140	1272.00	13.71	0123.30
		Max 6739.01	7436.39	34.60	108.18	24.79	20.70	30.02	43,90	39.57	0.69	9.80	5.40	14.99	1.64E+08	16.82	7034,53

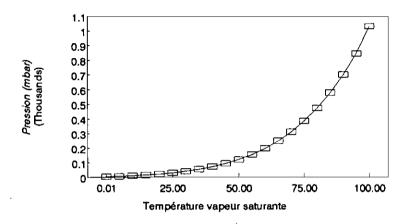


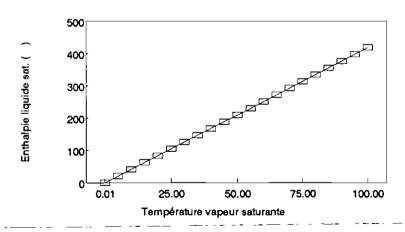

Annexe B

VALEUR DU VIDE RECOMMANDÉ PAR DELAS-WEIR (em mbar) en fonction de la température de l'esu de mer

Charge (MW)	Vide à	Vide à	Vide à	Vide à	Vide à 19	Videni 20	Vide à	Vide à 24	Vide à 26	Vide à 28	Vide à 30	Vide à 32	Vide à	Vide à 36	Vide à
5.000	16.209	18.209	20.209	22,209	26.209	28.209	32,209	36.209	40,209	44,209	48,209	52,209	56,209	60,209	64.209
6,000	16.223	18.223	20.223	22,223	26,223	28.223	32,223	36.223	40.223	44.223	48.2231	52.223	56,223	60,223	64.223
7,000	16.295	18.295	20.295	22.295	26.295	28.295	32.295	36.295	40.295	44.295	48,295	52.295	56,295	60,295	64.295
8.000	16.408	18.408	20,408	22,408	26.408	28.408	32.408	36.408	40.408	44,408	48,406	52,408	56,408	60.408	64,408
9,000	16.553	18.553	20,553	22,553	26,553	28.553	32.553	36.553	40.553	44.553	48.553	52.553	56,553	60.553	64.553
10,000	16,725	18.725	20.725	22,725	26.725	28.725	32,725	36.725	40.725	44.725	48.725	52.725	56,725	60.725	64.725
11,000	16.921	18.921	20.921	22.921	26.921	28.921	32.921	36.921	40,921	44,921	48,921	52.921	56,921	60.921	64,921
12,000	17.139	19,139	21.139	23.139	27.139	29.139	33.139	37.139	41.139	45,139	49.139	53.139	57.139	61.139	65.139
13.000	17.378	19.378	21.378	23.378	27.378	29.378	33.378	37.378	41.378	45.378	49.378	53.378	57.378	61.378	65.378
14.000	17.636	19.636	21.636	23.636	27.636	29.636	33.636	37.636	41.636	45.636	49.636	53,636	57.636	61.636	65.636
15.000	17,913	19.913	21,913	23.913	27.913	29.913	33,913	37.913	41913	45.913	49.913	53.913	57.913	61.913	65.913
16,000	18.209	20.209	22.209	24.209	28.209	30.209	34.209	38.209	42.209	46,209	50.209	54,209	58.209	62,209	66,209
17,000	18.524	20.524	22.524	24.524	28.524	30.524	34.524	38.524	42.524	46,524	50,524	54.524	58,524	62,524	66,524
18,000	18,856	20.856	22.856	24,856	28,856	30.856	34.856	38.856	42,856	46,856	50,856	\$4,856	58,856	62,856	66,856
19.000	19.207	21.207	23.207	25.207	29,207	31,207	35.207	39,207	43.207	47,207	51,207	55,207	59,207	63,207	67.207
20,000	19.576	21.576	23.576	25,576	29,576	31.576	35,576	39,576	43.576	47,576	51,576	55,576	59,576	63.576	67.576
21.000	19.962	21.962	23.962	25,962	29,962	31.962	35,962	39,962	43,962	47,962	51.962	55,962	59,962	63.962	67.962
22,000	20.367	22.367	24,367	26.367	30.367	32.367	36,367	40.367	44.367	48.367	52.367	56.367	60.367	64,367	68.367
23,000	20.789	22,789	24,789	26.789	30.789	32.789	36,789	40.789	44,789	48,789	52.789	56,789	60.789	64.789	68.789
24,000	21,229	23,229	25,229	27.229	31.229	33.229	37,229	41,229	45,229	49,229	53,229	57,229	61.229	65,229	69.229
25,000	21,687	23,687	25,687	27.687	31.687	33.687	37.687	41.687	45.687	49.687	53.687	57,687	61.687	65.687	69.687
26,000	22,162	24, 162	26.162	28.162	32.162	34.162	38.162	42.162	46,162	50.162	54, 162	58.162	62,162	66.162	70.162
27.000	22.656	24.656	26.656	28.656	32.656	34.656	38.656	42.656	46.656	50.656	54,656	58.656	62.656	66.656	70.656
28,000	23.167	25,167	27.167	29.167	33,167	35.167	39.167	43.167	47.167	51.167	55.167	59.167	63, 167	67.167	71.167
29,000	23.695	25,695	27.695	29,695	33.695	35.695	39,695	43.695	47.695	51.695	55.695	59.695	63.695	67.695	71.695
30,000	24.242	26.242	28.242	30.242	34,242	36,242	40.242	44.242	48.242	52,242	56.242	60.242	64.242	68.242	72.242
31,000	24.806	26.806	28.806	30.806	34.806	36,806	40.242	44.806	48.806	52.806	56,806	60.806	64.806	68.806	72.806
32,000	25,388	27.388	29.388	31.388	35.388	37.388	41.388	45.388	49,388	53,368	57.388	61.388	65,368	69.388	73,388
33.000	25.987	27,987	29,987	31.987	35.987	37.987	41.987	45.987	49.987	53,987	57,987	61.987	65.987	69.987	73.987
34.000	26.604	28.604	30.604	32.604	36,604	38.604	42.604	46.604	50,604	54,604	58.604	62,604	66.604	70.604	74.604
35.000	27,239	29,239	31.239	33,239	37,239	39.239	43,239	47.239	51,239	55,239	59,239	63.239	67.239	71,239	75.239
36,000	27.892	29.892	31.892	33,892	37,892	39,892	43,892	47.892	51,892	55,892	59,892	63.892	67.892	71.892	75.892
37.000	28.563	30.563	32.563	34.563	38.563	40.563	44,563	48.563	52,563	56.563	60.563	64.563	68.563	72.563	76.563
38.000	29.251	31.251	33.251	35.251	39.251	41.251	45.251	49.251	53.251	57.251	61.251	65.251	69.251	73.251	77,251
39,600	29.957	31.957	33.957	35.957	39,957	41.957	45,957	49.231	53.957	57.957	61.957	65.957	69.957	73.251	77.957
40.000	30.681	32.681	34.681	36.681	40.681	42.681	46.681	50.681	54.681	58.681	62.681	66.681	70.681	74.681	78.681
41,000	31.423	33,423	35.423	37,423	41.423	43.423	47,423	51.423	55,423	59,423	63.423	67.423	71.423	75.423	79.423
42.000	32,182	34,182	36.182	38.182	42.182	44.182	48.182	52.182	56,182	60.182	64.182	68, 182	72.182	76.182	80.182
43.000	32,959	34,959	36,959	38,959	42.959	44.959	48,959	52,182	56,959	60.182	64,959	68,959	72.959	76.182	80.959
44,000	33.754	35,754	37,754	39,754	43,754	45.754	49,754	53.754	57.754	61.754	65.754	69.754	73,754	77,754	81.754
45,000	34.567	36.567	38.567	40.567	44,567	45.754	\$0.567	54.567	58.567	62.567	66.567	70.567	74.567	78,567	82.567
46.000	35.397	37.397	39,397	41.397	45.397	47.397	51,397	55.397	59,397	63,397	67.397	71.397	75,397	79.397	83.397
47.000	36.246	38.246	40.246	41.347	45.246	48.246	52.246	56.246	60,246	64,246	68.246	72.246	76.246	80.246	84,246
48,000	37.112	39.112	41.112	43.112	47.112	49,112	53,112	57.112	61.112	65.112	69.112	73.112	77.112	81.112	
49,000	37.112	39.112	41.112	43,112	47,112	49,112	53,996	\$7.112 \$7,996	61,996	65,996	69,996	73.996	77.996	81.112	85.112
50.000	38,898	40,898	42,898	44,898	48,898	50,898	54,898	58,898				74,898			85.996
51.000	39,818	41.818	43.818	45.818	48.898	51,818		59.818	62.898	66.898	70.898		78,898	62.898	86.898
52,000							55.818		63,818	67.818	71.818	75.818	79.818	83.818	87.818
53,000	40.755	42.755	44.755	46.755	50.755	52.755	\$6.755	60.755	64.755	68.755	72.755	76.755	80.755	84.755	88.755
54,000	41.711	43.711	45.711	47,711	51.711	53.711	57.711	61.711	65.711	69,711	73.711	77.711	81.711	85.711	89.711
55,000	42.684	44.684	46.684	48,684	52,684	54,684	58,684	62.684	66.684	70.684	74.684	78,684	82.684	86.684	90.684
	43,675	45.675	47.675	49.675	53,675	55.675	59,675	63.675	67.675	71.675	75.675	79.675	83,675	87.675	91.675
56,000	44.684	46,684	48.684	50.684	54,684	56.684	60.684	64,684	68.684	72.684	76.684	80.684	84.684	88.684	92.684
57.000	45.711	47.711	49.711	51.711	55.711	57.711	61.711	65.711	69.711	73.711	77.711	81.711	85.711	89.711	93.711
58.000	46.755	48.755	50.755	52.755	56.755	58.755	62.755	66.755	70.755	74.755	78.755	82,755	86.755	90.755	94.755
59,000	47.818	49.818	51.818	53.818	57.818	59.818	63.818	67.818	71.818	75.818	79.818	83.818	87.818	91.818	95.818
60.000	48,898	50.898	52.898	54.898	58.898	60,898	64,898	68.898	72,898	76,898	80,898	84.898	88.898	92,898	96.898

Annexe B





Annexe C.
Caradenolique: Muniques de la vapeur satérie dans le condonseur
(lois Mermodynamiques)

Caractéristiques de la vapeur d'eau saturante d'après les lois de la thermodynamique

Tvs	Pression	His	Hev	Hv
0.01	6.11	0.01	2501.30	2501.00
5.00	8.72	20.98	2489.60	2510.00
10.00	12.28	42.01	2477.70	2519.00
15.00	17.04	62.99	2465.90	2528.00
20.00	23.37	83.96	2454.10	2537.00
25.00	31.66	104.89	2442.30	2547.00
30.00	42.41	125.79	2430.50	2556.00
35.00	56.22	146.68	2418.60	2565.00
40.00	73.75	167.57	2406.70	2574.00
45.00	95.84	188.45	2394.80	2582.00
50.00	123.35	209.33	2382.70	2592.00
55.00	157.40	230.23	2370.70	2600.00
60.00	199.40	251.13	2358.50	2609.00
65.00	250.10	272.06	2346.20	2617.00
70.00	311.70	292.98	2333.80	2626.00
75.00	385.50	313.93	2321.40	2635.00
80.00	473.60	334.91	2308.80	2643.00
85.00	578.10	355.90	2296.00	2651.00
90.00	701.00	376.92	2283.20	2659.00
95.00	845.10	397.96	2270.20	2668.00
100.00	1031.00	419.04	2257.00	2676.00

- Dogramu d'arde an Servi de Can de noarer -

```
HERMES : PROGRAMME DE DIASGNOSTIC DU CONDENSEUR
                    0 Turbo Vision
    Copyright (c) 1992 Par Patrick ACCROMBESSY
PROGRAM PPPFE;
($X+,S-,N+,R-)
($M 65520,0,640000)
  X,Fonction,Crt,Dos,Objects, Drivers, Memory, Views, Menus, Dialogs, StdDlg, MsgBox, App, PFECmds, Gadgets, FViewer, HelpFile, PFEHelp, PFEWin, ColorSel, MouseDlg,LECT; (, SCRUTE;)
TYPE
  ( TPFE )
  PPFE = ^TPFE;
  TPFE = object(TApplication)
    Clock
                     : PClockView;
                      : PHeapView;
    Heap
                      : PathStr;
    OldName.
                      : Array[1..600,1..8] Of Real;)
    (Data
    SADCA, SADCD, ACQ : Integer;
    CtrlCA,CtrlCD : Integer:
    Sadfreq, CtrlFreq : Integer;
    SadExecEtat
    SadDiskEtat
    EtalEtat
    CtrlExecEtat
                      : Boolean;
    constructor Init;
    PROCEDURE FileOpen(WildCard: PathStr);
    PROCEDURE
                 GetEvent(var Event: TEvent); virtual;
    FUNCTION
                 GetPalette: PPalette; virtual;
    PROCEDURE
                 HandleEvent(var Event: TEvent); virtual;
    PROCEDURE
                 Idle; virtual;
    PROCEDURE
                 InitMenuBar; virtual;
    PROCEDURE
                 InitStatusLine; virtual;
                  _AnalogiquesSAD(Var CanA:Integer);
    PROCEDURE
    PROCEDURE
                  EtalonnageSADCA(ETal:Boolean);
                 _DigitauxSAD(Var CanD:Integer);
    PROCEDURE
                  AnalogiquesCtrl(Var CanA:Integer);
    PROCEDURE
    PROCEDURE
                 _DigitauxCtrl(Var CanD:Integer);
                 _CtrlFreq(Var CFreq : Integer);
_SADFreq (Var SFreq : Integer);
    PROCEDURE
    PROCEDURE
    PROCEDURE
                 _SADExec(Var B1 : Bootean);
    PROCEDURE
                 _SADDisk(Var B2
                                       : Boolean);
                 _SADAffich(EXecEtat,DiskEtat : Boolean);
    PROCEDURE
    PROCEDURE
                  PROCESSWINDOWS;
                THERMOWINDOWS;
    PROCEDURE
    PROCEDURE
                  STATWINDOWS:
    PROCEDURE
                 LoadDesktop(var S: TStream);
                OutOfMemory; virtual;
    PROCEDURE
    PROCEDURE
                StoreDesktop(var S: TStream);
    PROCEDURE
                 ViewFile(fileName: PathStr);
    PROCEDURE
                Exit:
  END;
( TPFE )
constructor TPFE.Init;
Var
 R: TRect;
 I: Integer;
  FileName: PathStr;
```

1

```
BEGIN
  ACQ := 0;
  TApplication Init;
  RegisterObjects;
  RegisterViews;
  RegisterMenus;
  RegisterDialogs;
  RegisterApp;
  RegisterHelpFile;
  RegisterFViewer;
  GetExtent(R);
  R.A.X := R.B.X - 9; R.B.Y := R.A.Y + 1;
  Clock := New(PClockView, Init(R));
  Insert(Clock);
  GetExtent(R):
  Dec(R.B.X);
  R.A.X := R.B.X - 9; R.A.Y := R.B.Y - 1;
  Heap := New(PHeapView, Init(R));
  Insert(Heap);
  for I := 1 to ParamCount do
 BEG!N
    FileName := ParamStr(I);
    if FileName[Length(FileName)] = '\' then
      FileName := FileName + '*.*';
    if (Pos('?', FileName) = 0) and (Pos('*', FileName) = 0) then
      ViewFile(FExpand(FileName))
    else FileOpen(FileName);
 END;
END;
PROCEDURE TPFE._AnalogiquesSAD(Var CanA : Integer);
var
 R
               : TRect;
               : PDialog;
 D
 С
               : Word;
               : Byte;
  Temp
               : Integer;
  Bruce
               : PView;
BEGIN
  ( Create a dialog )
  R.Assign(20, 2, 60, 20);
 D := New(PDialog, init(R, 'Choix des Canaux Analogiques'));
 With D^ Do
  BEGIN
 R.Assign(14, 5, 26, 13);
Bruce := New(PCheckBoxes,Init(R,
            NewSitem('Canal 11"',
NewSitem('Canal 2"',
            NewSitem('Canal 2',
NewSitem('Canal 3',
NewSitem('Canal 4',
NewSitem('Canal 5',
            NewSitem('Canal 6',
NewSitem('Canal 7',
            NewSitem('Canal "8"',nil)))))));
  Insert(Bruce);
 R.Assign(4, 15, 16, 17);
Insert(New(PButton, Init(R, 'Ok', cmCancel, bfNormal)));
  R.Assign(24, 15, 36, 17);
  Insert( New(PButton, Init(R, 'Annuler', cmCancel, bfNormal)));
  END;
  If CanA = -1 Then CanA := 0;
  D^.SetData(CanA);
  (Exécution du dialogue modal )
  C := DeskTop^.ExecView(D);
 D^.GetData(CanA);
```

.

```
Temp := CanA;
  Dispose(D,DOne);
     For I := 1 to 8 Do
        BEGIN
           Ch[i]
                       := Temp Mod 2;
           Temp
                       := Temp Div 2;
        END;
END;
PROCEDURE | TPFE._EtalonnageSADCA(ETal:Boolean);
  V : Boolean;
   1 : Byte;
   BEGIN
    Inline($FA);
    V := FALSE;
    Initialize;
    OpenWindow(3,3,77,15,'Mise en équation des Entrées Analogiques ',Yellow,Blue);
    ClrScr;
for I:= 1 To 8 Do
    BEGIN
    Repeat
    GotoXY(2,1+i); Write(i);
GotoXY(5,1+i); Write('
                                                                          ');
                                                                          ');
    GotoXY(5,2+i); Write('GotoXY(5,1+i);
    V := EntreeFonction(f[i], 'Expression /Canal ');
    Until V:
    END;
    CloseWindow;
    TGroup.Redraw;
    Inline($FB):
   END;
PROCEDURE TPFE._DigitauxSAD(Var CanD : Integer);
var
  R
                : TRect;
  D
                : PDialog;
                : Word;
  С
                : PView;
  Bruce
BEG!N
  ( Create a dialog )
  R.Assign(20, 2, 60, 20);
D := New(PDialog, Init(R, 'Choix des Canaux Digitaux'));
  With D^ Do
  BEGIN
  R.Assign(14, 5, 26, 13);
  Bruce := New(PCheckBoxes, Init(R,
            NewSItem('Canal 11',
NewSItem('Canal 2',
            NewSitem('Canal 3'',
NewSitem('Canal 4'',
            NewSitem('Canal "5"',
            NewSitem('Canal 6'',
NewSitem('Canal 7'',
            NewSitem('Canal "8"',nil)))))));
  Insert(Bruce);
  R.Assign(4, 15, 16, 17);
Insert(New(PButton, Init(R, 'Ok', cmCancel, bfNormal)));
  R.Assign(24, 15, 36, 17);
  Insert( New(PButton, Init(R, 'Annuler', cmCancel, bfNormal)));
  END;
  If CanD = -1 Then CanD := 0;
D^.SetData(CanD);
```

```
( Exécution du dialogue modal )
  C := DeskTop^.ExecView(D);
  D^.GetData(CanD);
  Dispose(D,DOne);
END;
PROCEDURE TPFE._AnalogiquesCtrl(Var CanA : Integer);
var
  R
                 : TRect;
                : PDialog;
  C
                : Word:
  Bruce
                : PView;
BEGIN
  ( Create a dialog )
  R.Assign(20, 2, 60, 20);
  D := New(PDialog, Init(R, 'Choix des Canaux Analogiques'));
  With D^ Do
  BEGIN
  R.Assign(14, 5, 26, 13);
  Bruce := New(PCheckBoxes, Init(R,
             NewSitem('Canal ~1~',
NewSitem('Canal ~2~',
             NewSItem('Canal "3"',
NewSItem('Canal "4"',
             NewSitem('Canal 5"',
             NewSitem('Canal 76'',
NewSitem('Canal 77'',
             NewSItem('Canal ~8~',nil)))))));
  Insert(Bruce);
  R.Assign(4, 15, 16, 17);
Insert(New(PButton, Init(R, 'Ok', cmCancel, bfNormal)));
  R.Assign(24, 15, 36, 17);
  Insert( New(PButton, Init(R, 'Annuler', cmCancel, bfNormal)));
  ( Exécution du dialogue modal )
  C := DeskTop^.ExecView(D);
  D^.GetData(CanA);
  CANAUX := CANA;
  Dispose(D,DOne);
END;
PROCEDURE TPFE._DigitauxCtrl(Var CanD : Integer);
var
                 : TRect;
  R
                : PDialog;
  n
  С
                 : Word;
  Bruce
                : PView;
BEGIN
  ( Create a dialog )
  R.Assign(20, 2, 60, 20);
  D := New(PDialog, Init(R, 'Choix des Canaux Digitaux'));
  With D^ Do
  BEGIN
  R.Assign(14, 5, 26, 13);
Bruce := New(PCheckBoxes,Init(R,
             NewSitem('Canal 71',
NewSitem('Canal 2',
             NewSitem('Canal 2',
NewSitem('Canal 3',
NewSitem('Canal 4',
NewSitem('Canal 5',
NewSitem('Canal 6',
NewSitem('Canal 7',
NewSitem('Canal 8',nil)))))));
  Insert(Bruce);
```

```
R.Assign(4, 15, 16, 17);
Insert(New(PButton, Init(R, 'Ok', cmCancel, bfNormal)));
  R.Assign(24, 15, 36, 17);
  Insert( New(PButton, Init(R, 'Annuler', cmCancel, bfNormal)));
  END;
  If CanD = -1 Then CanD := 0;
  D^.SetData(CanD);
  ( Exécution du dialogue modal )
  C := DeskTop^.ExecView(D);
  D^.GetData(CanD);
  Dispose(D, DOne);
END;
PROCEDURE TPFE._CtrlFreq(Var CFreq : Integer);
VAC
 R
               : TRect;
  D
               : PDialog;
  C
               : Word;
  Bruce
               : PView:
BEGIN
  ( Create a dialog )
  R.Assign(20, 2, 60, 10);
  D := New(PDialog, Init(R, 'Choix de la fréquence '));
  With D' Do
  BEGIN
  R.Assign(12, 1, 28, 5);
  Bruce := New(PRadioButtons, Init(R,
                           1 Hz',
           NewSItem('
            NewSItem('
                          100 Hz',
            NewSitem(' 1000 Hz',
            NewSItem(' 10000 Hz',nil)))));
  Insert(Bruce);
  R.Assign(4, 5, 16, 7);
Insert(New(PButton, Init(R, 'Ok', cmCancel, bfNormal)));
R.Assign(24, 5, 36, 7);
  Insert( New(PButton, Init(R, 'Annuler', cmCancel, bfNormal)));
  ( Exécution du dialogue modal )
  C := DeskTop^.ExecView(D);
D^.GetData(CFreq);
  Dispose(D,DOne);
END;
PROCEDURE TPFE._SADFreq(Var SFreq : Integer);
var
  R
               : TRect;
  D
               : PDialog;
  С
              : Word;
  Freq
              : LongInt;
  Bruce
              : PView;
BEGIN
  ( Create a dialog )
  R.Assign(18, 2, 66, 14);
D := New(PDialog, Init(R, 'Choix de la fréquence '));
  With D^ Do
  BEGIN
  R.Assign(7, 1, 42, 7);
  Bruce := New(PRadioButtons, Init(R,
                            60 mn ',
            NewSitem('
                            30 mn ',
            NewSitem('
            NewSitem('
                            20 mn',
            NewSitem('
                             15 mn ',
            NewSitem('
                            10 mm ',
                             5 mn',
            NewSitem('
                            60 s ',
            NewSitem('
```

```
NewSItem('
                                      30 s ',
1 s ',
                NewSItem('
                                    0.1 s ',
                NewS1tem('
                                   0.01 s
                NewSitem('
                NewSitem(' 0.001 s ',nil)))))))));
   Insert(Bruce);
   R.Assign(7, 9, 16, 11);
   Insert(New(PButton, Init(R, 'Ok', cmCancel, bfNormal)));
R.Assign(27,9, 36, 11);
Insert( New(PButton, Init(R, 'Annuler', cmCancel, bfNormal)));
   END;
   { Exécution du dialogue modal }
   C := DeskTop^.ExecView(D);
   D^.GetData(SFreq);
   Case SFreq Of
                    3 : Begin Temps := 10; Temps0 := 1;
                                     Temps2:= 100; Temps3:=1;
                       Temps4 := 1; End;
: Begin Temps := 10; Temps0 := 1;
                                     Temps2:= 100; Temps3:= 1;
                                     Temps4 := 1; End;
                      : Begin Temps := 65490; Temps0 := 65500;
Temps1 := 10; Temps2:= 65500; Temps3:=65500;
Temps4 := 38000; End;
                       : Begin Temps := 59950; Temps0 := 10;
Temps1 := 10; Temps2:= 10; Temps3:= 10;
Temps4 := 10; End;
                    7 : Begin Temps := 30000; Temps0 := 1;

Temps1 := 1; Temps2:= 1; Temps3:= 1;

Temps4 := 1; End;
                    8 : Begin Temps := 9950; Temps0 := 10;
Temps1 := 10; Temps2:= 10; Temps3:= 10;
                      Temps4 := 10; End;
: Begin Temps := 50; Temps0 := 10;
                                    Temps1 := 10; Temps2:= 10; Temps3:= 10;
Temps4 := 10; End;
                | 10 : Begin Temps := 2; Temps0 := 2;
| Temps1 := 2; Temps2:= 2; Temps3:= 2;
| Temps4 := 2; End;
| 11 : Begin Temps := 2; Temps0 := 2;
| Temps1 := 2; Temps2:= 2; Temps3:= 2;
| Temps4 := 2; End;
                           Begin Temps := 1000; Temps0 := 1;
Temps1 := 1; Temps2:= 1; Temps3:= 1;
Temps4 := 1; End;
                 Else
  End;
  Dispose(D,DOne);
END;
PROCEDURE TPFE._SADExec(Var B1: Boolean);
  IF B1 <> TRUE THEN
  Begin
  B1 := TRUE;
  End
  ELSE
  Begin
   B1 := FALSE;
  End;
END;
PROCEDURE TPFE._SADDisk(Var B2:Boolean);
BEGIN
  IF B2 <> TRUE THEN
  Begin
  Disk := True;
  B2 := TRUE;
  End
  ELSE
                                                                                                                                         Hermes
                                                                                                                                                             6
```

```
Begin
  B2 := FALSE;
   Disk := False;
 End;
END;
PROCEDURE TPFE._PROCESSWINDOWS;
Var
                       : TEvent;
  Event
                       : Integer;
 BEGIN
 INITIALIZE;
   OPENWINDOW(2,3,77,20,'PROCESS-',Yellow,RED);
   TextBackGround(Blue); TextColor(Yellow);
   GOTOXY(2,1);
   Writeln(' VIDE CHARGE
                        ΤE
                                     TV
                                            TS
                                                 CS ');
   1 := 0;
   Repeat ,
   Inc(I);
   Writeln(VD(i):3:1,' ',CCH(i):3:1,' ',TE[i]:3:1,' ',TS[i]:3:1,' ',
   TV[i]:3:1,' ', TS[i]:3:1,' ',CS(i):3:1);
   Delay(100);
   Until ((Event.What = evKeyDown) Or (Event.What = evMouseDown ) Or (I=FIN) );
   CLOSEWINDOW;
   TGROUP.REDRAW
 END;
PROCEDURE TPFE._STATWINDOWS;
Var
  Event
                       : TEvent;
                       : Integer;
BEGIN
OPENWINDOW(3,3,77,20,'MODELE STAT-',Yellow,RED);
TextBackGround(Blue); TextColor(Yellow);
  GOTOXY(2,1);
Writeln('VIDE CHARGE
                         ΤE
                               TS
                                     ΤV
                                            TS CS ');
   I := 0;
   REPEAT
   Inc(1);
   Writeln(VD[i]:3:2,' ',CCH[i]:3:2,' ',TE[i]:3:2,' ',TS[i]:3:2,' ',
   TV[i]:3:2,' ', TS[i]:3:2);
   Delay(100);
   Until ((Event.What = evKeyDown) Or (Event.What = evMouseDown ) Or (I=FIN));
   CLOSEWINDOW;
   TGROUP . REDRAW
END;
PROCEDURE TPFE._THERMOWINDOWS;
Var
  Event
                      : TEvent;
  I
                      : Integer;
  TEMPO
                      : REAL;
BEGIN
INITIALIZE;
   OPENWINDOW(3,3,77,20, 'MODELE THEORIQUE-', Yellow, RED);
   TextBackGround(Blue); TextColor(Yellow);
  GOTOXY(2,1);
Writeln(' VIDE CHARGE
                         TE
                              TS TV TS CS ');
   FOR 1:=1 TO FIN Do
```

```
Begin
   TEMPO := 0.009*SQR(CCH[I]) + 6.182/CCH[I]
   + 1.527*LN(CCH[]])/LN(10) + 1.284*20 + (TE[]]-20)*2;
Writeln(TEMPO:3:2,' ',CCH[]:3:2,' ',TE[]]:3:2,' ',TS[]:3:2,' ',
   TV[i]:3:2,' ', TS[i]:3:2);
   Readin;
   END;
    READLN:
    CLOSEWINDOW;
 END;
PROCEDURE TPFE._SADAffich(EXecEtat,DiskEtat : Boolean);
Type
                = String[4];
String4
Var
  R
                             : TRect;
                             : PDialog;
  D
  C
                             : Word;
  J, i
                             : Integer;
  Event
                             : TEvent;
                             : String4;
   FUNCTION Existe(Name: PathStr): Boolean;
    Var
     SR: SearchRec;
     BEGIN
     FindFirst(Name, 0, SR);
      Existe := DosError = 0;
     END;
  BEGIN
    IF SADDiskEtat Then
    BEGIN
    IF ACQ = 0 Then
        BEGIN
         j:= 0;
         Repeat
          Str(j:0,Num);
inc(j);
          Until Not Existe('SAD'+Num+'.PRN');
          OldName := 'SAD'+Num+'.PRN';
Assign(Fichier,'SAD'+num+'.PRN');
          Rewrite(Fichier):
          Writeln(Fichier, 'Ch1
                                        2
                                                  3
                                                                                            7
                                                                                                       8
                                                                                  6
                                                                                                         1):
         END
    ELSE
         BEGIN
            Assign(Fichier,OldName);
            AppEND(Fichier);
          END
    END;
  If ExecEtat Then
  BEGIN '
   Initialize:
   OpenWindow(3,3,50,20,'- Visualisation des lectures -',Yellow,RED);
   TextBackGround(Blue); TextColor(Yellow);
   ClrScr;
GotoXY(1,3);
Writeln('N° Canal
                                              Valeur ');
                                   ---->
   GotoXY(2,5); Write(' 1
                                                   ');
   GotoXY(2,6);
                  Write(' 2
                                   ---->
   GotoXY(2,7); Write('3
GotoXY(2,8); Write('4
```

8

```
GotoXY(2,9); Write('5
                                                       1);
    GotoXY(2,10); Write(' 6
                                     ----->
    GotoXY(2,11); Write(' 7
GotoXY(2,12); Write(' 8
    TimeExit := FALSE;
    C := 0:
      Repeat
      For
            ' i := 1 To 8 Do
      Begin
        If Ch[i] = 1 Then
          Begin
            Port[$300 + 0] := 0;
            Port[$300 + 1] := 1;
Port[$300 + 2] := 247 + (i-1);
Port[$300 + 0] := 0;
(enlever après de commenataore ce qui suit )
            (Repeat
             Inc(C);
            Until ( ((Port($300 + 2) And 128) \Leftrightarrow 128) OR (C=10000) );)
            C:= 0;
                              := (5.0/2048.0)*((Port[$300 + 1] Shl 4 ) Or
                                 (Port[$300 + 0] Shr 4 )) - 5.0;
            GotoXY(33,4+i);
            If ETAL Then RES := Evalue(f[i],1.0*RES);
            write(RES:5:2);
            If (SADDiskEtat) Then Write(Fichier, Res:5:2,
            If ((I = 8) And SADDiskEtat ) Then Writeln(Fichier);
          End:
      End;
       Temporise;
       GetEvent(Event);
      Until ((Event.What = evKeyDown) Or (Event.What = evMouseDown ));
     ACQ := 1;
     CloseWindow;
   END;
     TGroup.Redraw:
     If SADDiskEtat Then Close(Fichier);
PROCEDURE TPFE.FileOpen(WildCard: PathStr);
  D: PFileDialog;
  FileName: PathStr;
REGIN
  D := New(PFileDialog, Init(WildCard, ' Ouverture de fichier ',
 '"N"om', fdOpenButton + fdHelpButton, 100));
D^.HelpCtx := hcFOFileOpENDBox;
  if ValidView(D) <> nil then
  BEGIN
    if Desktop^.ExecView(D) <> cmCancel then
    BEGIN
     D^.GetFileName(FileName);
      ViewFile(FileName);
   END;
   Dispose(D, Done);
 END;
END:
PROCEDURE TPFE.GetEvent(var Event: TEvent);
 W: PWindow;
  HFile: PHelpFile;
  HelpStrm: PDosStream;
const
  HelpInUse: Boolean = False;
```

```
BEGIN
  TApplication.GetEvent(Event);
  case Event What of
    evMouseDown:
      if Event.Buttons <> 1 then Event.What := evNothing;
  END;
END;
FUNCTION TPFE.GetPalette: PPalette;
const
  CNewColor = CColor + CHelpColor;
  CNewBlackWhite = CBlackWhite + CHelpBlackWhite;
  CNewMonochrome = CMonochrome + CHelpMonochrome;
  P: array[apColor..apMonochrome] of string[Length(CNewColor)] =
    (CNewColor, CNewBlackWhite, CNewMonochrome);
BEGIN
  GetPalette := @P[AppPalette];
END;
PROCEDURE TPFE.HandleEvent(var Event: TEvent);
PROCEDURE ChangeDir;
var
 D: PChDirDialog;
BEGIN
 D := New(PChDirDialog, Init(cdNormal + cdHelpButton, 101));
  D^.HelpCtx := hcFCChDirDBox;
  if ValidView(D) <> nil then
  BEGIN
    DeskTop;.ExecView(D);
    Dispose(D, Done);
  END;
END;
PROCEDURE Tile;
var
  R: TRect;
BEGIN
 Desktop^.GetExtent(R);
Desktop^.Tile(R);
END;
PROCEDURE Cascade;
Var
 R: TRect;
BEGIN
 Desktop^.GetExtent(R);
  Desktop^.Cascade(R);
END;
PROCEDURE About;
var
 D: PDialog;
  Control: PView:
  R: TRect;
BEGIN
  R.Assign(0, 0, 40, 13);
D := New(PDialog, Init(R, 'A propos de ...'));
  with D^ do
  BEGIN
    Options := Options or ofCentered;
    R.Grow(-1, -1);
Dec(R.B.Y, 3);
    Insert(New(PStaticText, Init(R,
      #13 +
^C' -- HERMES -- '#13 +
      ^C'Logiciel de surveillance de procédés'#13 +
      ^C'Par Patrick Sam. ACCROMBESSY'#13 +
```

ì

```
^C'Copyright (c) 1992 #13 +
       ^C'École Polytechnique de Thiès')));
    R.Assign(15, 8, 25, 10);
Insert(New(PButton, Init(R, 'O~K', cmOk, bfDefault)));
  END;
  if ValidView(D) <> nil then
  BEGIN
    Desktop'.ExecView(D);
    Dispose(D, Done);
  END;
END;
PROCEDURE Colors:
var
 D: PColorDialog;
BEGIN
  D := New(PColorDialog, Init('',
    ColorGroup('Bureau',
      ColorItem('Couleur',
                                             32, nil),
    ColorGroup('Menus',
   ColorItem('Normal',
                                           2,
       ColorItem('Inhibé',
      ColorItem('Raccourci',
      ColorItem('Sélection', 5
ColorItem('Sélection inhibée', 6,
                                            5,
       ColorItem('Raccourci inhibé', 7, nil))))),
    ColorItem('Dialogues/Calc',
ColorItem('Cadre/fond', 33,
ColorItem('Cadre icône',
ColorItem('Barre défil, page',
                                          34,
35,
       ColorItem('Barre défil. icône',
                                              36.
      ColorItem('Texte statique',
       ColorItem('Label normal',
                                           38,
      ColorItem('Label sélecté'
       ColorItem('Label raccourci',
      ColorItem('Bouton normal',
       ColorItem('Bouton implicite',
      Coloritem('Bouton sélecté', 43
Coloritem('Bouton sélecté', 44,
       Coloritem('Bouton raccourci',
       ColorItem('Bouton ombre',
                                          46,
      Coloritem('Agrégat normal',
Coloritem('Agrégat sélecté',
                                         48.
      ColorItem('Agrégat raccourci', 49,
       Coloritem('Saisie normal',
       ColorItem('Saisie sélection',
       Coloritem('Saisie flèche',
       ColorItem('Historique bouton',
      Coloritem('Historique sides', 54,
Coloritem('Historique barre page', 55,
       ColorItem('Historique sides',
       ColorItem('Historique barre icone', 56,
       ColorItem('Liste normale',
       ColorItem('Liste ciblée',
                                           58,
       ColorItem('Liste sélectée'
       ColorItem('Liste séparateur',
       ColorItem('Volet Information', 61, nil))))))))))))))))))))))))
    ColorGroup('Visionneur'
      ColorItem('Cadre passif',
       ColorItem('Cadre actif',
       Coloritem('Cadre icône',
                                           10
       Coloritem('Barre défil. page',
```

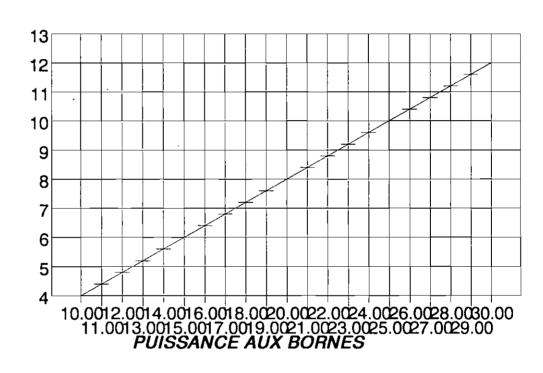
```
Color tem ('Barre défil. icône',
                                                12,
        Coloritem('Texte',
                                              13, nil))))),
     ColorGroup('Puzzle'
        ColorItem('Cadre passif',
                                             8,
        ColorItem('Cadre actif',
        ColorItem('Cadre icône',
                                             10,
       ColorItem('Barre défil. page',
ColorItem('Barre défil. icône',
ColorItem('Texte normal',
                                               12,
                                               13,
       ColorItem('Texte sélectionné', 14, nil)))))),
     ColorGroup('CalENDrier',
       ColorItem('Cadre passif',
       ColorItem('Cadre actif',
ColorItem('Cadre icône',
                                             18,
       ColorItem('Barre défil. page',
ColorItem('Barre défil. icône',
                                             19,
                                               20,
       ColorItem('Texte normal',
     ColorItem('Jour actuel', ColorGroup('Table ASCII',
                                             22, nil)))))),
       ColorItem('Cadre passif',
       ColorItem('Cadre actif',
       ColorItem('Cadre icone',
ColorItem('Barre défil. page', 27,
ColorItem('Barre défil. icone', 28,
ColorItem('Texte', 29, nil))))), nil))))));
       ColorItem('Cadre icône',
  D^.HelpCtx := hcOCColorsDBox;
  if ValidView(D) <> nil then
  BEGIN
     D^.SetData(Application^.GetPalette^);
     if Desktop^.ExecView(D) <> cmCancel then
       Application^.GetPalette^ := D^.Pal;
       DoneMemory; ( Détruit tous les tampons cache de groupes )
                       ( Réaffiche l'application avec la nouvelle palette )
       ReDraw:
     END:
     Dispose(D, Done);
  END;
END;
PROCEDURE Mouse;
var
  D: PDiatog:
BEGIN
  D := New(PMouseDialog, Init);
D^.HelpCtx := hcOMMouseDBox;
  if ValidView(D) <> nil then
  BEGIN
    D^.SetData(MouseReverse);
if Desktop^.ExecView(D) <> cmCancel then
       D^.GetData(MouseReverse);
  END:
END;
PROCEDURE DosShell;
  DoneSysError;
  DoneEvents;
  DoneVideo;
  DoneMemory;
  SetMemTop(HeapPtr);
  PrintStr('Frappez EXIT pour revenir à PFE...');
  SwapVectors:
  Exec(GetEnv('COMSPEC'), '');
  SwapVectors:
  SetMemTop(HeapEND);
  InitMemory;
  initVideo;
  InitEvents:
```

```
InitSysError;
  Redraw;
END;
(PROCEDURE Statistique;
P:PStat;
BEGIN
  P := New(PStat,Init);
  P^.HelpCtx := hcStat;
  if ValidView(P) <> nil then
   Desktop^.lnsert(P);
END;}
PROCEDURE RetrieveDesktop;
 S: PStream;
BEGIN
 S := New(PBufStream, Init('PFE', stOpenRead, 1024));
  if LowMemory then OutOfMemory
  else if $^.Status <> stOk then
   MessageBox('Ouverture du fichier bureau impossible', nil, mfOkButton + mfError)
  else
  BEGIN
    LoadDesktop($^);
    if $^.Status <> stOk then
     MessageBox('Lecture du fichier bureau impossible', nil, mfOkButton + mfError);
 END:
 Dispose(S; Done);
END;
PROCEDURE SaveDesktop;
Var
 S: PStream:
 F: File;
BEGIN
 S := New(PBufStream, Init('PFE.DSK', stCreate, 1024));
  if not LowMemory and ($^.Status = stOk) then
 BEGIN
    StoreDesktop(S^);
    if $^.Status <> st0k then
    BEGIN
      MessageBox('Création de PFE.DSK impossible.', nil, mf0kButton + mfError);
      (-12)
     Dispose(S, Done);
Assign(F, 'PFE.DSK');
      Erase(F);
     Exit;
   END;
 END;
 Dispose(S, Done);
END;
BEGIN
  TApplication.HandleEvent(Event);
  case Event. What of
    evCommand:
      BEGIN
        case Event.Command of
          cmFOpen: FileOpen('*.PRN');
          cmChDir: ChangeDir;
          cmCascade: Cascade;
          cmTile: Tile:
          cmAbout: About;
          cmColors: Colors;
          cmMouse: Mouse;
          cmDosShell: DosShell;
          cmSaveDesktop: SaveDesktop;
```

```
cmRetrieveDesktop : RetrieveDesktop;
                   cmSADCA
                                                   : Begin _AnalogiquesSAD(SADCA); End;
                   cmESADCA
                                                    : Begin Etal := True; _EtalonnageSADCA(EtalEtat); End;
: _DigitauxSAD(SADCD);
: _AnalogiquesCtrl(SADCA);
                   CMSADCD
                   cmCtrlCA
                                                    : _DigitauxCtrl(SADCD);
                   cmCtrlCD
                   cmCtrlFreq
                                                     : _CtrlFreq(CtrlFreq);
                                                    : _SADFreq(SADFreq);
: _SADExec(SADExecEtat);
                   cmSADFreq
                                                  : _SADExec(SADExecEtat);
: _SADExec(SADExecEtat);
: Begin _SADDisk(SADDiskEtat); End;
: Begin _SADAffich(SADEXecEtat,SADDiskEtat); End;
: Begin _PROCESSWINDOWS; End;
: Begin _THERMOWINDOWS; End;
: Begin _STATWINDOWS; End;
                   cmSADExec
                   cmSADD isk
                   cm$ADAffich
                   CITMR.
                  спМТ
                   CITMS
                 (cmCtrl
                                                   : AfficheMOY(a,b,c,d,e,N);
                  стмоу
                   cmVAR
                                                   : AfficheVAR(a,b,c,d,e,N);
                  cmECT
                                                   : AfficheECT;
                   cmCOR
                                                   : AfficheCOR;
                   cm∈xit
                                                   : ExitStat; }
               else
                  Exit:
               END:
               ClearEvent(Event);
           END;
   END:
END;
PROCEDURE TPFE.Idle;
FUNCTION IsTileable(P: Pview): Boolean; far;
BEGIN
   IsTileable := P^.Options and ofTileable <> 0;
   TApplication.Idle;
   Clock^.Update:
   Heap^.Update:
    if Desktop^.FirstThat(@IsTileable) <> nil then
       EnableCommands([cmTile, cmCascade])
   else
      DisableCommands([cmTile, cmCascade]);
END;
PROCEDURE TPFE.InitMenuBar:
var
  R: TRect;
BEGIN
   GetExtent(R);
   R.B.Y := R.A.Y+1;
   MenuBar := New(PMenuBar, Init(R, NewMenu(
NewSubMenu('"#2'", hcSystem, NewMenu(
       NewSubMenu(''#2''', hcsystem, newmenu(
NewItem(''A' propos...', '', kbNoKey, cmAbout, hcSAbout, nil)),
NewSubMenu(''F'ichier', hcFile, NewMenu(
NewItem(''O'uvrir...', 'F3', kbF3, cmFOpen, hcFOpen,
NewItem(''C'hanger rép...', '', kbNoKey, cmChDir, hcFChangeDir,
           NewLine(
       NewItem('accès au 'D'OS', '', kbNoKey, cmDosShell, hcFDosShell,
NewItem('Q'uitter', 'Alt-X', kbAltX, cmQuit, hcFExit, nil))))),
NewSubMenu('A'cquisition', hcSAD, NewMenu(
NewItem('Canaux 'a'nalogiques','Ctrl-F5', kbCtrlF5, cmSADCA, hcSADCA,
NewItem('E'talonnage CA','Ctrl-F6', kbCtrlF6, cmESADCA, hcESADCA,
          NewItem('Canaux digitaux', 'F5', kbF5, cmSADCD, hcSADCD, NewItem('Frequence', 'F6', kbF6, cmSADFreq, hcSADFreq, NewItem('Trequence', 'F6', kbNoKey, cmSADAffich, hcSADAffich, NewItem('TV isualisation','', kbNoKey, cmSADAffich, hcSADAffich, NewItem('TS auvegarde', 'Alt-F3', kbAltF3, cmSADDisk, hcSADDisk, NewItem('TI mpression', '', kbNoKey, cmSADImpress, hcSADImpress,
```

```
NewItem('~E~xécution', '', kbNoKey, cmSADExec, hcSADExec, nil))))))),
NewSubMenu('~C~ontrôle', hcCtrl, NewMenu(
NewItem('~C~anaux analogiques','Ctrl-F5', kbCtrlF5, cmCtrlCA, hcCtrlCA,
NewItem('~C~anaux digitaux', 'F5', kbF5, cmCtrlCD, hcCtrlCD,
NewItem('~F~réquence', 'F6', kbF6, cmCtrlFreq, hcCtrlFreq,
NewItem('~F~I.D.~', 'Alt-F3', kbAltF3, cmCtrlFlo, hcCtrlFlD,
          NewItem('"F"ormules', '', kbNoKey, cmCtrlFormule, hcCtrlFormule, NewItem('"E"xécution', '', kbNoKey, cmCtrlExec, hcCtrlExec, nil)))))),
       NewSubMenu('"S"imulation', hcSimul, NewMenu(
          NewItem('Modèle St'a'tistique','Ctrl-F5', kbCtrlF5, cmMS, hcMS, NewItem('Modèle T'h'ermodynamique', 'F5', kbF5, cmMT, hcMT, NewItem(''P'rocess', 'F6', kbF6, cmMR, hcMR, nil)))),
       Newsteam('Traitement', hcStat, NewMenu(
NewItem('Frichier', 'F3', kbF3, cmStatFic, hcStatFic,
NewItem('Mroyennes', 'Ctrl-F5', kbCtrlF5, cmStatMOY, hcStatMOY,
          NewItem('"V"ariances', 'F5', kbF5, cmStatVAR, hcStatVAR,
NewItem('"E"cart-types', 'F6', kbF6, cmStatECT, hcStatECT,
NewItem('Coeff"i"cients', 'F7', kbF7, cmStatCOEF, hcStatCOEF,
NewItem('Coeff"i"cients', 'Alt-F3', kbAltF3, cmStatCOR, hcStatCOR, nil)))))),
       NewSubMenu(''O'ption', hcOptions, NewMenu(
NewItem(''S'ouris...', '', kbNoKey, cmMouse, hcOMouse,
NewItem(''C'ouleurs...', '', kbNoKey, cmColors, hcOColors,
          NewLine(
          NewItem('Sau"v"er bureau', '', kbNoKey, cmSaveDesktop, hcOSaveDesktop,
NewItem('"R"estaurer bureau', '', kbNoKey, cmRetrieveDesktop, hcORestoreDesktop, nil)))))))))))));
END;
PROCEDURE TPFE.InitStatusLine;
   R: TRect;
BEGIN
   GetExtent(R);
   R.A.Y := R.B.Y - 1;
   StatusLine := New(PStatusLine, Init(R,
      NewStatusDef(0, $FFFF,
NewStatusKey('"F1" Aide', kbF1, cmHelp,
NewStatusKey('"F3" Ouvrir', kbF3, cmFOpen,
          NewStatusKey('-Alt-F3' Fermer', kbAltF3, cmClose,
NewStatusKey('~F5" Zoom', kbF5, cmZoom,
          NewStatusKey('', kbf10, cmMenu,
NewStatusKey('', kbCtrlF5, cmResize, nil))))), nil)));
PROCEDURE TPFE.OutOfMemory;
   MessageBox('Mémoire insuffisante pour achever l''opération.',
      nil, mfError + mfOkButton);
{ La réserve mémoire ne permet d'assurer la création d'une fenêtre.
  Le chargement du bureau complet sans test manuel de LowMemory
   peut provoquer un débordement du tas. Il vaut donc mieux charger
   les fenêtres une à une plutôt que d'utiliser la méthode Load de Desktop.
PROCEDURE TPFE.LoadDesktop(var S: TStream);
  P: PView;
PROCEDURE CloseView(P: PView); far;
  Message(P, evCommand, cmClose, nil);
END;
BEGIN
   if Desktop^.Valid(cmClose) then
      Desktop^:ForEach(@CloseView); { Vide le bureau }
      repeat
```

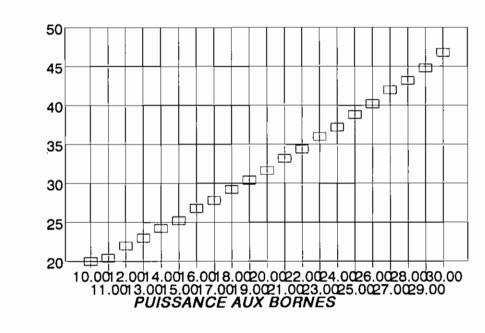
```
P := PView(S.Get);
      Desktop^.InsertBefore(ValidView(P), Desktop^.Last);
    until P = nil;
  END;
END;
PROCEDURE TPFE.StoreDesktop(var S: TStream);
PROCEDURE WriteView(P: PView); far;
BEGIN
 if P 	→ Desktop^.Last then S.Put(P);
BEGIN
  Desktop^.ForEach(@WriteView);
  S.Put(nil):
PROCEDURE TPFE.ViewFile(FileName: PathStr);
var
 W: PWindow;
BEGIN
  W := New(PFileWindow,Init(FileName));
  W^.HelpCtx := hcViewer;
  if ValidView(W) <> nil then
   Desktop^.Insert(W);
PROCEDURE TPFE.Exit;
BEGIN
  If SADDiskEtat Then Close(Fichier);
END;
VAC
  PFE : TPFE;
  INI : TEXT;
ClrScr;
Assign(INI, HERMES.INI');
Reset(INI);
Readin(INI);
Readin(INI, Fic1);
Readln(INI,Fic2);
Readln(INI,Fic3);
Readin(INI,Fic4);
Readin(INI,Fic5);
Close(INI);
Writeln(FIC1,' ',FIC2);
TRANSFORME_FICHIER(FIC1);
Readln;
  TEMPS := 0;
  TEMPS0 := 0;
TEMPS1 := 1;
TEMPS2 := 0;
  TEMPS3 := 0;
  TEMPS4 := 0;
  Disk := false;
  Visual := false;
  Etal := false;
PFE.Init;
  PFE.Run;
  PFE.Done;
  PFE Exit:
END.
                                                       )
( EOS PFE.PAS
```


16

Annexe B

DEBIT DE VAPEUR ADMISSIBLE (T/H) EN FONCTION
DE LA PUISSANCE AUX BORNES(SOURCE DELAS-WEIR)

DEBIT	PUISSANCE
(T/H)	(MW)
4.00	10.00
4.40	11.00
4.80	12.00
5.20	13.00
5.60	14.00
6.00	15.00
6.40	16.00
6.80	17.00
7.20	18.00
7.60	19.00
8.00	20.00
8.40	21.00
8.80	22.00
9.20	23.00
9.60	24.00
10.00	25.00
10.40	26.00
10.80	27.00
11.20	28.00
11.60	29.00
12.00	30.00



Annexe B

Flux évacué (MCal)

FLUX EVACUE AU CONDENSEUR (MCal) EN FONCTION DE LA PUISSANCE AUX BORNES(SOURCE DELAS-WEIR)

Flux evacué	PUISSANCE
MCal	(MW)
20	10.00
20.4	11.00
22	12.00
23	13.00
24.2	14.00
25.2	15.00
26.8	16.00
27.8	17.00
29.2	18.00
30.4	19.00
31.6	20.00
33.2	21.00
34.4	22.00
36	23.00
37.2	24.00
38.8	25.00
40.2	26.00
42	27.00
43.2	28.00
44.8	29.00
46.8	30.00

Traitement statistique effectué: Regression multiple Avec deux variables choistes comme capicatives et une variable dépendante (LE VIDE CONDENSEUR)

_				-
ě			סכ	8
Beta, Gamn Parametres du lisaage	3	Rzz* = Coefficient de correlation multiple	3	3
3	ď	å	ď	•
War.	Š	8	Š	
*	Pary = "Coefficient de correlation entre x et y	9	 Coefficient de correlation pertielle 	
٤	ê	ê	ŝ	
Ī	ŝ	å	ŝ	
8	ŧ	ě	ě	
	5	3	2	
	3	ş	₫	
	3	•	•	
	•			
_	_		_	_

80 098	00.039	00.039	80 039	59 654	60 008	8	59 557	698	59 588	50 Sec.	59 870	7	59 700	59 200	59 685	59 685	59 685	59,125	60 363	60,325	58 685	59 685	58885	59 432	59 432	59 4 32	59 604	59 604	56 80 1	50 334	59 598	59 091	59 575	59 575	59 575	50 050	1000	100	9	59 963	59 114	59 047	60 060	58 859	58 690	58.721	58 824	57 990	200	988	57.932	67.950	57 648	58 448	56.943	5	4 6	00.400	56	55 864	56 102	59 576	59 575	59.575		Š	
25,999	2000	26 001	28.001	25,939	25 990	25 880	25.923	25 867	25 803	25 803	26 004	25 262	25 853	25.770	25 950	25 850	25 850	25.896	25.755	25.877	25.879	25.879	25 879	25 780	25 780	25 780		-	25 970		- 1	25.617	25 853	25.853	25.853	26.63	25.00	20.070	25.686	25 630	25 601	25.592	25.571	25,481	25.427	25 255	25.437	25.050	25.028	24 980	24 974	24.976	24.773	25.535	24 421	2	24.20	24.2.38	24 268	23.956	24 004	25.853	25.853	25 853		Ω	_
20.338	20.327	20.327	20.327	20.394	20.317	20 317	20.396	20 354	20 30 30 30 30 30 30 30 30 30 30 30 30 30	2020	20.354	20.00	20.334	20.300	20.304	20.304	20.304	20.300	20.519	20,427	20.304	20.304	20.304	20319	20.319	-		20.310	20 310	3	20 300	20 302	20 300	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 302	300	300	20.000	20.308	20 479	20.306	20 304	20.525	20 304	20 300	20.300	20 302	20.04	20.31/	20.383	20.375	20.385	20 402	20.400	20.415	20 408	20 00	20,419	20.410	20.406	20,425	27 521	27.521	27,521		Тептес	•
27 440	27.402	27,402	27,402	27.458	27.379	27.379	27.454	27 396	27 328	27.70	27 373	27 15.	27.353	27.302	27.304	27.304	27.304	27.300	27.517	27,423	27 292	27 292	27,292	27 300	27 300	27 300	27,281	27.281	27.281	27 271	27 270	27 271	27 269	27 269	27 269	27 265	27 282	27.254	27.252	27 417	27.243	27.240	27.446	27.221	27 208	27.198	27 190	27 100	27.079	27.123	27.104	27.102	27 098	27.031	27.019	200	20.913	26.02	26.881	26.860	26.860	29.803	29.803	29 803		Temac	-
		l	39.631		39.635						39 567								١	-					39 442			-	1	3000	39 496	39 323	39 502	30.502	39 502	39.500	40 s or	30 343	39.287	39 472	39.311	39 292	39 483	39 223	39 190	39 167	39 184	39.004	968 PC	38.928	38 910	38.917	38 862	38.898	38.685	38 86	30.000	38.48/	38.406	38.332	38.373	39.502	39.502	39.502		Twebo	A.L
36 609	36.590	36.590	36.590	36,548	36.587		1													-			-			.		-				-1	36 444		36 444		П					П	- 1	- 1	- 1	36.285		36.070	35.987			П	35 992	35 819	35.852	15 727	35,773	35.760	35.889	35.685	35.681	36.444	36.444	36 444		Toec	Tc
7.102	7.076	7,076	7.075	7.064	7.062	7.082	7.058	7040	7021	7001	7 019	7019	7.019	7.002	7.000	7.000	7.000	7.000	6.998	6.996	896.9	6.986	6.988	8 9 9	6 9 9 1	6991	6 971	6 971			6 970		5 969		5 969	1	1			6.938		П				6.898	6.888	6.704	6.762	6.740	6.729	6 717	8.696	6.631	6.604	8 521	8 504	6.4/3	8.471	6.454	6.435	2.282	2 282	2 282		Ta-70	
3.034	3.941	3.041	3,041	3.017	3 048	3.048	3 048	299	200	90	3.055	3 2	3 004	3.014	2.995	2.995	2.995	3.000	2.944	2,989	3 007	3 007	3.007	200	2 994	2 994	3 021	3.021	3021	3004	2 994	2 983	3.058	3.058	3.058	920.0	2.007	2.8/3	2.995	2.923	3.020	2.965	2.895	2.944	2 938	2.882	2.931	2,090	2.91	2.894	2 893	2.915	2.870	3.079	2.833	2 820	2791	2./3/	2.737	2.647	2.692	3 058	3 058	3.058	:	14-Tc	
12.203	622.21	12 229	12.229	12.107	12.256	12.256	12 029	19133	12177	10 177	12194	12132	12 132	12.131	12.181	12.181	12.161	12.100	12.108	12.160	12.198	12 198	12.198	12142	12.142	10 142	12,198	12 198	12 198	12049	12 226	12 052	12233	12 233	12.000	12008	12246	12.000	12,035	12.055	12.068	12.052	12.037	12.002	11 982	11.969	11.994	11 900	11 81 8	11 805	11 806	11815	11.764	11.867	1 666	803	11 577	11.095	11.525	11.472	11.513	9 699	9 699	9 699	:	Tv-Ta	
904	1																										Canna a	g .	E (0)	K (1)	Mov(Z) =		1000		B (3/2)	835		, (A)		Gerrane =	Beg =	Moy(2) =		Hoy(Z) =				1 ()		10y(2)	i		Garmana =		Mg/3	3	L N		Central a	8	MoyOt =	Moy(3) =	Moy(Z) =			Bata Garran	8
·																											0000	000	E :	5	EH3		1	1 037	5 2 2 2 2	19499	7 660			-0.124	-0.913	27.176	7.689	69 144			037	0104	27.178	69.144			0.139	0.092	25.156	7 690	200		-0 267	0.354	25.156	19.489	69.144			Parametes	Coefficient
				1																							E ·	Roy .	P 1	8 3	H _X Y	X=Tv·Tc: Y =	Г				Bay 1	A= 10. 1 =	1	R7. =	Roy 1 =	Ayz =	P Z	Axy =	11		រ ម្ន	B 7 4 1		E S	X-To:Y =		Piz.	Hxyz =	ም : ።	E 3	7		Rat =	Ruy 1 =	- 2⁄4	P& =	Rxy =	X=Charge;		Beta, Gamo Parametres du lissage	de correlatio
																																7.7						13.10	1						Ts-To, Z = V						Ta, Z = Vide						1	- 7						= To; Z =			10 × 0.1114 UK
																											8	8	8	9		i Si	9.00	0.052	5007	0 0	5	9100		0 052	-0 488	0.014	0 051	98 • 0	2		0.05	0 20		0.763			0.015	J 455	9	8		· ·	0.035	0.552	0.030	0.002	0 552	Š		_	-

	8.808	36 661	34 946 34 946	29 803	27,521	28.004	81.638
3 338	8,788	36.206	39.544	27,690 27,791	18,902	25 117 25.250	80.909 81.185
	8,777	36.371 36.365	39 671	27.762	19.987	25,300	81.208 81 099
	8.775	36.237	39.483	27.604	18.829	25 030	80 464
	8.768	36.383	39.651	27.838	19 070	25.022	81.104
	8.766	36.536	39.788	27.985	1812.81	25.332	- 81.565
П	8.760	36.312	39.556	27.787	19 027	24 919	187.08
-	8,756	36 249	39.585	27.717	18.962	25 165	910.19
Γ	8,743	36.333	39.588	27.786	19 043	24,972	80 893
Ш	8.739	36.396	39 629	27.829	19.090	25 044	81.109
-	8.731	36 165	39 500	27 625	18.81	25 118	80 667
	8 734	36 3//	30 000	27.817	100.094	25 048	81.200
ı	8.721	36.302	39 629	27.717	18.998	25 191	01 047
l	8.714	36,483	39.727	27.929	19.215	25 092	81 073
Н	8.708	36.269	39.531	27.760	19.052	24 872	80.904
	9.700	36 200	39 400	27,600	1990	24 822	80 250
1	8 696	36.346	39.629	27.823	19.127	25.037	80.854
	9 690	36.029	30 808	27 908	10.57	24.91	80 848
	0 000	30.400	30.000	27 050	19.171	20,000	70 103
	0 004	36.515	2000	27.77	1007	24 8/0	81.070
	8 684	36.324	39 549	27.778	19.094	24 895	81,036
	8 683	36 340	39 602	27.908	19 225	25 0211	80 802
П	8 669	36,123	39.387	27.604	18.935	24,745	80 331
	8.657	35.710	36.987	26,867	18.210	24.590]	78 323
	8 657	35.317	38.875	26 492	17,835	25 0611	77.799
1	8 657	35.317	38 675	26,492	17.835	25.00	77.799
	A 857	36.31.7	38 875	26.492		25.06	77 799
	0 004	36 148	30.362	27.573		24.47	188.00
	8 640	35 286	38.8121	26.469	1	24.917	77.719
	8 636	35.542	39 027	27.015		24.9111	78.729
Ш	8 631	35 2371	38 771	26 452	ш	25 0281	77 680
	8.631	35 2371	36.771	26,452	- 1	25 028 i	77 680
	8.631	35 237	38.771	26 452	- 1	25 0281	77 680
ı	9 5 6 6 6	35 250	36 748	26 431	- 1	24 852	77.542
1	808	35 25	36 715	26 406	-	24 867	77 364
1	900	100	30.715	20,400	-	24.867	77.50
	0.000	20.18	30./10	20 400		24.007	77 304
	8.090	35.629	38.809	20./02		24.45	17 638
	8.595	35.208	38.587	26.410		24 849	77 391
	8.595	35.208	38.587	26.410		24.849	77 391
	8.595	35 208	38.687	26.410		24,849	77 391
l	8 595	35 208	38.687	26 410	ı	24.649	77 391
	8.595	35.208	38 687	26 410		24 649	77.391
П	8.595	35 208	38.687	26.410	ш	24 849	77 391
l	8.583	35 210	38 681	26.404	ı	24,790	77 294
	8.583	35.210	38.681	26,404	1	24.790	77 294
ı	8.583	35 210	38.681	26.404	ı	24 790	77 294
	8.583	35.210	38 681	26,404	ı	24.790	77 294
	8.583	35.210	38 681	26.404	ı	24.790	77.294
	8.583	35.210	38.681	26,404		24.790	77 284
	8.540	35.412	38.756	26.615		24.325	77.713
	8.532	35 112	286.86	20.365	ı	24 000	11.114
	532	35 112	38.592	26.365	1	24 665	77.174
	B.042	مود دد	360 60	20.713	1	24 310	// 415
20.02	8.680	30.300	30.000	000	1	2 2 2	17.000
	0.400	00	4	20.000	1	2	7000
3 4	0.000	120.36	30.567	353.90	П	34 034	78 050
33	493	35.25	38 567	26 535	- 1	24 034	76 850
331	8 493	35 254	39 567	28 535	- 1	24 036	76 859
28.E	8.461	35.040	38.460	26.296		24 271	70.807
3 42	8 461	35.040	38.460	26.296	ı	24 271	76 807
3.30	8.437	35 431	38.733	26,708	ı	24 223	77.700
0.10		00.0	90.460	00.00			1000
3	2 4 4	2	304 30	36.00		20.00	70 005
340	3 4 5	2 21	30.00	26.26	- 1	20.05	76 695
3 37	8 381	35.88	186 86	26.234	- 1	23 922	76.532
3 37	8.381	35.009	186 381	26.234		23 922	76.532
3.37	8.381	35.009	38.381	26.234		23.9221	76.532
3.03	7.102	36.609	39.643	27,440		25.999	60,096
3.034	7.102	36 609	38 643	27.440	ı	20,000	00.000
7		8	10000	Sections	ı	32 000	2000

Table T1 (suits)

81.476	E 20.74	81.500	81.140	61.488	81.092	81046	81071	81.076	80,845	81,069	81,046	80,807	81035	80.500	80.881	81,365	80.927	81.310	61200	N.360	79.426	80,667	79.630	E (10)	3 25	70,964	77.536	78.816	77.832	77 407	77.485	76,2659	76,869	75.86 9	76.484	76.484	76.672	76.622	77,649	76.841	76.8a1	77,643	77.243	77.500	77.371	77.514	77,371	ונה	77.77	ווצוו	77,514	77.45	77.54	77,431	77.451	77.431	77.449	7,44	17.49	.	VIDE (CALCULE)	
81 612	800	8 1.665	81.073	81 636	80.00	90 040	81.190	81.255	81.036	81,108	81,177	81.000	MOE'08	80.893	80.781	61.089	81,047	81 208	91.019	80.331	79.987	80,909	80 250	90 484	78 729	201.64	77.700	78 373	77 415	7 28	77.713	76 859	76 859	76 26	76 532	76 532	76 685	76.789	77,799	76 807	76 807	77.174	77.174	77.719	77 294	77 680	77 294	77.294	77.294	77 294	77.580	77.381	77.542	77.391	77.38	77.391	77.364	77.364	77.364	П	VI de	
25.316	Ι	П	1			Τ	23 04	Γ	ï		Ţ	Τ	П	Γ	П				Τ		П			Т	Г	Γ		24.590	24.310	24 45/		24 036	T	ĺ	Γ			Т	Γ	П	T		П	1	1		П	1	Τ	П	7		П	T	24 849	П			24 867	١,	0	
19 250		П		T			8		1			Ι	19062					18 287			18.919	I								100				Γ	Τ	П	17.00				17635								782	П	Τ	Γ		1	17.815	П	Т	Т	17,800	Π.		
29.010	Τ			Τ	27.05.0	2/ 808	27 833	27 817	-77.778	27 829	T	37.77	Τ	ľ			T	27.70	Γ		27 673	П	Т	27,004	Γ	Г				ı	П	28 536	Т	Т	Т	П	T	Т	26 492	26 236	26 296	3 36	395 96	1	Τ						8 8	Τ		Т	Т	П	Т	Т	26.406	Π.		;
8 25	1		ı	T	Т	Τ	Γ		i	ı	T	100	3 2 2	39.588	39,566	39.875	38.82	39,001	39.585	39.387	39.362	1	Τ	Т	Ĺ				36 50		H	П		ı	Г		T	1		38 460	Τ	Г		Т	Т	Π	Т	Т	Т	П	Т	Т	П	T	Г		T	I	38.715	П		1.7
36.490	Γ	П	T	Т	Т	Т	Γ	П	П	T	Т	Т		Γ	П			ı	ı		36.146		1	86.237	l	П		Т	Τ	35.529		П		1	П	Н	1	1	П		Т		Ш	1		1	T	Τ	П		Т				ı	Ш			36.198	Н	2 2	1,7
8 780	8.854	8.766	6.714	6774	0.000	8.089	9.731	0.723	8.694	8.739	8 745	0.700	8 708	8.743	9.760	8777	8.721	9 775	8.755	8.669	8.654	8.788	9 70	8.775	8636	883.8	8 437	8 657	9 52	8.596	Ш	8 493				Ш		8.657			ı	8532	Ш	1		ļ			П		8 63		$ \ $		ı				8 608		1	
3.302	3 256	3.263	3244	3 293	320	3 250	3,269	3 256	3225	323	324	3 2	328	3256	3 244	3310	3 327	3 20	3 336	3 284	3.216	3 338	3 20	3246	3485	3 402	3,302	3277	3300	3346	3.344	3.313	3313	33/2	3.372	3 372	3 60	3558	3.558	3420	3 600	3480	3 480	3.516	3.534	3 534	3 471	3471	3 471	3 471	3534	3 479	3 439	3 479	3479	3 479	3.519	619 C	3.519	1	4	
1 782	11.675	11.813	11.798	2	2 5	13.800	11.857	11.816	11.771	11.600	11.634	11 013	11.771	11.802	11.769	11.883	11.912		11 868	11.783	11.789	11.854	11.075	11.879	12.012	12.173	12.025	12.120	11,981	12.167	12 141	12 032	12.000	12.14/	12.147	12 147	12.167	12.383	12.383	12 164	12.500	12 227	12 227	12.343	12.319	12 319	12 277	15277	12 277	12 277	12.319	12.277	12:317	12.277	12 277	12.277	12.308	12.30	12 306			
									ı															-1	_																																				_	

3	Degrés de liberte	[86]	COEFS(X) =
8	Nombre d'obtervations	8.460	CONSTANTE =
0.952048	Raucerré	35.236 96.236	Moy(Y) ≍
0.252323	Ecart type d'estimation Y	24.836	Moy(X) =
0.054721	East type de coel.		
	(Plage de variation de T°C eau de mer. 18,042 à 18,946)	lage de variatios	-
	SORTED DE LA REGRESSION	so	

18	Degrés de liberté	1.501	COEFS(X) =
8	Nombre d'observations	43,485	CONSTANTE =
0.630445	Rougert	ត.[រួរ	Mg/(*) =
0.167685	Ecurt type d'estimation Y	24,819	¥0y(X) =
0.259301	Ecan type de coef.		
	Plage de variation de TC cau de mer; 18,042 à 18,946)	lage de variatios	-
	SORT IS TO CARBONDATON	٤	

19	Degrés de liberté	3.513	COEFS(X) =
21	Nombre d'observations	.7 562	CONSTANTE =
0.873587	R su carriè	67,863	Mg/(₹) =
0.607,309	Econt type d'estimation Y	24.822	Moy(X)=
0,206553	Ecart type decoef.		
	e de variation de T°C cau de mer; 18,042 à 18,996)	lage de variatio	
	SORTIB DE LA REGRESSION	SC	

2	Degrés de liberté	1:00.1	COEFS(X) =
2	Numbre d'observations	52.051	CONSTANTE =
0163460	Rancert	99.1 4	#Q(3) "
PSC88070	Ecart type d'estimation Y	7,1%	Moy(X)=
0.000	Ecart type de coel.		
	Plage de varietion de T'C eau de mar: 17,8 à 17,85)	Plage de variet	_
	SORTIB DR LA REGRESSION	50	

Constants
Softer Agreement
Ecart type of enthration Y
R aut carris
Nombre of Coleenvations
Degrée de liberté
Coefficient(s) X
Ecart type de coef.
EffR

នឹក	282	25	20 22	8	28	8	8 8	88	8	S 8	88	83	218	25	88	57 5	2 5	8	202	20 20	8	8	8 8	2 25	8	28 28	3 23	25	8 8	8 8	S	2 2	2 82 E	g	S 23	8	£ 1	5 15	25	50 00	888	50	8	20 00	28	56	52 52	8 2	S.	25 2	2 25	25 2	2 22	55
# 8	85 85 144 144	576	55 2	8	8 8	뜑	88	8	943	8 8	٤	8	57 649	567	Ş.	8	8 8	218	8	870	8	986	8 8	76	8	8	8	£	8	8	8	2 5	8	8	8	ī	8	88	585	8	2	885	83	8 8	2	721	8	8	ğ	576	38	59.598	8	575
0.380	3 2 3 3 8 8	25.853	0 K	25 571	23 25	25 877	24 004	24.239	24 421	24.311	24,330	23.956	22 23	25.923	25 939	24 976	24.974	25 958	25 867	28 28	25 988	25 989	25 98	25.862	26 001	8 8	3 28	25.780	03 D 26 S	25.990	25	25 870	25 870	25.803	3 23 23 23 23 23 23	25.601	13 28 38	25.879	25.850	23 20	¥ 58 88	25.879	25.481	200	25.437	25,256	13 23 23 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	25.427	25.636	25.853	25 854	25.916	25 770	25 853
2,463	27.521 17.800 19.489	27.521	27 27	20 525	20 519	20 427	200	20,419	20 415	841	20,408	20.406	88	20,396	20.394	20,365	20.3/5	20,373	20 354	20 349	20.338	20.338	20 338	88	20 327	20 327	20.319	20 319	20 319	20 317	20 317	20310	20310	20.308	3 33	20.306	20 308	20.00	20.304	20.00	88	20.304	20.304	30.50	20 302	20,300	8 8	200	20.300	200	20.300	20.300	8 8	20,300
	29.803 28.234 27.178	29 803	T	П	27.517	П	7	Τ	П	7	П	П	7	T	Π	T	Τ	П	T	T	Ī.	П	Т	Т	П	П	Τ	П	Т	Т	Т	Т	Т	П	Т	П	Т	27.292	П	Т	Т	П	Т	Τ	П	Π	Т	Т	П	T	П	27 270		П
	200.00 200.00 200.00	П	T	П	Т	П	Т	П	П	Т		П	Т	T	П	Т	T	П	Π.	Т	Γ		-1-	Т	П	П	1	П	Т	П	-1	T	77	- "	1	Π	Т	Т	П	Т	Т		Т	Τ	П	П	T	Т	П	Т	П	39 496		П
	35.00	П	-1-	П	1	П		Т	П	Т	П	П						П							П					П	П	П	П	Н		Ш	- 1	ı	Н	Т	ı	Н		1	П	Н	П	1	Н	П	Ш	Н		Н
	11 0 800 2 2 282 2 7 589	N.	1		6.998	П							6886		П			П		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			7 102		П			8 6 981					8 6.971			6.937	1	3 6.968	Н		ı			ı	3 6.888	Н	0.000		Н		Ш	2 6.970		П
2 2	283	282		П	7	П	T	Τ	П	Т	Γ	П	1	-			-	П			Г		_					Ш				1				П	1	Τ	П	T	T	П	1	Ť	П	П	1		П				T	
0.22	3.558 2.647 3.173	3.059	8 8	2 885	2 24	2.989	20 c	2.737	2.833	27.0	2.829	2 647	287	3.048	3017	2.915	2.893	3.037	298	2000	3034	3034	303	8	3 041	2 2	2.98	2.994	200	3048	2.911	202	38	28	0 20 0 00 0 00 0 00	3.020	2 2	8 8	88 88 88	8 5	288	3 007	2944	3 8	2831	2.882	83	2 2 2	3 024	308	2963	2.98	901	3.068
0.197	12,383 9,699 11,998	9 699	9 689	12.037	12 108	12.160	11.513	1 596	11.688	1 56 56	= 83	11.472	1764	12 029	12 107	11.815	1 306	12.131	12.133	12 156	12 203	12 200	222	12,132	12 229	22	1 × 1	12 142	12 12	12.256	11.819	12.198	12 198	12.177	1 2	12.068	2 036	15.158 188 188	12.181	12.181	12.062	12.198	12.002	12.002	11.994	11.969	12.246	1 200	12 049	12.233	2002	12.226	12,131	12 233
		ſ																																				D241			_													
																																					,			_	-													
																																							_							_								

95.77 97.77 97.77 97.77 97.77 97.77 98

Table 2 (Suite)

<.

5)

F-,

Doeste de 10 Awil 1992 O CEMELEC/EPT

Transment effectué : Regression multiple avec deux vanables indépendantes et une dépendante

		Te	Ts :	Tv	Tc			
Vide	Cherge	Ternec	Temsc	Tvebp	Toec	Ts-Te	Tv-Tc	Tv-Ta
40 625	23 444	15.500	22 400	36.500	32.900	6.900	3 600	14.100
41.000	23.352	15.500	22.500	36,700	33.400	7.000	3 300	14 200
39 750	23 348	15 500	22.300	36 300	33 000	6 800	3.300	14.000
41.000	23 356	15 500	22.500	36 700	33 200	7,000	3 500	14.200
40.125	23 460	15.500	22.500	38,700	33 200	7,000	3.500	14 200
42.375	24 656	15.500	22.500	37,000	33 300	7.000	3.700	14.500
40.375	23 208	15.500	22.300	38,400	32.900	5.600	3.500	14.100
41.375	24 024	15.500	22.500	36,700	33 200	7.000	3.500	14.200
40.625	23 472	t 5.500	22.300	36,200	32.800	5 800	3.400	13 900
41.375	24.244	15.500	22.500	37.000	33.300	7 000	3.700	14.500
40.125	23 676	15.500	22.400	36.500	33.000	6.900	3.500	14.100
41 812	24.220	15.500	22.500	37.050	33.350	7.000	3.700	14.550
42.250	24.180	15,500	22.500	37,000	33 400	7.000	3 600 1	14,500
40.375	23.020	15.500	22.400	36 400	32.800	6.900	3.6001	14 000
42.375	24 656	15.500	22.500	37,000	33 300	7.000	3,700	14.500
40 625	23.532	15 500	22,500	36.600	33 100	7.000	3 500	14,100
41 625	24 656	15.500	22.500	37.000	33 300	7 000	3.700	14.500
41,850	24.386	15 520	22,500	37 020	33,280	6 980	3 740	14.520
42 625	24,544	15.600	22,600	36 800	33 300	7.000	3,500	14.200
40 250	23.508	15.600	22.400	36,400	32.800	6 800	3.600	14.000
41.125	23 892	15.600	22.600	37.100	33 400	7.000	3.700	14.500
41.500	23.826	15 600	22.500	36.900	33 300	6.900	3 600	14,400
39 625	23 240	15 600	22 400	36 300	32.900	6 800	3 400	13 900
62.571	23.958	15,700	22.993	36 600	33 200	7,293	3 400	13 607
64.283	24.363	15,700	23 039	38,500	33.300	7.339	3 200	13 461
59 521	24.005	15 700	22.967	36.480	33 040	7.267	3 440	13.513
64 290	24.048	15.700	23.038	36.500	33 400	7 336	3 100	13 484
59 972	23 832	15 700	22.967		33.000	7 267	3 400	13 433
59 000	24 255	15.700	22,900	36 500	33 000	7 200	3.500	13 600
59 734	23.890	15.700	22.975	36 300	33,100	7 275	3 200	13 325
64 993	24 093	15.700	23 026	36,500	33 400	7 3261	3 100	13 474
61 344	24 039	15.700	22.983		33 100 i	7 2831	3 400	13.517
60 818	24 0121	15,700	22.973	36,400	33,0001	7 273	3,400	13 427
64.365	24 318	15.800	23 048	36,400	33 400	7 246	3.000	13.354
64 644	24 219	15 800	23 030	36.700	33 400	7,230	3 300	13 670
63 992	24 021	15 800	23 006		33.300	7 206	3 400 1	13 694
64.750	24 048	15 800	23 018		33 400	7 218	3 300	13 682
63 275	23 913	15 8001	23 000 1		33.300	7 200	3 200	13.500
64.832	24 309	15 800	23 058	36 600	33 400	7 258	3 200	13 542
64.535	24 147	15 800 i		36.700	33 400	7 252	3 300 1	13 648
64.405	24 435	15 800	23 033		33 3001	7 2331	3 3001	13 567
60.337	23.715	15 800	22 970		33 000	7,170	3 100	13 130
61 933	24.381	15 800	22,9851		33 200	7,185	3.400	13 615
65.514	24.300	15 800 i	23 022 1		33.300	7 222	3.200	13 478

Max	-	65 514	24.666	15.800	23 D56	37.100	33.400	7.339	3.740	14,550
Міп	=	39.625	23.020	15,500	22,300	36,100	32,600	6.800	3.000	13 130
Moyenne	-	51 452	23 955	15 632	22.720	36.615	33.190	7.088	3 425	13.885
Ecrat-type	• *	10.972	0 421	0 1 2 3	0 279	0.246	D 19Q	0.170	0 181	D 411
Mariana	_	400 504	A 433	0.016	A 020	0.000	A A 5 A	0.000	0.000	

Rxy = * Coefficient de correlation entre x et y Rxy.z = * Coefficient de correlation partielle Rzz* = *Coefficient de correlation multiple

Beta,Gamm' Paramètres de la regression

	ĺ	X=Te, Y = Tv, Z	= Yide
Moy(Z) =	51 452	Rxy =	-0.331
Moy(Y) =	36.615	Rocz =	0.939
Mov(X) =	15 632	Ryz =	-0.323
Bebore	83 093	Rxy z =	-0.086
Септетна =	-0.584	Rizz =	0.939
		X = Tv - Tc; Y = Tv	r-Ts, Z = Vide
Moy(Z) =	51.452	Pixy≖	0.658
Moy(Y) =	13.885	Rx⊈≐	-0.742
Moy(X) =	3 425	Ryz =	-0 859
Beta≃	-t D17	Rxy.z =	0.642
Gaznma =	-22 563	Rzz* =	0.658
			-
		X=Ta, Y = Ts-Te	
Moy(Z) =	51 452	Rxy =	0.964
Moy(Y) =	7.088	Rxz ⇒	0.982
Moy(X) =	22.720		0.927
Beta =	48.916	Rxyz =	0.753
Gamma =	-17 468	Azz* =	0.984
		X = Te: $Y = Ts - Te$	
Moy(Z) =	51.452	Axy =	0,797
Moy(Y) =	7.088	Rxz ≐	0.939
Moy(X) -	15 532	Ryz =	0.927
Bena =	48.916		-0.567
Germa =	31 449	Rzz* =	0.984

		X=Te-Te;	Y=CHARGE,	Z=Yide
Moy(2) =	51.452	Rxy	=	0.506
Moy(Y) =	23.955	Axz	_	0.927
Moy(X) =	7 066	Ryz	=	0.411
Beta ≖	62.242	Rxy z	=	0.364
Gamma =	-2 012	Piz*	=	0 929

		X=Te; Y = CHARC	GE; Z = Vide
Moy(Z) =	51 452	Rxy ⇒	0.346
Moy(Y) =	23 955	Pxz =	0 939
Moy(X) =	15 632	Ryz =	0 411
Beta =	80 459	Rxy z =	-0 129
Gamma =	2.558	Rzz* =	0.944

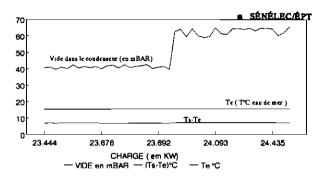


Table 3

INDEX

-C-

Capteur ,5 Centrale thermique ,28 Circuit d'interface ,12 Composantes principales ,42 Condenseur ,30 Conditionneur de signaux ,6 Convertisseur analogique-numérique ,10 -D-Dalton, (loi de) ,31 Débit de fuel ,41 (modéle de) ,43 Diagramme T-s ,29 -E-Échantillonneur-bloqueur ,9 -M-Modélisation ,2,14,20 Modèle ,18,19 Multiplexeur ,7 -p-Préamplificateur ,7 Processus, 15, 16 -8-Stabilité, Statistique ,13 Système d'acquisition ,2,4 Vide ,38

(modèle du),41,46,47

LISTE BIBLIOGRAPHIQUE.

- Ordinateurs en temps réel Applications industrielles, J.P NANTET, édition MASSON & Cie.
- <u>Conception et réalisation d'un système d'acquisition de données</u> (Projet de fin d'études de Tonsi O. BONZI), juin 1986.
- Revue générale de thermique Tome XIX, Aout-Septembre 1980 (Publication scientifique et technique internationale sur l'énergie).
- Techniques de l'ingénieur, Volume R7.

!.

- Principes de thermodynamique, Jean-Charles SISI, édition McGRAW-HILL.
- Engineering Thermodynamics with Applications, M. David BURGHARDT, 3 ième édition, Harper Collins Publishers.
- Statistics and Data Analysis in Geology, John C. DAVIS, 2nd edition, Library of Congress Cataloging in Publication Data.

