

école polytechnique de thies

GM.0564

PROJET DE FIN D'ETUDES

TITRE: DÉTERMINATION DE LA LONGUEUR DE MÉLANGE AU VOISINAGE DE LA PAROI D'UNE COUCHE LIMITE TURBULENTE SOUMISE À UN GRADIENT DE PRESSION DÉFAVORABLE.

Auteur SAIBA FAINKE Génie MÉCANIQUE Date Juin 78

ECOLE POLYTECHNIQUE DE THIES

٦

.

SENEGAL

DETERMINATION DE LA LONGUEUR DE MELANGE AU VOISINAGE DE LA PAROI D'UNE COUCHE LIMITE TURBULENTE SOUMISE A UN GRADIENT DE PRESSION DEFAVORABLE

par

SAIBA FAINKE

sous

la direction de V. NGUYEN-DUY

Département de Génie Mécanique

REMERCIEMENTS

Je tiens tout d'abord à exprimer ici ma profonde reconnaissance à mon Directeur de Projet Monsieur Vinh NGUYEN-DUY qui m'a initié au problème de la longueur de mélange et qui m'a constamment guidé et soutenu tout au long de cette étude.

Je ne saurais non plus oublier Madame Suzanne YOUNG à qui j'adresse mes sincères remerciements pour avoir bien voulu dactylo-: graphié ce texte avec beaucoup de soins.

Enfin, je remercie l'équipe de la bibliothèque pour ses prêts de livre de longue durée, le service audiovisuel, pour l'impression de ce texte, et toutes les personnes de prés ou de loin, de par leurs conseils, leurs suggestions pertinantes et constructives m'ont aidé pour la réalisation de cette étude.

REMERCIEMENTS

Je tiens tout d'abord à exprimer ici ma profonde reconnaissance à mon Directeur de Projet Monsieur Vinh NGUYEN-DUY qui m'a initié au problème de la longueur de mélange et qui m'a constamment guidé et soutenu tout au long de cette étude.

Je ne saurais non plus oublier Madame Suzanne YOUNG à qui j'adresse mes sincères remerciements pour avoir bien voulu dactylographié ce texte avec beaucoup de soins.

Enfin, je remercie l'équipe de la bibliothèque pour ses prêts de livre de longue durée, le service audiovisuel, pour l'impression de ce texte, et toutes les personnes de prés ou de loin, de par leurs conseils, leurs suggestions pertinantes et constructives m'ont aidé pour la réalisation de cette étude.

TABLE DE MATIERES

	Page
SOMMAIRE	i
TABLES DE NOTATION	ii
INTRODUCTION	1
CHAPITRE I – Considérations théoriques	2
CHAPITRE II - Détermination de la longueur de mélange	8
II - 1 Les mesures de Cf	9
II-1-1 Le tube de Preston	10
II-1-2 La balance à élément flottant	12
II-1-3 La méthode de Dickinson	12
II - 2 Calcul de $\frac{\partial(UN)}{\partial(YN)}$	
CONCLUSION	16
ANNEXE	17
BIBLIOGRAPHIE	24
TABLES DE DONNEES	27
TABLES D'APPROXIMATION (Profils complets, profils partiels)	35
TABLEAUX DES RESULTATS	38
DISTRIBUTION DE $1/\delta$ V y/ δ pour les stations de 1 à 8	46

S O M M A I R E

A partir des mesures de frottement pariétal et des lissages numériques précis de profils de vitesse moyenne, nous avons calculé la longueur de mélange pour une couche limite turbulente soumise au gradient de pression adverse modéré.

Il ressort de nos calculs qu'au voisinage de la paroi, l'expression Prandtl-Karman l = 0.4 y est bien vérifiée. Ceci implique une universalité de la loi de la paroi.

A(n)	:	fonction universelle de Dickinson.
° _f	:	coefficient de frottement = $\frac{7}{\frac{1}{2}g_{U_e}^2}$
d	:	diamètre extérieur du tube de Preston
D	:	diamètre de l'élément flottant
n	:	exposant de la loi en puissance = $\frac{d(\log y)}{d(\log u)}$
р	:	pression statique locale
q *	:	pression dynamique enregistrée par le tube de Preston
U, V, W	:	composante de vitesse moyenne locale
U', V', W'	:	composantes turbulentes de vitesse
U_e	:	vitesse de frottement = $\sqrt{\frac{\sigma_0}{g}}$
б	:	épaisseur de la couche limite
٤*	:	$e^{paisseur}$ de déplacement = $\int_{0}^{\infty} (1 - \frac{U}{U_e}) dy$
Δ	:	coefficient de gradient de pression = $\frac{y}{Su^3} \cdot (\frac{dp}{dx}) y = 0$
м	:	viscosité dynamique
\mathcal{V}^{+}	:	viscosité cinématique

.

U_+	:	$= \frac{U}{UC}$
4 7+	:	$= \frac{y \cdot Uc}{V}$
3	:	masse volumique
To	:	frottement pariétal
U	:	contrainte tangentielle
-9000	:	contrainte tangentielle turbulente
1	:	longueur de mélange
L	:	longueur de dissipation.

٦.

INTRODUCTION

Cette étude a pour but de vérifier l'équation de la longueur de mélange au voisinage de la paroi qui s'écrit :

1 = Ky

où K est la constante "universelle" de Von Karman pris égale à 0.40

Les calculs de l s'effectuent à partir des mesures soignées de vitesse moyenne et de frottement pariétal résultant d'une étude expérimentale de NGUYEN-DUY (1) dans une couche limite turbulente soumise aux gradients de pression adverses modérés.

Nous avons divisé l'étude en trois parties principales :

- Dans un premier chapitre, intitulé "Considérations théoriques" nous allons définir d'une manière théorique la notion de longueur de mélange, et les termes qui s'y rattachent.
- Le deuxième chapitre intitulé "Détermination de la longueur de mélange" nous permettra de faire une brève révision des différentes méthodes de détermination du frottement pariétal pour nous rendre compte de leur degré de précision. Le lecteur trouvera également dans ce chapitre, un résumé des différentes techniques de lissage numérique. Nous avons retenu pour nos calculs la technique de lissage exponentiel qui nous permet de calculer la dérivée première du profil de vitesse et de déduire par la suite la longueur de mélange.
- Les valeurs calculées dans le deuxième chapitre seront confrontées directement à l'expression semi-théorique de Von Karman nous permettant ainsi de dégager certaines conclusions.

CHAPITRE I

CONSIDERATIONS THEORIQUES

L'expérience montre qu'en régime turbulent, l'énergie dissipée est beaucoup plus considérable que celle qui résulterait de la seule viscosité par application de la formule de Newton.

Boussinesq (cf [2]) a expliqué l'accroissement des tensions tangentielles par l'échange continuel de particules résultant de la turbulence et provoquant une variation de la quantité de mouvement et, par suite une résistance supplémentaire à l'écoulement.

Four comprendre comment dans le régime turbulent un effort tangentiel peut s'exercer entre deux couches en mouvement par un simple échange latéral de quantité de mouvement, indépendamment de ce qui peut être dû au contact mutuel et au glissement relatif, Bakhmeteff a donné l'image matérielle suivante.

Considérons deux corps A et B éloignés l'un de l'autre et se mouvant chacun d'un mouvement de translation parallèlement à Ox et dans le même sens. Soient U_A et U_B leur vitesse respective. Supposons $U_A > U_B$ et désignons par $U' = U_A - U_B$

On peut le calculer en faisant l'hypothèse simplificatrice suivante. Soient deux couches de fluide en mouvement séparées par une surface S et supposons que pour toutes les molécules en contact de part et d'autre de cette surface S, les vitesses relatives soient uniformément U' dans le sens de l'écoulement et V' dans le sens transversal.

Pendant chaque seconde la masse échangée à travers l'unité de surface de S et $\mathfrak{S}_{V'}$; l'accroissement correspondant de quantité de mouvement dans le sens de l'écoulement est $\mathfrak{S}_{V'U'}$, de sorte que l'effort tangentiel qui en résulte est égal, par unité de surface à :

יאיטצ = לטיעי

et en moyenne, pendant une intervalle de temps fini

 $\sigma_{U} = S_{U}$

U'V' représentant la moyenne du produit des fluctuations de la vitesse instantanée dans le sens longitudinal (U') et dans le sens transversal (V').

Une telle dissipation d'énergie résultant d'un échange latéral de quantité de mouvement, existe toujours dans l'écoulement d'un fluide réel en régime laminaire ou turbulent, mais dans le cas du régime laminaire, les particules mises en jeu sont les molécules du fluide entraînant un échange de quantité de mouvement à l'échelle moléculaire, dans le cas d'un régime turbulent, à ce processus à l'échelle moléculaire se superpose un échange de quantité de mouvement entre particules fluides de volume plus ou moins important c'est-à-dire à une échelle beaucoup plus grande et les phénomènes d'origine visqueuse sont alors masqués par ceux d'origine turbulente.

On peut appliquer le même raisonnement à un écoulement continu en régime turbulent dans lequel la vitesse moyenne \overline{U} est distribuée suivant une certaine loi \overline{U} (y), y représentant la distance à la **par**oi.

A travers un plan 00_1 parallèle à la direction générale de l'écoulement, existe un échange transversal de particules avec des vitesses transversales $\stackrel{+}{-}$ V'. Il s'agit de relier V' à la vitesse longitudinale différentielle U' que le mouvement d'agitation va transferer à la couche 00_1

En 1925, Prandtl et Von Kærman définissent dans ce but la longueur de mélange l, qui est la distance du plan OO_1 à un autre plan PP₁ telle qu'une particule soumise à l'impulsion transversale V' et partant du plan PP₁ puisse atteindre la couche OO_1 et participer ensuite au mouvement de cette couche OO_1 . Au delà de la distance l, les particules issues de PP₁ n'ont plus d'action sur le mouvement du plan OO_1 . Cette hypothèse de la longueur de mélange est analogue à celles que les physiciens appellent l'hypothèse du libre parcours moyen des molécules dans la théorie cinétique des gaz.

Examinons l'influence sur la couche OO_1 de ce double courant de particules : celles qui proviennent de PP₁ et qui atteingent OO_1 , et celles qui quittent OO_1 pour atteindre PP₁ :

(i) Les particules provenant de PP₁ situé à la distance l ont une vitesse V¹ dirigée vers OO₁, et comme leur composante U¹ de fluctuation est nulle en moyenne, elles parviennent en OO₁ avec leur vitesse moyenne Ue, c'est-à-dire une vitesse relative négative

 $\overline{Ue} - \overline{U} = -1 \frac{d\overline{U}}{dy}$. Elles exercent donc sur 001 un effort retardateur.

$$\mathcal{T} = -v' l \frac{d\overline{U}}{dy}$$
(1)

 (ii) Les particules quittant: OO1 vers PP₁ ont une vitesse transversale v' et une composante U'; elle parviennent en PP₁ avec une vitesse relative positive

 $\overline{U} - \overline{U}e = + 1 \frac{dU}{dy}$. Elles exercent donc sur PP₁ un effort accélérateur :

$$\mathcal{T} = + \mathcal{S} \mathbf{v} \cdot \mathbf{1} \frac{\mathrm{d} \overline{\mathbf{U}}}{\mathrm{d} \mathbf{y}}$$

La couche 001, d'où elles sont parties subit évidemment par réaction un effort égal et de signe contraire, soit

$$\mathbf{\tau} = -\mathbf{s} \mathbf{v} \cdot \mathbf{1} \quad \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{y}} \tag{2}$$

L'identité des équations (1) et (2) montre que cette équation est donc valable pour les deux types de particules.

La différence des vitesses longitudi**na**les des deux plans 001, et PP₁ est alors

$$\overline{U} - \overline{U}e = U' = 1 \frac{d\overline{U}}{dy}$$

Pour relier U' et v', on applique le principe de continuité ou de conservation de la masse à un volume élémentaire du fluide ; en somme, s'agissant d'un fluide incompressible, les variations de flux dans la direction longitudinale (u') et dans la direction transversale (v') devant être égales, il faut bien que U' et v' soient du même ordre de grandeur. Cela revient à dire qu'il existe entre U' et v' une correlation statistique régulière, ce qui explique que le produit $\overline{U'v'}$ soit en moyenne constant en fonction du temps. Soit $\mathfrak{T} = \mathfrak{Z} \overline{U'v'}$ la valeur moyenne qui en résulte pour la tension tangentielle due à la turbulence.

Von Karman admet donc que la composante transversale v' de la vitesse instantanée qui est provoquée par l'existence du gradient l $\frac{d\overline{U}}{dy}$ a la même forme que lui c'est-à-dire que v' est aussi proportionnelle à l $\frac{d\overline{U}}{dy}$; par suite, on peut écrire :

$$\mathcal{T} = -\mathcal{J} \vee 1 \frac{\mathrm{d}\overline{U}}{\mathrm{d}y} = \mathcal{J} 1^2 \frac{\partial}{\partial y}^2$$

Le facteur de proportionnalité étant inclus dans le paramètre l (longueur de mélange).

Cette expression :

$$\mathcal{T} = \mathcal{S} \, \left[\frac{1^2}{3y} \right]^2 \tag{3}$$

constituent l'équation de Prandtl.

Pour aller plus loin, il serait nécessaire de relier l à l'écoulement moyen, seul intéressant dans la pratique car seul défini à partir des mesures expérimentales.

On peut le faire au moyen de certaines hypothèses dont la validité est appuyée sur l'expérience.

C'est en particulier ce qu'a fait Prandtl en supposant qu'au voisinage de la paroi la longueur de mélange est proprotionnelle à la distance de la paroi :

 $1 = Ky \tag{4}$

Les expériences de Nikuradse (1930), (cf[3]) sur des tuyaux lisses ont montré qu'assez près de la paroi (y $\angle 0.1$ R), on avait l = 0.4 y. La constante K appelée encore constante de Von Karman, est aussi trouvé égal à 0.4 pour le cas des couches limites turbulentes.

CHAPITRE II

DETERMINATION DE LA LONGUEUR DE MELANGE

Comme nous avons déjà developpé au chapitre II, l'équation de Prandtl s'écrit :

$$\mathcal{T} = \int 1^2 \left(\frac{\partial \overline{u}}{\partial y}\right)^2$$

1

ge :

De cette équation, on peut déduire pour la longueur de mélan-

En introduisant u_e et δ dans la formule précédente, on obtient

$$1 = \frac{\frac{u_e}{v_e} \int \frac{\frac{\pi}{g_u^2}}{\frac{g_e}{\sigma(\overline{u}/u_e)}}}{\frac{\sigma}{\sigma(\overline{y}/\sigma)}}$$

En posant
$$\frac{\mathcal{T}}{\frac{1}{2} \mathcal{J}_{u_e}^2} = Cf$$
; $\frac{\overline{u}}{u_e} - UN$; $y/S = YN$

On peut écrire une nouvelle formule pour l.

$$1 = \frac{u_e \sqrt{Cf/2}}{\frac{u_e}{\delta} (UN)}$$

et
$$\frac{1}{\delta} = \frac{\sqrt{Cf/2}}{\frac{\delta(UN)}{\delta(YN)}}$$
 (5)

Il en résulte de l'expression (5) que la longueur de mélange peut-être déterminée à partir des mesures du frottement pariétal (Cf) et des dérivées premières du profil de vitesse $(\underbrace{O(N)}{O(YN)})$.

Voyons brièvement comment le frottement pariétal Cf a été mesuré et comment la dérivée première (UN) est calculée.

II-1 Les mesures de Cf

[1]

D'après la thèse de NGUYEN-DUY $\begin{bmatrix} 1 \end{bmatrix}$, le frottement pariétal a été déterminé par 3 méthodes principales :

- le tube de Preston (équations de V.C. Patel)
- la balance à élément flottant
- méthode de Dickinson

Les résultats de Cf et des profils de vitesse se trouvent à la page 27.

II 1-1 Le tube de Preston

Le tube de Preston a été utilisé pour la première fois par Preston lui-même. Cette méthode est l'une des plus simples pour déterminer le frottement pariétal \mathcal{T}_0 ; elle consiste à utiliser un pitot simple de section circulaire, de diamètre extérieur d posé sur la surface.

Preston a fait l'hypothèse suivante : la pression dynamique q* (différence entre la pression totale et la pression statique locale enregistrée par le tube dépend seulement de \mathbf{S} , u, \mathcal{T}_{0} , et d, et après une simple analyse dimensionnelle, il écrit :

$$\frac{\mathcal{T}_{0} \cdot d^{2}}{4 \, \mathcal{S} \, p^{2}} = F(\frac{q^{*} \cdot d^{2}}{4 \, \mathcal{S} \, p^{2}}) \tag{6}$$

Les essais expérimentaux effectués dans un tuyau de 2" de diamètre (soit \pounds cm) avec des valeurs de \mathcal{T}_0 calculées à partir du gradient de pression statique longitidunal lui ont permis d'exprimer F par :

$$\log \frac{\tau_0}{4} \frac{q^*}{y^2} = 1.396 + 0.875 \log \frac{q^*}{4} \frac{q^*}{y^2}$$
(7)

Un complément a l'étude de Preston a été réalisé d'une manière assez complète en 1962 par V.C. Patel (Cf [A]) à Cambridge. En expliquant le désaccord entre les chercheurs principalement par les mesures non précises de $[C_0]$ et l'effet de déplacement qui entraînent par la suite une dispersion des constantes trouvées et en les corrigeant, cet auteur a proposé de nouvelles formules pour le tube de Preston, formules qui ont été confirmées récemment par Dickinson et Ozarapoglu (Cf **[5]**) avec des valeurs mesurées au moyen de la balance à élément flottant :

$$y^{*} = \frac{1}{2} x^{*} + 0.37$$

$$y^{*} = 0.8287 - 0.1381 x^{*} + 0.1437 x^{*^{2}} - 0.006 x^{*^{3}}$$

$$y^{*} + 2 \log (1.95 y^{*} + 4.1) = x^{*}$$

$$5.6 \leq x^{*} \leq 7.6$$

$$(8)$$

$$5.6 \leq x^{*} \leq 7.6$$

avec

$$y^{\star} \equiv \log \frac{1}{4S} \sqrt{\frac{1}{V^2}}$$

$$x^* = \log \frac{q^* d^2}{49 \mathcal{V}^2}$$

Pour les écoulements avec gradient de pression longitidunal, Patel a suggéré qu'on peut utiliser le coefficient $\Delta = \frac{\nu}{V_{e}} - \frac{dp}{dx}$ comme critère quant aux limites et erreurs possibles sur l'emploi du tube de Preston.

Gradient de pression adverse

erreur max 3 % $0 < \Delta < 0.01$ $\frac{\underline{u}_{\overline{U}} \cdot \underline{d}}{\underline{v}} \leqslant 200$ erreur max 6 % $0 < \Delta < 0.015$ $\frac{\underline{u}_{\overline{U}} \cdot \underline{d}}{\underline{v}} \leqslant 250$

Gradient de pression favorable

erreur max 3 %

$$0 > \Delta < -0.005 \qquad \frac{U_{\overline{U}} \cdot d}{\mathcal{V}} \quad 0 ; \frac{d}{d} \Delta < 0$$
erreur max 6 %

$$0 > \Delta > -0.007 \qquad \frac{U_{\overline{U}} \cdot d}{\mathcal{V}} < 200 ; \frac{d}{dx} < 0$$

II - 1-2 La balance à élément flottant

Cette méthode consiste à "peser" directement le frottement pariétal en introduisant un élément de surface dans le plan de la paroi, de telle sorte qu'il puisse bouger librement dans la direction de l'écoulement sous l'effet des forces de frottement locales.

Le déplacement de l'élément flottant peut-être traduit par la force F qui agit sur ce dernier au moyen d'un étallonnage. On peut écrire :

$$T_0 = \frac{F}{S}$$

avec S étant la surface de l'élément flottant.

Bien que théoriquement simple, cette méthode présente des difficultés expirementales à cause des faibles forces mises en jeu et surtout dans le cas du gradient de pression adverse. Pour de plus amples détails sur cette méthode, les lecteurs peuvent se référer aux références suivantes ; [1]; [6]; [7]; [8]; [9],

II - 1-3 La méthode de Dickinson

La loi déficitaire classique de la paroi s'écrit :

$$\frac{u_e - u}{u_e} = h(y/S)$$
(9)

Townsend (Cf [11]) a proposé une forme de cette loi qui tient compte des conditions en amont :

$$\frac{u_{e} - u}{u_{T}} = h(y/\delta)$$
ou
$$\frac{u_{e} - u}{u_{T}} = \frac{h(y/L)}{U_{T}/U_{T}} = \frac{h(y/L)}{g}$$
(10)

où L est une longueur arbitraire et Un la vitesse de frottement correspondant à une position X₁ en amont, de ¹ x ; la fonction $g = \frac{Un}{Un}$ est indépendant de y et est reliée aux conditions en amont de la couche limite.

page 13

De l'équation (10) et de $\frac{u}{ut} = A + B \log \frac{y}{y}$, Dickinson a montré [η] que la loi de la paroi peut prendre la forme suivante :

$$J_{+} = A(n) \cdot y_{+}^{1/n}$$
(11)

où n est l'exposant local de la loi en puissance.

 $n = \frac{U_{+}}{X_{+}} \quad \stackrel{\bullet}{\bullet} \quad \frac{du +}{dy +}$

$$n = \frac{d(\log y)}{d(\log u)} = \frac{u}{y} \cdot \frac{du}{dy}$$
(12)

ou

et A(n) est une fonction "universelle"

L'analyse des données expérimentales comprenant des mesures directes du frottement pariétal à partir d'une balance à élément flottant, a permis à Dickinson de formuler une expression linéaire de A(n)pour des valeurs de n > 7 :

$$A(n) = 0.9 (n + ln 10)$$
(13)

Par ailleurs, en égalant U_+ et sa première dérivée $\frac{du + dy}{dy + dy}$ dans les équations (11) et il a montré que qand les valeurs de n sont grandes, on peut écrire

$$\mathbf{A}(\mathbf{n}) = \frac{\mathbf{C}\mathbf{n}}{\mathbf{e}} + \frac{\mathbf{D}}{\mathbf{e}}$$
(14)

ce qui est en accord avec la forme expérimentale (13)

Comme l'équation de la sous-couche visqueuse $U_{+} = \mathbf{y}_{+}$ est un cas particulier de l'équation (11) qui implique n = 1 et A(n) = 1, Dickinson a par la suite utilisé les données expérimentales de Comte-Bellot pour compléter la formulation numérique de A(n) qu'il écrit.

$$A(n) = \begin{cases} \frac{n \ln 10 - 1}{\ln 10 - 1} & 1 \le n \le 2.6 \\ -0.24 n^2 + 2.88 n - 2.03 & 2.6 \le n \le 4.4 \\ 0.9 (n + \ln 10) & 4.4 \le n \end{cases}$$

Ainsi, l'expression de A(n) fournit en liaison avec l'équation (11), une méthode "universelle" semi-empirique de détermination du frottement pariétal à partir des mesures de vitesse, précises, dans n'importe quelle partie de la région gouvernée par la loi générale à la paroi.

Les résultats obtenus avec ces trois méthodes sont très concordants (à $\stackrel{+}{-}$ 2 % près) ce qui démontre la précision de détermiantion du frottement pariétal.

II - 2. Calcul de $\frac{\partial(UN)}{\partial(YN)}$

Utilisant la méthode de Dickinson, Long(Cf**[10]**) a mis au point un programme en langage FORTRAN IV permettant de déterminer le frottement pariétal et plusieurs autres grandeurs concernant la couche limite au moyen de profil de vitesse moyenne. Il a essayé deux techniques de lissage numérique :

> (i) la représentation du profil de vitesse par une expression polynomiale d'ordre k

$$UN = C_1 + C_2 YN + C_{k+1}Y^k$$

où $UN = \frac{u}{u_e}$ et $YN = \frac{y}{s}$

(ii) La représentation du profil de vitesse par une expression exponentielle

 $UN = A + B EX P(C YN) + D EXP (G_{\bullet}YN)$

La technique de lissage exponentiel donne des résultats satisfaisants, mais son emploi exige la connaissance de cinq valeurs initiales de A, B, C, D, G, dont la détermination est souvent fastidieuse, de telle sorte qu'elles impliquent une convergence des solutions vers celles avec des erreurs moyennes plus petites.

Nous retenons dans notre étude, la technique de lissage exponentiel qui permet de lisser le profil mesuré par l'équation :

$$UN = P_1 + P_2 EXP (P_3 YN) + P_4 EXP (P_5 YN)$$

où P_1 , P_2 , P_3 , P_4 , P_5 sont des valeurs initiales ou arbitraires de A, B, C, D et G calculées directement dans le programme modifié de NGUYEN.

Nous ne décrirons pas ici les détails de cette technique qui sont déjà bien explicités dans la thèse de NGUYEN **[1]**, seulement nous donnons quelques exemples dans les tables 67 et 83 pour montrer la précision obtenue de la méthode. Dans ces tableaux les valeurs lissées du profil de vitesse concordent avec celles mesurées et on remarque de l'erreur moyenne ne dépasse guère 1 % dans tous les cas.

$$\frac{\partial (UN)}{(YN)} = P_2 P_3 EXP (P_3 YN) + P_4 P_5 EXP (P_5 YN)$$

Il ressort de notre étude que :

- (1) La longueur de mélange l peut bien prendre la forme l = Ky au voisinage de la paroi $(y/\delta < 0.40)$ comme suggéré par Prandtl.
- La constante de Von Karman k = 0.40 est vérifiée pour toutes les stations.
 Ceci implique l'existence d'une loi universelle de la paroi.

a strategy was

ANNEXE

CONTRIBUTION AU PROGRAMME POUR DETERMINER LE FROTTEMENT PARIETAL PAR LA METHODE DE DICKINSON

1-Résumé de la méthode de Dickinson

On a vu que la loi de la paroi, d'après Dickinson [7], peut bien prendre la forme: $u = \sqrt{\left(\frac{y}{z}\right)^{n}}$ (A.1)

$$\frac{du}{U_{\tau}} = A(n) \left[\frac{du}{v} \right]$$
où $n = \frac{u}{v} / \frac{du}{dv}$
(A.2)

ou
$$= \frac{d(\log y)}{d(\log u)}$$
 (A.3)

еt

$$A(n) = \begin{cases} \frac{n \log_e 10 - 1}{\log_e 10 - 1} & 1 \le n \le 2.6 \\ -.24n^2 + 2.88n - 2.03 & 2.6 \le n \le 4.4 \\ .9(n + \log_e 10) & 4.4 \le n \end{cases}$$

L'équation (A.1) peut aussi s'écrire comme:

$$\frac{U_{\tau}}{U_{e}} = \left\{ \frac{u/U_{e}}{A(n) \left[\frac{y}{\delta} \cdot \frac{U_{e} \delta}{v}\right]^{1/n}} \right\}^{n/n+1}$$
(A.5)

La méthode de Dickinson consiste donc à déterminer l'exposant n de la façon la plus précise possible et par la suite à calculer U_t au moyen de l'équation (A.5). Dans son travail original, Dickinson a calculé n à l'aide des pentes des courbes de logy en fonction de logu (éqn.A.3). Ensuite, il a proposé de remplacer ces calculs fastidieux par des méthodes d'approximation numérique afin de trouver une meilleure expression analytique des profils de vitesse (cf. [40]) et la dérivée première de cette expression en fonction de y nous permettra de déterminer n (e.g. éqn.A.2).

2-Programme de Long [40] :

Utilisant la méthode de Dickinson, Long [10] a mis au point un programme en langage FORTRAN IV permettant de déterminer le frottement pariétal et plusieurs autres grandeurs concernant la couche limite au moyen du profil de vitesse moyenne. Deux méthodes d'approximation ont été essayées par ce dernier: la première consiste à représenter le profil de vitesse par une expression polynomiale d'ordre k:

$$UN = C_1 + C_2 \cdot YN + \dots + C_{k+1} \cdot YN^k \quad (A.6)$$
où
$$UN = \frac{u}{v_0} \quad \text{et} \quad YN = \frac{y}{\delta}$$

et la seconde par une expression exponentielle:

UN = A + B.exp(C.YN) + D.exp(G.YN) (A.7)

Il ressort de ses résultats que l'approximation exponentielle fournit des résultats satisfaisants, tandis que l'approximation polynomiale donne parfois des valeurs de n négatives à cause de la distortion des points expérimentaux du profil de vitesse dans la région près de l'écoulement extérieur. De plus, la valeur estimée de U_C varie avec le changement d'ordre du polynôme et on ne peut pas savoir "à priori" quel est le meilleur choix de k. C'est pour cette raison, l'auteur a présenté le programme avec la seule possibilité de faire l'approximation exponentielle (éqn. A.7) du profil normalisé de vitesse. Ce programme comprend un programme principal avec des sous-programmes

* LSQFIT { pour faire l'approximation exponentielle

* GSNEL du profil normalisé de vitesse (UN vs YN)

* DMFV :pour déterminer la valeur moyenne de U_L, qui est constant jusqu'à 2.5% sur un nombre de points successifs M:

 $\frac{U_{\tau}}{U_{e}} = U'TORM = M$

où IFSN désigne le premier point de la région sur laquelle les valeurs estimées de sont les plus concordantes.

* AREA : pour effectuer l'intégration numérique par la méthode de trapèze.

3- Les modifications

L'emploi de la forme exponentielle exige la connaissance de cinq valeurs initiales de A, B, C, D et G, dont la détermination est souvent fastidieuse, de telle corte qu'elles impliquent une convergence des solutions vers celles avec des erreurs moyennes plus petites.

Toutefois, pour une configuration d'écoulement donnée, d'après les résultats de Long [40]. Les valeurs initiales trouvées sont en général les mêmes pour tous les profils de vitesse. Afin de rendre la détermination de ces valeurs plus vite, nous avons tout d'abord traduit les sous-programmes LSQFIT et GSNEL en langage A.P.L.-360. Ces derniers permettent de prendre chaque fois un profil de vitesse et essayer avec différentes valeurs initiales de A, B, C, D, G jusqu'à ce qu'une bonne approximation apparaisse (cf.table107).Notons également que l'on ne peut pas prendre des valeurs initiales d'une manière quelconque pour essayer avec les nouveaux programmes A.P.L. mais on doit les choisir proches de celles déjà trouvées par Long [40] sur une gamme varié de configurations d'écoulement.

Dans notre cas, nous avons essayé avec le profil de vitesse de la station 6 (POS.1) et au bout de trois essais par tâtonnement, la convergence apparaît d'une manière surprenante pour des valeurs initiales A = 1.0, B = -.7, C = -1.35, D = -1.0 et G = -67. Ces valeurs sont par la suite utilisées pour tous les autres profils (POS.1, 2, 3) et nous obtenons des résultats satisfaisants en ce qui concerne l'approximation exponentielle des profils complets de vitesse moyenne (cf. tables d'approximation

65 à 82). Nous avons aussi utilisé ce procédé pour les profils partiels effectués au voisinage de la paroi, mais en général l'approximation n'est pas du tout satisfaisante. Par conséquent, nous avons améllioré le programme existant en y ajoutant:

(1) Une nouvelle partie dans le programme principal
 qui calcule directement les valeurs initiales en ce qui concerne
 l'approximation des profils partiels de vitesse par:

UN = P1 + P2.exp(P3, YN) + P4.exp(P5, YN)

où P1,P2,P3,P4 et P5 sont des valeurs initiales ou arbitraires de A,B,C,D et G.

Description générale de la méthode (cf. [13]):

- On suppose initialement:

 $\overline{\text{UN1}} = 1.0 + \text{P2.exp}(\text{P3.YN})$

et on résoud P2 et P3 en faisant passer cette courbe par l'avant-dernier point KN1-KNT - l (KNT: nombre total des points expérimentaux) et le point au milieu du profil KN2-KNT/2.

- Ensuite on pose:

UN2 = 1.0 + P2.exp(P3.YN) + P4.exp(P5.YN)

et on calcule P4 et P5 de telle sorte que la courbe passe par deux points 1 - 2 très proche de la paroi et 1 - KN3 - KNT/4 relativement près de la paroi.

- La correction finale pour la valeur de l'Ern la soustrayant de l'erreur moyennes

$$P1 = 1.0 - \sum_{I=1}^{KNT} \left[\overline{UN2} - UN(1) \right] / KNT$$

(11) Deux sous-programmes LSQPOL et GSNPO (déjà utilisés par Long [10]) qui font l'approximation de deux variables logYN en fonction de logUN par un polynôme d'ordre k (éqn.A.6), au lieu du profil de vitesse UN va YN.

Description générale de la méthode (cf. [10]):

- On fait l'approximation de u points (x_i, y_i) par:

$$y_1 = c_1 + c_2 \cdot x_1 + c_3 \cdot (x_1)^2 + \dots + c_{k+1} \cdot (x_1)^k$$

- Première étape: Formation des équation résiduelles pour la méthode des moindres carrés sous forme matricielle:

$$\begin{bmatrix} n & \Sigma \mathbf{x}_{1} & \Sigma(\mathbf{x}_{1})^{2} & \dots & \Sigma(\mathbf{x}_{1})^{k} \\ \Sigma \mathbf{x}_{1} & \Sigma(\mathbf{x}_{1})^{2} & \Sigma(\mathbf{x}_{1})^{3} & \dots & \Sigma(\mathbf{x}_{1})^{k+1} \\ \vdots & & & \\ \Sigma(\mathbf{x}_{1})^{k} & \Sigma(\mathbf{x}_{1})^{k+1} & \Sigma(\mathbf{x}_{1})^{k+2} \dots & \Sigma(\mathbf{x}_{1})^{k+k} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{k} \end{bmatrix} = \begin{bmatrix} \Sigma \mathbf{y}_{1} \\ \Sigma \mathbf{x}_{1} \mathbf{y}_{1} \\ \vdots \\ \Sigma(\mathbf{x}_{1})^{k} \end{bmatrix}$$

- Deuxlème étape: Solution des coefficients c₁,c₂...,c_k par la méthode d'élimination de Gauss-Jordan (sousprogramme GSNPO).

(111) Un sous-programme SPLINE qui donne comme résultats finals la dérivée première pour différentes entrées:

OU

Ce programme a été mis au point par Benson [44], qui utilise la méthode de Landis & Nilson [45] dont nous ne donnons ici qu'une description générale:

- On fait l'approximation de n points (x(1), y(1)) avec

 $0 \leq i \leq n$ au moyen d'une fonction d'interpolation suivante:

P(x) = P(1, x) $x(0) \in x \leq x(1)$

 $P(n,x) = x(n-1) \leq x \leq x(n)$

où P(1,x) sont des polynômies d'ordre 3 dont les coefficients ont été choisis de telle sorte que la première et la seconde dérivée scient continues aux points de jonction des polynômes.

 On peut aussi interpoler, par le même procédé, les ordonnées y correspondant aux différentes abscisses x précisées.

(iv) Un nouveau sous-programme AhEA qui calcule les intégrales par la méthode de Simpson pour les incréments d'abscisses (dx) inégaux.

Le programme modifié ainsi comprend un programme principal et des sous-programmes: LSQFIT, GSNEL, LSQPOL, GSNPO, SPLINE, DMFV et AREA.

NOTE: En ce qui concerne le listing du programme, le lecteur pourra se référer à la référence [1]

Page 24

BIBLIOGRAPHIE

[1] V. NGUYEN-DUY "Mesures dans une couche limite turbulente avec gradients de pression adverses modérés". Thèse de maîtrise, Univ Laval, Québec. 1972 . [2] H. SCHLICHTING "Boundary Layer Théory" 4ième édition Mc.GRAW-HILL 1970, P. 475 (3) NIKURADSE Voir Schliehting (2), P. 502. [4] V.C. PATEL "Calibration of the Preston Tube and Limitation on its use in pressure gradients" J. Fluid Mech., Part I P.P. 185-208, 1965. [5] J. DICKINSON "The Determination of Skin Friction" V. OZARAPOGLU D.R.B. Progress Report, Grand N° 9550-23 Univ - Laval, Oct. 1968.

 V. NGUYEN-DUY "Quelques contributions à l'étude de la détermination du frottement pariétal". Thèse de doctorat ès Science. Univ. Laval, Québec 1976 P.P. 9-30.

J. DICKINSON "The Determination of Skin Friction in two Dimensional Turbulent Flows" Thèse de Doctorat, Univ. Laval, Québec, 1965

J. DICKINSON et "The Determination of turbulent Skin
 V. OZARAPOGLU Skin friction" Def. Res. Board of
 Cacada, Progress Report, Grant Nº 9550-23
 Univ. Laval, Oct. 1968.

K.G. WINTER "An Outline of the Techniques Available for the Mesurements of Skin Friction in Turbulent Boundary Layers" RAE - TM - 1656, Déc. 1976. Cours donnés à Von Karman Institute (Bruxelles).

[10] LONG TRAN - BUU "The Determination of Turbulent Skin Friction". Thèse de Maîtrise Univ. Laval. Québec 1970. [11] A.A. TOWNSEND "Turbulent Friction on a flat plate" Skipsmodelltankens, moddeletse, N° 32 mars 1954 [12] B. H. MAHAN 11 Chimie" Editions du renouveau pédagogique Inc. 2ième édition P.P. 74 - 77. [13] V. OZARAPOGLU "The Determiantion of Turbulent Skin V. NGUYEN-DUY Friction" D.R.B. Progress Report, J. DICKINSON Frant N° 9550-23 Nov. 1971. [14] G.C. BENSON Spline-fit program (Fortran IV) N.R.C. T.SS User's Manual (communication personnelle) [15] F, LANDIS "The Determination of Thermodynamic Propreties by Direct Differenciation Techniques" Progress in International Research on Thermodynamic and Transport Propreties, 1962 A.S.M.E. Symposium. Notes: les références [11], [14], et [15] sont donnés ici seulement à titre

d'indication, elles n'ont pas été utilisées pour ce projet.

RESULTATS DES MESURES

Dans les tables de la page 27 à la page 34, nous trouvons :

- les valeurs du frottement pariétal Cf
- les valeurs de YN = y/δ
- les valeurs de
- les valeurs de U_e
- les valeurs initiales et finales de $A_{,B_{,}C_{,}D_{,}G}$.

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS

STATION 2 POS.L PITOT VINH

AMBIENT TEMPERATURE . DECREES R ANBIENT PRESSUPE INS HG . DENSITY SLUGS/FT+3 . KINEMATIC VISCOSITY -0.00017050 FT +2/SEC PITOT TURF HEIGHT 0.0320 . INS PITOT TOP PETROT DISPLACEMENT FACTOP BOUNDARY LAYER THICKNESS = DELTA DISPLACEMENT THICKNESS = DELTA NOMENTUM THICKNESS = THETA 0.150 . 1.6560 1 N S -0.2744 INS 0.1581 . INS ENERGY THICKNESS . DELTANN . 0.273 INS H . DELTA+/IHETA . 1.42 REYNILDS NUMBER BASED CN THETA . 6520. 2.8860 FT/SEC FRICTION VELOCITY . FRICTION COEFFICIENT 0.00234 • FREE STREAM VELOCITY 84.4 FT/SEC ... ¥ COMMAND CARDS: INITIAL PARAMETERS . P11 -1.0000 P22 --0.7000 P33 • -1.3500 P44 . -1.0000 P55 - -67.0000 FINAL PARAMETERS -P1 -1.0144 P2 • -0.5306 P3 * -3.5149 P4 = -9.1098 P5 = -67.2678 MEAN ERROR . 0.004189 N = 5

 K1 = 0
 K2 = 0
 K3 = 0
 K4 = 1
 K5 = 1
 PITOT = 0.03200
 ALPHA = 0.150

 VC = 0.00017050
 DELTA = 1.656
 DIST = 0.0
 REY = 0.0
 C1 = . 68308.75
 C2 = 1.0

 UE =
 84.40
 UTORI = 0.0
 PTE = 0.0
 PSE = 0.0
 CV = 0.0

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS STATION 2 POS.1 PITOT VINH

ΥI	υl	YN	UN	UNS	N		UTOP	UTORN	UN +	LOGY+	UN●●	L 0G Y ++	SLOPE
0.0160	39.0924	0.0126	0.463	0.456	7.40	8.73	0.0332	7.9721	13.45	1.467	15.70	-0.88	4.912
0.0200	37.1773	0.0150	0.464	0.468	7.00	9.37	0.0337	0.9653	13.57	1.544	15.67	-7.80	4.461
0.0250	40.2546	0.0180	0.477	0.481	6.71	9.11	0.0340	0.9734	13.95	1.624	15.29	- 0. 72	3.981
0.0100	41.6437	0.0210	0.493	0.492	6.54	7.96	0.9341	0.9971	14.43	1.691	14.01	-().66	3.580
0.0400	42.7450	0.0271	0.506	0.512	6.34	7.81	0.3342	0.9976	14.91	1.001	14.43	-0.55	7.964
0.0500	44.9447	0.0331	0.533	0.528	6.30	7.75	0.1142	1.0002	15.57	1.845	13.67	-0.46	2.531
0.0400	45.6996	0.0391	0.541	0.442	6.23	7.68	0.7342	1.0005	15.93	1.961	13.41	-0.19	2.223
0.0700	47.24R2	0,0452	0.560	0.555	6.14	7.60	0.1142	1.0003	16.39	2.023	12.86	-0.12	2.002
0.0800	47.7474	0.0512	0.544	0.567	4.02	1.49	0.0342	0.4994	16.54	2.075	12.70	-0.27	1.040
0.1000	53.0806	0.0611	0.573	0.587	5.71	7.21	0.0340	0.3347	17.35	2.170	11.89	-0.18	1.624
0.1500	53.7654	0.0935	0.637	0.432	4.96	4.54	0.0329	0.9672	18.03	2.137	10.61	-0.01	1.363
0.2000	56.5072	0.1237	0.670	0.671	4.48	A.10	0.0314	0.9235	14.53	2.461	9.66	0.11	1.211
0.2500	59,2506	0.1539	0.702	0.705	4.22	5.85	0.0107	0.4073	20.53	2.555	8.71	0.21	1.084
0.3000	61.9617	0.1941	0.733	0.737	4.10	5.74	0.0301	0.0410	21.43	2.613	7.AL	0.24	0.477
0.3500	64.2011	0.2143	0.761	0.745	4.06	5.71	0.0:00	0.0761	27.25	2.697	7.00	0.35	0.878
0.4000	66. 1599	0.7444	0.797	0.790	4.07	5.73	0.0301	0.8502	23.03	2.757	4.21	0.41	0.790
0.5000	69.837 A	0.304 A	0. 077	0.833	4.28	5.90	0.0311	0.9089	24.29	2.853	5.05	0.50	0.639
0.6000	73.1219	0.3452	0.856	0.847	4.60	4.21	0.0125	0.9513	25.34	2.931	3.91	0.58	2.517
0.7000	75.4.276	0.4256	0.894	0.896	5.04	5.60	0.0344	1.0258	26.13	2.997	3.11	0.65	0.418
0.8000	77.7446	0.4846	0.522	0.918	5.59	7.10	0.03/3	1.0625	26.46	3.055	2.74	0.71	0.338
0.9000	77.6147	0. 44,4	0.943	0.937	A.27	7.72	0.2311	1.1153	27.59	3.104	1.64	0.76	0.273
1.0000	P1.1337	0.6069	0.542	0.752	7.07	9.44	0.0300	1.1547	24.13	3.151	1.11	0.40	0.221
1.1000	81.8544	0.4471	0.970	0.964	8.08	7.34	0.3404	1.1884	24.15	3.193	n. 48	0.84	0.174
1.2000	82.4713	0. 7775	C. 577	0.573	9.25	10.40	0.0411	1.2009	29.58	3.230	2.67	0.58	0.145
1.4000	82.9905	C. P483	0.543	0.087	12.11	11.15	0.3400	1.1701	28.15	3.251	0.49	0.95	0.011
1.5000	83.3173	0.9097	0.597	0.993	14.28	14.93	0.0106	1.1279	20.47	3. 127	0.37	0.94	1.074
1.6000	#3.4892	0.9691	0. 489	0.497	17.63	17.04	0.0366	1.0/07	24.93	1.155	2.11	1.01	0.062

a france a more

dente coltrian

CALCULATION OF SKIN PRICTION - INCOMPRESSIBLE FLOWS

.

STATION 2 POS.L PLITT VINH

.

;

ANDIENT TEMPERATURE DEGREES A . AND LENT PRESSURE . INS HU SLUGS/FT+3 ULISS IT . . UCHAITT RINGMATIC VISCOALTY PILATIC VISCOALTY UISPLACEMENT FACTOR DUDWEARY LAYER THICKNESS = UTUTA DISPLACEMENT THICKNESS = UTUTA MUNCHTUM THICKNESS = THETA THICKNESS = THETA =0.00017250 FT=2/Sec . 0.0320 i NS . 0.150 1.8200 . 105 . LINS . U.ldd∠ 1.43 ENERGY THICKNESS . UELTA .. 22د. ب 28.1 H - JELTI+/1HETA . 1.40 RETINULUS HUPS IN DA 100 UN HIETA 7421. • FR LET 10 + VELOUITY FR LET ICH CUEPFICIENT 4 . 2.0000 TT/SEL • 0.00212 FREE STREAM VELICLEY • 81.7 PT/Sec

CUMMANE CARUSI

INITIAL PARAMETERS = P11 . 1.0000 P22 --C.7COO PJ3 --1.3000 P44 = -1.0000 P55 = -07.00C0 FINAL PAPAMETERS -P1 + 1.0300 PZ = -0.5755 P3 = -1.1007 P- --0.1514 P5 = -57.4647 MEAN ERRER = 0.30-121 d = 5 N1 - C K2 - U A4 + 1 K5 = 1 PITUT + من 200 ALPFA = 0.150 من 4 + 1 **C** = CA VC . C.CCC17259 DELTA = 1.820 UIST = U.C REY = 0.0 C2 = 1.0 C1 + 71774.38 UE = E1.67 UTJKL = 0.0 P16 = 0.0 PSE = 0.0 CV = 0.0

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS

STATION 3 PCS-1 PITUT VINH

۲I	u	YN	υħ	UNS	14	A	UTUR	UTORN	UN+	LUGYO	UN##	LUG Y = =	SLUPE
U. U1C.	22.1557	U. U.14	0.430	0.425	ما را . و	7.17	ادوں. ن	1.0176	13.24	1.420	17.91	-0.90	6.571
0.0636	25.2065	ە ئات ، ب	0.432	6.433	5.16	7.22	افڈ ں ، ں	1.0166	11.27	1.503	17.48	-0.68	2.0.3
0.0250	36.6365	6.0104	4.451	0.452	5.01	7.37	υ.υ.i υ	1.0141	11.4/	1.502	10.45	-0.80	4.041
0.0300	17.5164	0.0141	4.46.	6.464	6.11	7.51	0.0327	1.0101	14.20	1.430	10.97	- 4.73	3.414
U.L.LLC	31.5676	J. J246	J.40%	0.481	6.55	1.47	V.U327	1.0041	14.47	1.759	15.80	-4.62	2.990
U.LSLL	46.7627	1.0.0	0.471	0.498	6.67	d.24	0.0325	0.4942	15.30	1.447	12.34	-0.24	6.413
U.LLLC	41.6507	6.6350	0.511	0.510	6.16	4 د . ه	0.0324	C.9975	15.70	1.520	15.05	-0.40	4.000
U. L	41.5527	0.0-00	J. 533	0.531	6.04	4.04	6220.0	1.0001	10.40	2.020	14.35	-0.35	1.704
0.1030	4 1287	0.3216	1.552	C. 549	4.15	7.01	0.0325	0.4401	11.07	2.120	11.04	-0.23	1.544
	1C.7814	0.1125	3.021	0.624	+.+6	ۇ ن _ ن	0.0249	0.9156	17.12	2.419	11.03	J.04	1.201
4. 200	15.5413	J.10/2	U. U. 1	U.688	1.07	3.2.	J.U2/8	6664.0	£ 6• 0 ≥	2.:52	¥.84	0.21	1.003
4.4926	5. 5911	4.556.4	0.75.	0.142	3.11	2.27	0.0211	0.4326	22.34	2.715	d.lu	و ڌ . ن	U.810
ULEULE	11.6616	فلدرر	6. 42 3	J. H25	3.10	3.55	0.0200	J.8014	29.23	2.890	5.52	0.51	1.037
MARG De	12. 4161	4.4422	U. 1511 1	U. n84	4. 14	6.05	اە ئىزى، ن	0.9400	21.31	3.014	3.44	0.03	0.4.5
1.0000	11 5	1.17/1	4.917	0.027	2.22	0.11	0.03-3	1.0558	28.88	3.110	1.37	د7.0	U.322
	38.1.01	the state is the	u . '11.'s	6.756	4.4	1.70	1160.0	1.1585	29.65	3.189	1.10	J.81	4.224
1.4010	1	3.7719	3.211	0. 276	7.74	4.04	0.0400	1.2313	30.09	3.270	0.00	0.87	0.141
1.0000	86.5307	0.410	0.91	1.004	12.33	11.17	0.0400	1.2295	10 7	3.364	0.25	J. 48	0.002

5

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS

STATION 4 POS.L PLTOT VINH

.

ANDIENT TEMPERATURE		•	DEGREES R
NENCITY		•	INS HG
		•	SLUGS/FT+3
KINEMATIC VISCOSITY		=0.00016500	FT+2/SEC
PITOT TURE HEIGHT		• 0.0320	INS
DISPLACEMENT FACTOR		 0.150 	
BOUNDARY LAYER THICKNESS	DELTA	- 1.9770	ENS
DISPLACEMENT THICKNESS	DELTA*	- 0.3138	INS
MOMENTUM THICKNESS	THETA	= 0.2124	INS
ENFRGY THICKNESS	DELTA++	0.362	INS
H = DFLTA+/THETA		- 1.48	
REYNOLDS NUMBER BASED ON	THETA	= ⁸⁴³⁰ .	
FRICTION VELOCITY		- 2.4634	FT/SEC
FRICTION COEFFICIENT		0.00196	
FREE STPEAM VELOCITY		- 78.6	FT/SEC

COMMAND CARDS:

 Y

 INITIAL PARAMETERS =

 P11 =
 1.0000
 P22 =
 -0.7000
 P33 =
 -1.3500
 P44 =
 -1.0000
 P55 =
 -67.0000

 FINAL PARAMETERS =

 P1 =
 1.0325
 P2 =
 -0.5535
 P3 =
 -3.0110
 P4 =
 -0.2222
 P5 =
 -116.9707

 MEAN ERROR =
 0.005664
 -0.03200
 ALPHA =
 0.150

 VC =
 0.00016500
 C1 =
 78480.88
 C2 =
 1.0

 UE =
 78.60
 UTOP1 =
 0.0
 P5E =
 0.0
 CV =
 0.0

CALCULATION OF SKIN FRICTION - INCOPPRESSIBLE FLOWS STATION 4 POS.1 PITOT VINH

Y I	UI	YN	UN	UNS	N		UTOP	UTORN	UN +	LOGY+	UN++	L 0G Y **	SLOP
0.0160	31.3098	0.0105	0.398	0.393	4.00	5.65	0.0309	0.9964	12.71	1.413	19.20	-1.01	9.32
0.0200	31.6714	0.0125	0.407	0.410	4.24	5.86	0.0311	0.7938	12.94	1.4.99	19.07	-0.93	7.712
0.0250	33.3319	0.0151	0.424	0.427	4.60	6.21	0.0313	1.0002	13.93	1.569	18.38	-0.85	6.16
0.0300	34.6772	0.0176	0.441	0.441	5.00	6.57	0.7315	1.0069	14.03	1.636	17.83	-0.79	5.01
0.0350	35.6071	0.0201	0.453	0.453	5.42	6.95	0.0317	1.0099	14.45	1.695	17.45	-0.73	4.14
0.0400	36.4236	0.0227	0.463	0.442	5.AZ	7.31	0.0716	1.0098	14.79	1.746	17.12	-0.68	3.50
0.0450	37.0443	0.0252	0.471	0.471	6.18	7.54	0.0310	1.0076	15.04	1.792	16.47	-0.63	3.022
0.0500	37.4847	0.0277	0.477	0.47A	6.4A	7.91	0.0315	1.0046	15.72	1.834	14.69	-0.59	2.660
0.0550	38.2620	0.0302	0.447	0.484	6.71	8.11	0.0314	1.0018	15.54	1.872	16.37	-0.55	2.38
0.0600	38.5321	0.0328	C. 490	0.490	6.85	8.24	0.0313	0.9978	15.44	1.976	14.27	-0.52	2.18
0.0700	39.4063	0.0378	0.501	0.500	6.94	8.32	0.0313	0.9447	16.00	1.949	15.91	-0.45	1.900
0.0800	40.2397	0.0425	0.512	0.509	A.81	8.21	0.0313	0.4447	16.13	2.021	15.57	-0.40	1.74
0.0900	40.7432	0.0480	0.513	0.514	6.5A	7.99	0.0314	1.0011	16.54	2.072	15.37	-0.35	1.04
0.1000	41.7912	0.0530	0.532	0.926	6.30	7.74	0.0114	1.0004	16.96	2.115	14.94	-0.11	1.574
0.1500	44.5471	0.07#3	0.545	0.564	5.09	6.65	0.0303	0.9671	14.12	2.745	13.74	-0.14	1.41
0.2000	46.8296	0.1736	0.535	0.598	4.41	6.04	0.0287	0.9172	19.01	2.405	12.90	-0.02	1.30
0.1000	51.1944	0.1542	0.451	0.659	3.81	5.46	0.0265	0. 4467	20.78	2.579	11.13	0.16	1.12
0.4000	55.1054	0.2048	0.701	0.712	3.60	5.23	0.0256	0.4173	22.37	2.702	4.54	0.28	0.961
0.5000	58.5705	0.2553	0.749	0.757	3.58	5.20	0.0255	0.A134	23.78	2.798	8.13	0.38	0.02
0.7000	64.9137	0.3565	0.825	0.830	3.61	5.46	0.0267	0.4535	26.35	2.943	5.56	0.52	0.61
0.9000	49.7007	0.4577	0. #97	0.483	4.29	1.90	0.0294	0.3349	29.30	3.051	3.61	0.63	0.45
1.0000	71.4109	0.5082	0.914	0.904	4.60	4.21	0.0310	0.5876	29.15	3.047	2.76	0.68	0.36
1.1000	73.2744	0.5548	0.932	0.922	4.97	6.54	0.0126	1.0414	29.75	3.138	2.14	0.72	0.33
1.2000	74.571 9	0.074	0.947	0.938	5.39	6.93	0.0341	1.0444	30.27	3.176	1.44	0.75	0.28
1.3000	75.4975	C.660C	0.943	0.951	5.84	7.37	0.0359	1.1457	30.73	3.210	1.18	0.79	0.24
1.4000	76.0534	0.7196	0. 51. 9	0.963	6.44	7.97	0.0171	1.1917	30.07	3.242	1.03	0.82	0.210
1.5000	76.5851	0.7612	0.574	0.973	7.07	6.44	0.0386	1.2307	31.09	3.272	0.87	0.45	0.18
1.6000	76.3564	0.8117	0.574	0.981	7.74	9.08	0.0195	1.2610	31.20	3.300	0.71	0.88	0.15
1.7000	77.1721	0.8623	0.941	0.988	8.60	9.82	0.0402	1.2814	31.31	1.327	0.60	0.90	0.13
1.8000	77.5454	0.9129	0.587	0.995	9.57	10.64	0.0405	1.2708	31.47	3.351	0.42	0.93	0.11
1.9000	77.6539	0.9635	0.500	1.000	10.55	11.54	0.0404	1.2990	31.52	3.375	0.38	0.95	0.09

STATION 5 PUS.1 PETOT VINH

ANRTENT TEMPERATURE		•	DEGREES R
AMBIENT PRESSURF		•	INS HG
DENSITY		•	SLUGS/FT+3
KINEMATIC VISCOSITY		-0.00016080	FT+2/SEC
PITOT TUBE HEIGHT		- 0.0320	INS
DISPLACEMENT FACTOR		• 0.150	
BOUNDARY LAYER THICKNESS	DELTA	. 2.1070	INS
DISPLACEMENT THICKNESS	DELTA*	 0.3656 	INS
MOMENTUM THICKNESS	THETA	= 0.2434	INS
ENERGY THICKNESS	- DELTA++	0.413	INS
H = DELTA+/THETA		. 1.50	
REYNOLDS NUMBER PASED ON	THETA	· 9497.	
FRIGTION VELOCITY		. 7.2683	FT/SFC
FRICTION COEFFICIENT		• 0.00182	
FREE STREAM VELOCITY		- 75.3	FT/SEC

COMMAND CARDS:

 INITIAL PARAMETERS

 P11 + 1.0000 P27 + -0.7000 P33 + -1.3500 P44 + -1.0000 P55 + -67.0000

 FINAL PARAMETERS +

 P1 + 1.0439 P2 + -0.6174 P3 + -2.7060 P4 + -0.1665 P5 + -84.7839

 MEAN ERKOR + 0.006228

 M + 5

 K1 + 0 K2 + 0 K3 + 0 K4 + 1 K5 + 1 PITOT + 0.03200 ALPHA + 0.150

 VC + 0.00016080

 DELTA + 2.107 DIST + 0.0 REY + 0.0 C1 + 82208.50 C2 + 1.0

 UE + 75.29 UTOR1 + 0.0 PTE + 0.0 PSE + 0.0 CV + 0.0

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS

STATION 5 POS. 1 PITOT VINH

۲۱	UI	YN	UN	UNS	N		UTOR	UTORN	UN •	L03 ¥+	UN●●	L 0G¥ ++	SLOPE
0.0160	28.6322	0.0095	0.380	0.371	4.85	6.44	0.0298	0.9905	12.62	1.389	20.57	-1.07	7.740
0.0200	28.7430	0.0118	0.382	0.384	4.79	6.38	0.0299	0.9905	12.67	1.465	20.52	-0.99	6.823
0.0250	29.1A18	0.0141	0.788	0.399	4.87	6.41	0.7299	. 0908	12.47	1.544	20.33	-0.91	5.864
0.0300	30.4749	0.0145	0.410	0.412	4.92	6.50	0.0299	0.9920	13.61	1.617	19.59	-0.84	5.078
0.0350	31.6972	0.0100	0.421	0.424	5.06	6.63	0.0299	0.9937	13.97	1.670	19.22	-0.79	4.434
0.0400	32.7905	0.0213	0.436	0.434	5.22	5.77	0.0300	0.0455	14.45	1.777	19.74	-0.74	3.705
0.0450	33.5724	0.0234	0.446	0.442	5.30	6.42	0.1100	0.9971	14.80	1.747	14.37	-0.64	3.471
0.0500	37. 5553	0.0240	0.451	0.450	5.54	7.07	0.0301	0.0001	14.97	1.809	14.27	-0.65	1.114
0.0550	34.3328	0.0284	0.455	0.457	5.71	7.21	0.0101	0.9991	15.14	1.447	14.04	-0.61	2.820
0.0630	34.9420	0.0108	0.464	C.443	5.65	1.33	0.1301	0.9997	15.40	1.882	17.74	-0.57	2.574
0.0700	36.1416	0.0355	C. 48C	0.475	1.04	7.51	0.0301	1.0002	15.73	1.944	17.25	-0.51	2.214
0.0800	34.9503	0.0402	0.491	0.495	6.13	7.59	0.0301	1.0005	16.29	1.999	16.90	-0.45	1.964
0.0700	37. 1914	0.0450	0.497	0.474	6.13	7.59	0.0301	1.0004	16.49	2.041	16.71	-0.41	1.790
0.1000	38.0814	1.0497	0.506	0.502	6.05	7.51	0.0301	0.9998	16.79	2.031	16.40	-0.37	1.668
0.1500	40. A916	0.0735	0.543	0.537	5.24	6.78	0.0294	0.9774	18.03	2.260	15.16	-0.20	1.397
0.2000	47.9126	0.0972	0.570	0.569	4.55	6.16	0.0281	0.9318	18.92	2.382	14.27	-0.07	1.248
n. 3non	46.4039	0.1447	0.614	0.626	3.83	5.48	0.1257	0.9524	20.46	2.554	17.73	0.10	1.130
0.4000	49.7846	0.1921	0.661	0.677	3.55	5.16	0.0244	0.8110	21.95	2.617	11.24	0.22	0.293
0.5000	53.0734	0.2 196	0.705	0,721	3.44	5.04	0.0234	0.7946	23.41	2.773	9. 78	0.32	0.074
0.7000	59.1386	0.3145	0.796	0.794	3.51	5.13	0.1243	0.4072	26.07	2.918	7.12	0.46	0.676
0. 1000	64.2137	0.4274	0.843	0.851	3.79	5.44	0.1259	0.8593	24.31	1.027	4.88	0.57	0.523
1.0000	66.1425	0.4769	0. 997	0.474	3.99	5.64	0.0270	0. HU/ A	24.27	3.077	3.91	0.62	0.460
1.1000	6A. 0012	0.5243	0.903	0.894	4.22	5.45	0.0284	0.9415	27.98	3.114	3.71	0.66	0.404
1.2000	64.5190	0.5718	0.523	0.912	4.49	6.11	0.0797	0.4869	30.65	3.151	2.54	0.69	0.356
1. 3000	70.7998	0.6193	0. 94 0	0.928	4.79	6.39	0.0312	1.0346	31.21	3.186	1.98	0.73	0.313
1.4000	71.7434	0.6667	0.953	0.942	5.14	6.70	0.0327	1.0865	31.53	3.219	1.56	0.76	0.275
1.5000	72. 3746	0.7142	0.961	0.455	5.51	7.05	0.1342	1.1354	31.91	3.248	1.28	0.79	0.242
1.6000	77.8343	0.7417	0.507	0.965	5.96	7.43	0.0356	1.1816	12.11	3.276	1.04	0.82	0.213
1.7000	73.3434	0.9011	0.574	0.975	1.44	7.P7	0.0369	1.2737	12.31	3.302	0.86	0.85	0.147
1. 8000	71.4010	0.9546	0.586	0.973	6.98	1.35	0.0140	1.2606	32.54	3. 327	0.66	0.87	0.145
1.9000	74.1193	0. 4740	1. 98 4	0.990	7.57	8.89	0.3149	1.2911	32.68	3.350	0.51	0.89	0.145
2.0000	74. 3023	0.0515	0. 587	0.997	8.23	7.48	0.0346	1.3144	32.75	3.372	0.43	0.92	0.127
2.1000	74.5258	0.1116	0.110	1.003	8.77	10.14	0.0401	1.3296	32.86	3.171	0. 14	0.94	0.112

.

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS

STATION & POS.1 PITOT VINH

AMBIENT TEMPERATURE		•	DEGREFS R
ANALENT PRESSURE		•	ENS HG
DENSITY		•	SLUGS/FT+3
KINFNATIC VISCOSITY		=0.00016120	FT+7/5FC
PITOT TUBE HEIGHT		. 0.0320	INS
DISPLACEMENT FACTOR		. 0.150	
ADUNDARY LAYER THICKNESS	DELTA	= 2.7750	185
DISPLACEMENT THICKNESS	. DELTA.	- 0.4180	INS
MOMENTUM THICKNESS	. THETA	. 0.2749	INS
ENERGY THICKNESS	. DELTA	. 0.465	INS
H = DELTA+/THETA		- 1.52	
REYNOLDS NUMBER BASED ON	THETA	. 10515.	
FRICTION VELOCITY		. 2.1997	FT/SEC
FRICTION COEFFICIENT		• 0.00177	
FREE STREAM VELOCITY		- 74.0	FT/SEC

COMMAND CAROSI

TNITIAL PARAMFTERS -P11 - 1.0000 P22 - -0.7000 P33 - -1.3500 P44 - -1.0000 P55 - -67.0000 FINAL PARAMETERS -P1 - 1.0691 P2 - -0.6480 P3 - -2.3130 P4 - -0.2238 P5 - -113.2028 MEAN EPROR + 0.006127 N - 5 K1 - 0 K2 - 0 K3 - 0 K4 - 1 K5 - 1 PITOT - 0.03200 ALPHA - 0.150 VC - 0.00016120 DELTA - 2.225 DIST - 0.0 REY - 0.0 C1 - 85116.81 C2 - 1.0 UE - 74.00 UTORI - 0.0 PTE - 0.0 PSE - 0.0 CV - 0.0

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS

STATION & POS.1 PLTOT VINH

¥1	UI	YN	UN	UNS	N		UTOR	UTOPN	UN ●	L 76 Y+	UN++	L 0GY ++	SLOPE
0.0160	26.7058	0.0093	0. 261	0.357	3.73	5.37	0.0287	0.9666	12.14	1.374	21.50	-1.12	10.260
0.0200	27.2954	0.0111	0.369	0.374	3.89	5.54	0.0288	0.9704	12.41	1.450	21.23	-1.04	9.634
0.0250	28.9723	0.0134	0. 192	0.392	4.17	5.81	0.0291	0.9799	13.19	1.510	20.46	-0.96	7.016
0.0300	30.1762	0.0154	0.408	0.406	4.51	6.13	0.0294	0.5842	13.72	1.597	19.92	-0.90	5.759
0.0350	30.9255	0.0179	0.418	0.414	4.88	6.47	0.0296	0.0064	14.06	1.056	17.54	-0.84	4.792
0.0400	31.7668	0.0201	0.425	0.428	5.28	6.82	0.0278	1.0013	14.44	1.707	19.20	-0.79	4.024
0.0450	32.1945	0.0224	0.435	0.436	5.67	7.18	0.0209	1.0027	14.63	1.753	19.01	-0.74	3.434
0.0500	32.4953	0.0246	0.442	0.443	6.05	7.52	0.0208	1.0016	14.95	1.795	19.79	-0.70	2.975
0.0550	32.9945	0.0769	0.446	0.450	6.37	7.82	0. 72 97	0.7989	15.00	1.833	14.64	-0.64	2.617
0.0600	33.7430	0.02 21	0.456	0.455	6.69	5.09	0.0246	0.0955	15.35	1.847	14.29	-0.63	2.339
0.0700	34.4630	0.0336	0.466	0.465	7.09	9.45	0.0244	0.3496	15.67	1.930	17.97	-0.57	1.950
0.0800	35.2279	0.0381	0.476	0.473	7.25	9.60	0.0293	0.9870	16.02	1.984	17.63	-0.51	1.711
0.0900	35.7820	0.0426	0.484	0.440	7.22	A.57	0.0294	0.9874	16.27	2.013	17.37	-0.46	1.562
0.1000	36.4176	0.0471	0.492	0.487	7.05	9.42	0.0294	0.7893	16.55	2.076	17.01	-0.42	1.467
0.1500	38.7050	0.0596	0.523	0.517	5.78	7.28	0.0272	0.914	17.60	2.246	10.05	-0.25	1.284
0.2000	40.6940	0.0920	0.550	0.545	4.87	n.47	0.0280	0.7412	18.50	2.367	15.14	-0.13	1.212
0.2500	42.2050	0.1145	0.570	0.572	4.34	5.95	0.0267	0.8983	19.19	2.462	14.45	-0.01	1.150
0.3000	43.9758	0.1370	0.594	0.597	3.99	5.64	0.0254	0.9555	19.99	2.547	13.45	0.04	1.092
0.4000	46.9942	0.1919	0.035	0.444	1.60	5.22	0.0238	0.8013	21.16	2.653	12.28	0.17	0.984
0.5000	49.7420	0.2269	0.672	0.686	3.41	5.00	0.0230	0.7721	72.51	2.754	11.03	0.25	0.887
0.7000	54.6963	0.1169	0.737	0.758	3.12	4.89	0.0225	0.7572	74.97	2.404	8.73	0.41	0.720
0.9000	59.7663	0.4057	0.807	0.816	3.43	5.02	0.0231	0.7741	27.17	3.012	4.47	0.52	0.585
1.0000	62.1053	0.4516	0.039	0.841	3.53	5.15	0.07 17	0.7941	24.23	1.058	5.41	0.56	0.527
1.1000	64.4A7h	0.4765	0.071	0.964	3.00	5.30	0.0245	0.8232	79.37	3.077	4.32	0.69	0.4/5
1.2000	66.0010	0.5415	0.892	0.884	2.81	5.46	0.02-4	0.8533	30.01	3.137	1.61	0.64	0.424
1.3000	67.5794	0.5864	0.514	0.905	3.99	5.64	0.02+4	0.8979	30.73	3.171	2.91	0.64	0.386
1.4000	68.7167	0.6314	0.929	0.919	4.14	5.82	0.2274	0.7272	31.24	3.201	2.40	0.71	1.344
1.5000	70.0265	0.6763	0.946	0.934	4.40	5.01	0.0217	0.9455	31.43	1.211	1. #2	0.74	0.114
1.6000	71.1946	0.//13	0.561	0.947	4.45	4.25	0.0100	1.0096	12.33	3.241	1.12	n .11	0.243
1.7000	71.6335	0.74.62	0.96 B	0.959	4.71	6.44	0.0311	1.0512	12.57	3.257	1.0%	0.79	0.245
1.8000	72.0140	0.0111	0.571	0.470	5.21	6.74	1.0124	1.0965	12.14	3.312	0.111	0.82	0.230
1.9000	72.4413	0.05/1	0.473	0.740	4.53	1.05	0.33.44	1.1438	37.93	1. 114	0.71	0.84	0.207
2.0000	72.4512	0.0010	0.579	0.998	5.84	7.37	0.0351	1.1793	12.94	3.354	0.70	O. 86	0.186
2.1000	72.5451	0.9460	0.980	0.496	6.27	7.71	0.0362	1.2172	12.94	3. 379	0.66	0.88	0.168
2.2000	13.2347	6.9409	0.990	1.004	6.69	4.09	0.0312	1.2419	31.29	3.319	11.35	0.30	0.151

STATION 7 POS.1 PITOT VINH

ANBIENT TEMPERATINE		•	DEGREES R
ANBLENT PRESSURE		•	INS HG
DENSITY		•	SLUGS/FT+3
KINEHATIC VISCOSITY		-0.00016690	FT+2/SFC
PITOT TUBE HEIGHT		• 0.0320	INS
DISPLACEMENT FACTOR		. 0.150	
BOUNDARY LAYER THICKNESS	- OFLTA	- 2.4500	INS
DISPLACEMENT THECKNESS	. DELTAN	. 0.4771	1 N S
MOMENTUM THICKNESS	THETA	. 0.3090	INS
EVERGY THICKNESS	- DELTA++	0.519	T NS
H . DELTA ./THETA		- 1.54	
REYNOLDS NUMBER BASED ON	THETA	- 11241.	
FRICTION VELOCITY		= 2.1259	FT/SEC
FRICTION COEFFICIENT		0.00170	
FREE STREAM VELOCITY		= 72.9	FT/SFC

COMMAND CARDS:

INITIAL PARAMETERS = P11 = 1.0000 P22 = -0.7000 P33 = -1.3500 P44 = -1.0000 P55 = -67.0000 FINAL PARAMETERS = P1 = 1.1073 P2 = -0.6909 P3 = -2.0153 P4 = -0.7541 P5 = -122.2282 WEAN ERROR = 0.006647 M = 5 K1 = 0 K2 = 0 K3 = 0 K4 = 1 K5 = 1 PITOT = 0.03270 ALPHA = 0.150 VC = 0.00016690 DELTA = 2.450 DIST = 0.0 REV = 0.0 C1 = 89140.94 C2 = 1.0 UE = 72.87 UTORI = 0.0 PTE = 0.0 PSE = 0.0 CV = 0.0

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS

STATION 7 POS.1 PITOT VINH

41	UT	¥N	UN.	UNS	N		UTOR	UTORN	UN •	106¥•	UN++	L0G7 ••	SLOPE
0.0160	25.1394	0.0095	0.345	0.338	3.22	4.75	0.0277	0.9479	11.43	1.344	22.45	-1.17	12.370
0.0200	25.3946	0.0101	0.34 R	0.357	3.40	4.98	0.0277	0.9576	11.95	1.420	22.33	-1.10	10.376
0.0250	26.9948	0.0122	0.370	0.376	3.69	5.32	0.0780	0.9584	12.70	1.500	21.58	-1.02	8.381
D.0300	28.5054	0.0142	0.391	0.391	4.03	5.68	0.0283	0.5714	13.41	1.567	20.87	-0.95	5.825
0.0350	29.4370	0.0162	0.404	0.404	4.43	4.06	0.0287	0.9846	13.94	1.626	20.43	-0.49	5.611
0.0400	30.3546	0.0193	0.417	0.414	4.85	6.44	0.0291	0.9958	14.28	1.677	20.00	-0.84	4.664
0.0450	30.8642	0.0203	0.424	0.423	5.30	6.84	0.0292	1.0019	14.42	1.723	17.75	-1.74	3.425
0.0500	31.4072	0.0274	0.431	0.430	5.75	7.24	0.0293	1.0034	14.77	1.765	19.90	-0.75	1.348
0.0550	31.9355	0.7244	0.438	0.437	6.17	7.63	1.1292	1.0015	15.02	1.403	19.25	-0.71	2.898
0.0400	32.1525	0.0264	0.441	0.442	6.57	7.99	0.0291	0.9974	15.12	1.937	19.15	-0.65	2.545
0.0700	37.7934	0.0305	0.450	0.452	7.20	9.56	0.02.94	0.9874	15.43	1.900	18.85	-0.62	2.053
0.0800	33.4977	0.0346	0.467	0.459	7.54	8.90	0.0284	0.9871	15.85	1.954	18.43	-0.56	1.750
0.0900	34.1848	0.0397	0.467	0.465	7.71	9.01	0.0285	0.9775	16.08	2.003	18.20	-0.51	1.567
0.1000	34.5706	0.0428	0.474	0.472	7.64	A.95	0.0284	0.7787	16.26	2.046	14.02	-0.47	1.444
0.1500	36.9302	0.0632	0.507	0.499	A. 17	7.80	0.0284	0.4258	17.17	2.216	16.91	-0.30	1.249
0.2000	38.4146	0.0834	0.510	0.524	5.32	4.86	0.0290	0.9596	18.16	2. 117	14.11	-0.19	1.178
0.7500	40.0749	0.1940	0.550	0.547	4.66	6.26	0.0267	0.9105	18.45	2.432	19.43	-0.08	1.129
0.3000	41.3201	0.1244	0.547	0.570	4.23	5.85	0.0256	0.4763	19.44	2.510	14.94	-0.01	1.084
0.4000	43.9323	0.1452	0.001	0.612	3.71	5.15	0.0236	0.8079	20.44	2.633	13.61	0.12	0.999
0.5000	46.4187	0.2060	0.637	0.651	3.44	5.03	0.0224	0.7673	21.83	2.779	12.44	0.21	0.919
0.7000	51.2789	0.2977	0.104	0.720	3.21	4.74	0.0213	0.7309	24.13	2.874	17.15	0.36	0.740
0.9000	56.0320	0.3643	0.767	0.779	1.19	4.71	0.0212	0.721,9	26.36	2.992	7.92	0.47	0.652
1.0000	SR. 2030	0.4101	0. 795	0.805	3.22	4.74	0.0214	0.1334	27.39	3.028	6.90	0.51	0.609
1.1000	AO.1895	0.4509	0.826	0.829	3.28	4.83	0.0217	0.7444	28.31	3.067	5.97	0.55	0.561
1.2000	67.2402	0.4918	0. 055	0.851	3.15	4.42	0.0222	7.7571	29.30	3.107	4.48	0.59	0.517
1.3000	64.2536	0.5326	0. PR2	0.871	3.44	5.03	0,0227	0.77 77	30.22	3.141	4.05	0.63	0.476
1.4000	65.5963	0.5734	0.900	0.890	3.54	5.14	0.0233	0-1003	30.86	3.174	3.42	0.66	7.438
1.5000	67.0679	0./142	0.520	0.907	3.66	5.79	0.0240	0.8239	\$1.55	3.201	2.73	0.69	0.404
1.6000	69.3707	0.4550	0.519	0.023	3.79	5.44	0.0248	0,8415	32.14	3.231	2.11	0.72	0.372
1.7000	69.2304	0.4454	0.550	0.937	3.93	5.58	0.0211	0.4-14	12.56	3.259	1.71	0.74	7.443
1.4000	10.0204	0.7367	0.561	0.951	4.09	5.74	0.0267	0.0152	32.94	3.242	1.34	0.77	0.416
1.9000	70.5130	0.7775	0.74 A	0.963	4.21.	۹. ۳ ۹	0.0278	0.2514	33.17	3. 104	1.11	0.79	0.291
2.0000	70.8574	0.4141	0.572	0.475	4.45	4.08	0.0217	0.9454	11.11	3.124	0.45	0.91	1.264
5.1000	70.7553	0.8591	0.174	0.445	4.45	6.26	0.0298	1.0/28	3 5. 34	3.349	0.20	0.43	0.241
2.2000	71.5755	0.1047	0.382	0.995	4.47	4.45	0.0109	1.0405	13.47	3.349	0.61	0.45	9.221
2.3000	71.9797	C.9407	0.587	1.004	5.10	4.66	0.0320	1.0780	13.42	3.369	0.45	0.87	0.201

STATION & POS.1 PITOT VINH

AND LENT TEMPERATURE		w	DEGREFS R
AND IFNT PRESSURF		•	INS HG
DENSITY		•	SLUGS/FT+3
KINEMATIC VISCUSITY		-0.00016930	FT # 7/ SEC
PITOT TUBE HEIGHT		. 0.0320	INS
DESPLACEMENT FACTOR		 0.150 	
ADUNDARY LAYER THICKNESS	= DELTA	. 2.6000	INS
DISPLACEMENT THICKNESS	. DELTA.	. 0.5271	t n S
MOMENTUM THICKNESS	. THETA	 0.3382 	INS
FAFRGY THICKNESS	. DELTA	• 0.567	INS
H + DELTA +/THETA		. 1.56	
REYNTLDS NUMBER BASED ON	THE TA	- 11836.	
FRICTION VELOCITY		 2.0240 	FT/SEC
FRICTION COFFFICIENT		 0.0016? 	
FREE STREAM VELOCITY		• 71.1	FT/SEC

COMMAND CAROSE

INITIAL PARAMETERS .

P11 = 1.0000 P27 = -0.7000 P33 = -1.3500 P44 = -1.0000 P55 = -67.0000 F1NAL PARAMETERS = P1 = 1.1275 P2 = -0.71R2 P3 = -1.8360 P4 = -0.1904 P5 = -107.2311 HEAN ERROR = 0.0C7229 H = 5 K1 = 0 K2 = 0 K3 = 0 K4 = 1 K5 = 1 P1TOT = 0.03200 ALPHA = 0.150 VC = 0.00016930 DELTA = 2.600 D1ST = 0.0 RFY = 0.0 C1 = 90988.44 C2 = 1.0 UF = 71.10 UTOR1 = 0.0 PTE = 0.0 PSE = 0.0 CV = 0.0

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS STATION & POS.1 PITOT VINH

¥ [UI	YN	UN	UNS	N	*	UTOR	UTORN	UN •	LOG Y•	UN++	L 06Y ++	SLOPE
0.0160	24.4031	0.0090	0.343	0.339	4.25	5.88	0.0283	0.9946	12.06	1.316	23.07	-1.21	9.959
0.0200	24. 3039	0.0095	0.349	0.353	4.29	5.91	0.0243	0.9455	12.26	1.393	27.A7	-1.13	A.638
0.0250	26. 0896	0.0115	0.367	0.368	4.42	6.05	0.0283	0.9947	12.89	1.473	27.24	-1.05	7.265
0.0300	27.1959	0.0134	0.383	0.181	4.43	6.24	0.0284	0.0036	13.44	1.540	21.49	-0.99	5.148
0.0400	29.4979	0.0172	0.401	0.402	5.1A	6.74	0.0236	1.0052	14.09	1.650	21. 15	-0.44	4.475
0.0500	29.5170	0.0211	0.415	0.417	5.82	7.31	0.0244	1.0059	14.54	1.737	20.44	-0.79	1.399
0.0600	30.5144	0.0240	0.427	0.428	6.43	7.86	0.0285	1.0008	15.09	1.410	20.05	-0.72	1.610
0.0700	31.0913	0.7239	0.437	0.437	6.75	4.34	0.1/13	0.9914	15.36	1.872	19.11	-0.64	2.145
0.0800	11.9434	0.0326	0.449	0.445	7.34	3.48	0.0241	0.7845	15.74	1.927	19.35	-0.60	1.000
0.1000	32.7863	0.0403	0.441	0.458	7.40	4.71	0.0779	0.4810	16.29	2.019	18.41	-0.51	1.494
0.1500	34. 9745	0.0575	0.471	0.483	6.47	3.08	0.0232	0.9494	17.24	2.148	17.89	-0.34	1.217
0.2000	36. 7974	0.0188	0.517	0.504	5.61	7.12	0.0217	0.7717	18.18	2.310	14.95	-0.22	1.145
0.2500	37.5549	0.0940	0.529	0.424	4.98	6.41	0.0264	0.9349	18.55	2.405	14.57	-0.12	1.172
0.3000	34.8156	0.1172	0.544	0.548	4.40	5.99	0.0255	0.8777	19.18	2.442	15.95	-9.05	1.063
0.4000	41.6197	0.1557	0.515	0.589	3.41	5.44	0.0235	0.0241	70.56	2.404	14.54	0.08	0.991
0.5000	43.4803	0.1942	0.612	0.425	3.48	5.09	0.0221	0.7772	21.44	2.701	11.64	0.17	0.423
0.6000	46.7118	0.2326	0.650	0.659	3.29	4.85	0.0212	0.7463	22.43	2.780	12.30	0.25	0.860
0.7000	47.8220	0.2711	0.673	0.691	3.18	4.70	0.0207	0.7765	23.63	2.844	11.50	0.32	3.802
0.8000	50.3471	0.3075	0.7CA	0.721	3.12	4.61	0.0203	0.7148	24.49	2.904	10.25	0.38	0.747
1.0000	54,8730	0.3445	0.772	0.774	3.07	4.58	0.0202	0.7094	27.11	3.000	4.02	0.47	0.449
1.2000	5A.8943	0.4434	0.724	0.421	3.14	4.65	0.0205	0.7712	29.10	1.077	4.03	0.55	0.563
1.4000	67. 3044	0.5403	0.874	0.861	3.24	4.81	0.0212	0.7459	30.78	. 3.144	4.14	0.62	13.4444
1.6000	65.1021	0.6172	0.516	0.876	3.42	5.01	0.0222	0.7309	32.17	3.204	2.94	0.68	0.425
1.8000	67.0425	0.6042	0.543	0.927	3.4.2	5.25	0.0235	0.#250	13.12	3.255	2.09	0.73	0.304
2.0000	68.4211	0.7711	0.562	0.953	3.46	5.51	0.9250	0.4778	33.41	3,300	1.32	0.17	9.320
2.2000	67.1413	0.6480	0.5/3	0.476	4.14	5.78	0.021.7	0.9172	34.14	3.342	0.75	0.61	0.215
2.4000	69.8871	0.7249	0.583	0.995	4.40	6.02	0.0286	1.0039	34.53	1.179	0.40	0.85	0.241
2.5000	70.2644	0.4634	0.991	1.005	4.64	6.75	0.0296	1.0342	34.72	3.357	0.41	0.87	0.225

TABLES D'APPROXIMATION

Résultats de l'approximation des profils complets et des profils partiels de vitesse :

 $UN = u/U_e$ V.S $YN = y/\delta$

Par l'expression :

$$UN = A + B e^{C \cdot YN} + D e^{G \cdot YN}$$

Valeurs initiales pour le profil complet :

$$A = 1.0$$

$$B = -0.7$$

$$C = -1.35$$

$$D = -1.0$$

$$G = -67.0$$

Pour les profils partiels, les valeurs initials (et aussi finales) de A B C D G sont calculées directement par le programme principal.

Notation

OBS = valeur expérimentale de UN PRED = valeur trouvée par l'approximation DIFF = PRED - OBS IND = YN

PROFIL COMPLET DE VITESSE

ł

.1

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS

STATION 4 POS.1 PITOT VINH

N = 31

FINA

	085	PREO	0188	IND	
		0.000541	-0.005383	0.0106.01	
	0.398344	0.392561	-0.005/83	0.013544	
	0.402308	0.409/30	0.007425	0.012344	
	0.424070	0.441345	0.000114	0.013673	
	0.441100	0.452774	-0.000242	0.020132	
	0.433010	0 447413	~0.000242	0.072661	
	0.403405	0.470636	-0.000491	0.024190	
	0.474905	0 477704	0.000893	0 027719	
	0.476903	0.411146	-0 002719	0.020740	
	0.400000	0.400104	-0.002717	0.030246	
	0.490230	0.407720		0.037936	
		0.500202	-0.007540	0.047893	
	0.511955	0.507575	-0.000434	0.042041	
	0.516301	0.51/95/	-0.006429	0.053010	
	0.531694	0.520000	-0.003624	0.033010	
	0.568030	0.763794	-0.004438	0.078500	
	0.595796	0.597996	0.002200	0.103541	
	0.651201	0.659380	0.008179	0.154173	
	0.701089	0.712092	0.011003	0.204155	
	0.745173	0.757356	0.012184	0.255336	
	0.825876	0.829605	0.003729	0.156500	
	0.886892	0.882882	-0.004010	0.457663	
	0.913625	0,904019	-0.009606	0.500245	
	0.932250	0.922169	-0.010080	0.558826	
	0.548752	0.937756	-0.010996	0.609408	
	0.963073	0.951140	-0.011932	0.659990	
	0.967603	0.962634	-0.004969	0.710572	
	0.974366	0.972504	-0.001862	0.761153	
	0.977817	0.980979	0.003163	0.011735	
	0.981197	0.988258	0.007061	0.862317	
	0,986837	0.994508	0.007670	0.912898	
	0.987963	0.999875	0.011912	0.963460	
L PARAMETERS	1.03249B	-0.593546	-3.011041	-0.222180	-116.970673
MEAN ERROR	0.005064	SUM ERROR	0.000205		

CALCULATION OF SKIN FRICTION - INCOMPRESSIBLE FLOWS

STATION 6	PO5.1	PLTOT	VINH		
			a = a	-	1:0000
		14	KEU	-	1.0000

N = 17

.

PARAMETERS	1.006012	-0.608228	-3.813031	-3.1649	-153.2346	MEAN ERROR	0.00602513
PARAMETERS	0.643762	-0.225307	-5.691202	-2.2335	-130.2310	MEAN ERROR	0.02033597

·

.

		062	porn	DIFF	IND	
		0.372043	0.377650	j. JJ5602	0.009103	
		0.375269	0.381281	3.336012	0.009540	
		0.370370	0.384739	0.007669	0.009978	
		0.305105	0.291177	0.006012	0.010853	
		0.378141	0.390789	0.001646	0.012166	
		0.409039	0.407348	-3.331692	J.U13479	
		0.+14347	0.416110	-0.003737	0.015230	
		0.430355	0.425433	-0.005422	0.017418	
		0.4+1509	0.433420	-0.008145	0.619636	
		0.447530	0.440439	-0.007191	0.021794	
		J.4503J7	0.446755	-0.009547	0.023982	
		J. 484317	0.457984	-3.336833	0.028359	
		0.473531	0.472835	-0.335747	0.034923	
		0.410163	0.495224	-0.002904	0.145364	
		0.511943	0.512093	0.000151	0.054617	
		0.530235	0.536242	0.006007	0.067746	
		J. 555946	0.573852	0.017906	0.089628	
FINAL	PAPAMETERS	1.000012	-0.608228	-3.813031	-0.164939	-153.234619
	MEAN EFROR	0.004025	SUM EPROR	-0.000014		

Table 83

•

TABLEAUX DES RESULTATS

•

•

		אה		page 39		
YN	$-\overline{\boldsymbol{\delta}(\mathrm{UN})}$	- Dy	1(mm)	1/ 5		
0.0126	4.904	2999.28	0.294	0.00697		
0.0150	4.456	2725.25	0.333	0.00768		
0.0180	3.979	2 433. 91	0.361	0.0085 9		
0.0210	3.581	2190.39	0.402	0.00955		
0.0271	2.960	1810.52	0.486	0.01155		
0.0331	2.531	1547.73	0.568	0.01351		
0.0391	2.225	1360.57	0.647	0.01537		
0.0452	2.001	1228.19	0.716	0.01703		
0.0512	1.840	1125.25	0.782	0.01859		
0.0633	1.626	994.29	0.885	0.02104		
0.0935	1.363	833.52	1.056	0.02510		
0.1237	1.210	743.04	1.184	0.02815		
0.1539	1.086	664.36	1.324	0.03148		
0.1841	0.976	597.25	1.473	0.03503		
0.2143	0.878	537.06	1.638	0.03895		
0 .2 444	0.790	483.13	1.821	0.04330		
0.3048	0.639	390.72	2.252	0.05334		
0.3652	0.517	315.98	2.785	0.06620		

YN	<u>З(ии)</u> З(их)	<u>resp</u>	1 (mm)	page 4
0.0114	6.580	3543.32	0.229	0.00495
0.0136	6.631	3032.18	0.267	0.00578
0.0164	4.680	2520.05	0.322	0.00696
0.0191	3.974	2140.67	0.379	0.00819
0.0240	3.079	1658.05	0•489	0.01060
0.0601	1.523	820.24	0.988	0.02137
0.0850	1.375	740.75	1.095	0.02368
0.0900	1.352	728.14	1.113	0.024080
0.0970	1.322	711.93	1.138	0.02463
0.1125	1.259	678.06	1.195	0.02585
0.1675	1.061	571.63	1.417	0.03066
0 .222 4	0.895	482.16	1.681	0.03636
0.3323	0.637	342.92	2.364	0.05112
0.4422	0.453	243.90	3.323	0.07188
0.6620	0.229	123.37	6.657	0.19903
0 • 55 21	0.322	173.46	4.672	0.1421
0.7719	0.163	87.74	9.235	0.3950
0.9916	0.082	44•40	18.254	0.3950

STATION 3 POS 1

0

YN	$\frac{\partial(\text{UN})}{\partial(\text{YN})}$	<u>Sn</u>	1 (math)	page 1/6	41
0.0105	9.336	4453.88	0.168	0.00335	
0.0125	7.738	3691.54	0.203	0.00405	
0.0151	6.145	2931.63	0 .2 56	0,00509	
0.0176	5.005	2388.01	0.314	0.00625	
0.0201	4 . 152	1980.73	0.378	0.00618	
0.0227	3.489	1564.73	0.451	0.00897	
0.0252	3.014	1478.81	0.521	0.01040	
0.0277	2.656	1266.97	0.591	0.011788	
0.0302	2.385	1137.99	0.659	0.013120	
0.0328	2.179	1039.80	0.721	0.01436	
0.0378	1.907	909。85	0.824	0.01640	
0.0429	1.742	831.31	0.902	0.01797	
0 . 04 8 0	1.641	783.03	0.957	0.01907	
0.0530	1.576	751.99	0•997	0.01986	

STATION 4 POS 1

.

١

		λ			page 42
YN	JAN	W.C.	1 (mm)	1/8	
0.0099	8.184	3509 . 34	0.198	0 .0037 0	
0.0118	6 .809	2919 •7 0	0.238	0.00443	
0.0141	5.879	2521.05	0.274	0.00513	
0.0165	5.082	2179.39	0.318	0.00593	
0.0189	4.430	1899.89	0.364	0.00680	
0.0213	3.897	1670.96	0.414	0.00774	
0.0236	3.476	1490.54	0.464	0.00868	
0.0260	3.114	1335.50	0.518	0.00969	
0.0284	2.818	1208.22	0.573	0.01070	
0.0308	2.574	1103.62	0.628	0.01172	
0•0355	2.214	949.19	0.728	0.01363	
0.0402	1.966	824.89	0.820	0.01534	
0.0450	1.790	767.61	0.902	0.01685	
0.0497	1.669	715.77	0.966	0.01807	
0•0735	1.397	599.08	1.155	0.02159	
0.0972	1.288	552.30	1.253	0.02342	
0.1447	1.129	483.31	1.429	0.02671	
0.1921	0.993	425.98	1.624	0.03036	

STATION 5 POS 1

page 43

YN	$\frac{\partial(\mathrm{UN})}{\partial(\mathrm{YN})}$	$\frac{J_{\Pi}}{2}$	1(mm)	118
0.0093	10.308	4113.88	0.163	0.002886
0.0111	8.672	3460.99	0.194	0.00343
0.0134	7.011	2798.18	0.240	0.00424
0.0156	5.778	2306.21	0.291	0.00515
0.0179	4.768	1902.93	0.353	0.00624
0.0201	4.034	1610.00	0.417	0.00737
0.0224	3.430	1368.81	0.490	0.00867
0.0246	2.973	1186.38	0.565	0.0100
0.0269	2.615	1043.27	0.643	0.01138
0.0291	2.341	934.34	0.718	0.01270
0.0336	1.951	778.83	0.861	0.01524
0.0381	1.711	682.93	0.982	0.01738
0.0426	1.562	623.42	1.076	0.01903
0.0471	1.467	585.33	1.146	0.02314
0.0696	1.285	513.06	1.307	0.02453
0.0920	1.212	483 • 83	1.387	0.02586
0.1145	1.150	459.00	1.462	0.02724
0.1370	1.092	435.73	1.540	C.0302

YN	$\frac{\partial(\text{UN})}{\partial(\text{YN})}$	Δ T E	l(mm)	1/8
0.0085	12.358	4410.76	0.147	0.00236
0.0101	10.402	3712.48	0.174	0.00280
0.0122	8.350	2980.21	0.217	0.00349
0.0142	6.828	2437.09	0.266	0.00427
0.0162	5.635	2011.36	0.322	0.00517
0.0183	4.659	1662.87	0.389	0.00627
0.0203	3.934	1404.20	0.461	0.00741
0.0224	3.340	1192.29	0.543	0.00873
0.0244	2.900	1034.82	0.625	0.01000
0.0264	2.552	911.102	0.710	0.01142
0.0305	2.056	733.84	0.880	0.01418
0.0346	1.751	624.95	1.036	0.01665
0.0387	1.562	557.49	1.161	0.01867
0.0428	1.443	515.15	1.256	0.02019
0.0632	1.240	442.42	1.463	0.02352
0.0836	1.178	420.31	1.539	0.02476
0.1040	1.129	403.02	1.606.	0.02582
0.1244	1.083	386.76	1.673	0.02690

STATION 7 POS 1

page 4

page 45

YN	$\frac{\partial(UN)}{\partial(YN)}$	<u>AC</u> AC	1 (mm)	1/5
0.0000	0.057			
0.0080	9.957	3267.63	0.189	0.00286
0.0095	8.668	2844.31	0.218	0.00330
0.0115	7.239	2375.81	0.157	0 . 0046 4
0.0134	6.139	2014.50	0.305	0.00630
0.0172	4.506	1478.66	0•417	0.00839
0.0211	3.395	1113.60	0.554	0.01010
0.0240	2.819	925.02	0.667	0.0130
0.0288	2.181	715.81	0.862	0.01530
0.0326	1.861	610.75	1.010	0.01900
0.0403	1.496	490.83	1.256	0.02340
0.0595	1.217	399.28	1 . 5 4 5	0.02485
0.0788	1.145	375.86	1.640	0.02582
0.0980	1.102	361.64	1.704	0.02676
0.1172	1.063	348•93	1.768	0.02872
0 .15 57	0.991	325.12	1.896	0.03083
0.1942	0.923	302.93	2.036	0.03300
0.2326	0.860	282.31	2.185	0.03550
0.2711	0.802	263.04	2.344	0.03810

DISTRIBUTION DE $1/\delta$ EN FONCTION DE y/δ DANS UNE COUCHE LIMITE POUR LES STATIONS **1** à 8.

