

REMERCIEMENTS

Après avoir loué notre Créateur pour les bienfaits dont IL nous a comblé et prié sur le meilleur des hommes, je profite de ces quelques lignes pour exprimer ma gratitude à tous ceux qui ont contribué, de près ou de loin, à la réalisation de ce projet. Plus particulièrement à :

- ❖ M. Ibrahima Khalil CISSE, pour nous avoir proposé le sujet, pour nous avoir orienté et constamment soutenu, bref pour avoir pleinement participé à ce travail.
- M. Fala PAYE, pour sa compréhension, sa disponibilité et sa promptitude à nous fournir des informations bénéfiques.
- M. Michel HABIB Directeur de SCE pour avoir accepté d'être notre encadreur externe.
- M. Mohamed AGREBI, ingénieur au bureau d'études Gaudillat et représentant de RoboBAT au Sénégal pour ses nombreux efforts à notre endroit, surtout pour nous avoir encadré dans la modélisation.
- M. Galaye NIANG, Docteur Ingénieur, vacataire cours béton armé
- ❖ M. Lamine NDIAYE, chef antenne régionale- AATR Tambacounda
- M. BARHOUMI Bouhafes, chef de mission STUDI International
- ❖ M. Pathé LOUM (ETECS)
- ❖ M. SANTOLINI (ETECS).

Je ne saurais terminer sans remercier le corps professoral et administratif des départements Génie Civil et Génie Mécanique pour les connaissances qu'ils ont mises à ma disposition. J'aimerais profiter de cette occasion pour leur présenter, d'une façon très sincère, mes excuses, si toutefois je n'ai pas été à la hauteur de leurs attentes tant sur le plan du travail que celui de la discipline.

I

REMERCIEMENTS

Après avoir loué notre Créateur pour les bienfaits dont IL nous a comblé et prié sur le meilleur des hommes, je profite de ces quelques lignes pour exprimer ma gratitude à tous ceux qui ont contribué, de près ou de loin, à la réalisation de ce projet. Plus particulièrement à :

- M. Ibrahima Khalil CISSE, pour nous avoir proposé le sujet, pour nous avoir orienté et constamment soutenu, bref pour avoir pleinement participé à ce travail.
- M. Fala PAYE, pour sa compréhension, sa disponibilité et sa promptitude à nous fournir des informations bénéfiques.
- M. Michel HABIB Directeur de SCE pour avoir accepté d'être notre encadreur externe.
- M. Mohamed AGREBI, ingénieur au bureau d'études Gaudillat et représentant de RoboBAT au Sénégal pour ses nombreux efforts à notre endroit, surtout pour nous avoir encadré dans la modélisation.
- ❖ M. Galaye NIANG, Docteur Ingénieur, vacataire cours béton armé
- ❖ M. Lamine NDIAYE, chef antenne régionale- AATR Tambacounda
- ❖ M. BARHOUMI Bouhafes, chef de mission STUDI International
- ❖ M. Pathé LOUM (ETECS)
- M. SANTOLINI (ETECS).

Je ne saurais terminer sans remercier le corps professoral et administratif des départements Génie Civil et Génie Mécanique pour les connaissances qu'ils ont mises à ma disposition. J'aimerais profiter de cette occasion pour leur présenter, d'une façon très sincère, mes excuses, si toutefois je n'ai pas été à la hauteur de leurs attentes tant sur le plan du travail que celui de la discipline.

SOMMAIRE

Dans ce projet il était question du dimensionnement et de la vérification des fondations du nouveau pont mixte de Gouloumbou eu égard aux modifications apportées à la longueur des pieux et à leur profondeur d'ancrage.

Au-delà de cet aspect géotechnique, l'étude a aussi porté sur un calcul en béton armé. Ainsi un accent particulier a été mis sur l'exploitation des rapports de sol, la descente de charges et la modélisation des appuis en vue de la justification des éléments de fondations.

Les fondations du nouveau pont sont assez sécuritaires en ce sens que les résultats du dimensionnement ont montré, d'une part, que le nombre de pieux préconisés est de loin supérieur à celui requis et, d'autre part, que les valeurs des tassements absolus sont admissibles et celles des tassements différentiels tolérables.

Mots clés: Pont mixte - Gouloumbou - méthode pressiométrique Ménard - tablier préfabriqué - Béton armé - Descente de charges - Surcharges - Convoi Bc - charges militaires Mc 120 - Surcharge A(l) - Armatures - Piles - tassement - Pieux - Modélisation

TABLE DES MATIERES

REMERCIEMENTS	I
SOMMAIRE	II
TABLE DES MATIERES	in
LISTE DES ANNEXES	VIII
LISTE DES FIGURES	IX
LISTE DES TABLEAUX	XI
LISTE DES UNITES ET SYMBOLES	XIII
INTRODUCTION	1
1ERE PARTIE : GENERALITE SUR LES PONTS	2
L Définitions et composition des ponts	2
I.1. Les fondations	
I.2. Les appuis	3
I.3. Le Tablier	
I.3.1. Dalle	3
I.3.1. Dalle I.3.2. Entretoises	
	4
I.3.2. Entretoises	4
I.3.2. Entretoises I.3.3. Longerons	

II. Eléments géométriques des ponts	5
II.1. Les éléments verticaux	5
II.2. Les éléments horizontaux	
II.3. Angles et rapports	
III. Classe et classification des ponts	
III.1. Classe des ponts	
III.2. Classification des ponts	
III.2.1. Classification suivant le fonctionnent mécanique	
III.2.2. Classification suivant la destination des voies supportées	
III.2.3. Classification suivant la position en plan	8
III.2.4. Classification suivant la durée de vie	8
III.2.5. Classification suivant la mobilité	9
III.2.6. Classification suivant la continuité de la superstructure	0
IV. Règles générales pour l'établissement d'un projet de pont 1	
IV.1. Direction du tracé par rapport à celle de l'obstacle	1
IV.2. Débit maximum des eaux	1
IV.3. Nature du terrain du fond du cours d'eau ou de la rivière	12
IV.4. Hauteur disponible	12
IV.5. Servitudes	12
IV.6. Aspect esthétique	12
IV.7. Economie et possibilité d'exécution	13
V. Choix du type d'ouvrage	13
V.1. Comment se pose le problème du choix	13
V.2. Récapitulation des types d'ouvrages actuels	13
V.2.1. Les ponts à une seule travée.	13
V.2.2. Les ponts à plusieurs travées	15
2EME PARTIE : PRESENTATION DU PROJET ET DESCENTE DE CHARGES 1	l 7
I. Présentation du pont existant	17
11. Description au pont projete	10

III. Hypothèses générales de calcul	20
III.1. Règlement et textes	20
III.2. Documents de référence	
III.3. Hypothèses de justification	21
III.4. Matériaux de construction	
III.4.1. Béton	21
III.4.1.1. Etats limites ultimes: ELU	22
III.4.1.2. Etats limites de service : ELS	23
III.4.1.3. Modules de déformation	23
III.4.2. Acier	23
III.4.2.1 Etats limites ultimes : ELU	23
III.4.2.2 Etats limites de service : ELS	23
III.5. Actions et descente de charges	24
III.5.1. Charges permanentes	24
III.5.1.1. Poutres de rives	24
III.5.1.2. Plancher	25
III.5.1.3. Détermination des réactions correspondantes	25
III.5.2. Action des terres	26
III.5.3. Surcharges d'exploitation	26
III.5.3.1. Système A	26
III.5.3.2. Système B	28
III.5.3.2.1. Système de charges Bc	29
III.5.3.2.2. Système de charge Bt	33
III.5.3.3. Système de charges Mc120	36
III.5.3.4. Efforts de freinage	39
III.5.3.4.1 Effort de freinage du à A(I)	39
III.5.3.4.1 Effort de freinage du à Bc	39
III.5.3.5. Charges sur trottoir	40
III.5.3.6. Effort du vent	40
III.5.3.7. Action uniforme de la température	
III.5.3.8. Choc accidentel sur pile	
III.6. Combinaisons de charges	
III.6.1 Effort vertical maximal sur culée	43

III.6.2. Effort vertical maximal sur pile	43
3EME PARTIE : ETUDE ET DIMENSIONNEMENT DES FONDATIONS	44
I. Calcul de la charge admissible par la méthode pressiométrique	44
I.1. Généralités sur l'essai pressiométrique Ménard	44
I.2. Contrainte de rupture et résistance de pointe	46
I.3. Terme de frottement latéral	50
II. Fondation des piles	52
II.1. Résultats des sondages	52
II.2. Pile côté Tambacounda	53
II.2.1. Calcul de la charge de la charge admissible	53
II.2.2. Détermination du nombre de pieux	57
II.3. Pile côté Ziguinchor	58
II.3.1. Calcul de la charge de la charge admissible	58
II.3.2. Détermination du nombre de pieux	61
III. Fondation des culées	62
III.1. Résultats des sondages	62
III.2. Culée côté Tambacounda	63
III.2.1. Calcul de la charge de la charge admissible	63
III.2.2. Calcul du nombre de pieux	66
III.3. Culée côté Ziguinchor	68
III.3.1. Calcul de la charge de la charge admissible	68
III.3.2. Calcul du nombre de pieux	71
IV. Comportement du groupe de pieux	72
IV.1. Coefficient d'efficacité des groupes de pieux	72
IV.2 Tassement des groupes de pieux	76
V. Etude de la stabilité des fondations	78
V.1. Stabilité par rapport au renversement des culées	78
V.1.1. Culée côté Ziguinchor	78

V.1.2. Culée côté Tambacounda	81
V.2. Stabilité par rapport au renversement des piles	81
4EME PARTIE : MODELISATION ET ETUDE EN BETON ARME	83
L. Modélisation du tablier et étude des cas de charges	83
II. Dimensionnement Poteaux circulaires des piles	93
II .1. Calcul d'une Section Comprimée	93
II .2. Calcul de Section en Flexion Déviée Composée	94
III. Dimensionnement Poteaux rectangulaires des culées	96
III .1. Calcul d'une Section Comprimée	96
III.2 Calcul de Section en Flexion Déviée Composée	97
IV. Etude de la semelle de liaison de la culée côté Tambacounda	98
V. Etude des pieux des piles	98
VI. Etude manuelle des éléments propres aux culées	101
VI.1. Etude de la dalle de transition	102
VI.2. Etude du corbeau de la dalle de transition	102
CONCLUSION ET RECOMMANDATIONS	105
BIBLIOGRAPHIE	106

LISTE DES ANNEXES

ANNEXE 1 : Tableau des nœuds

ANNEXE 2 : Tableau des barres

ANNEXE 3: Tableau Chargements - Cas simples: 1A9 16A27

ANNEXE 4: Tableau des combinaisons de cas - Cas: 35A88

ANNEXE 5: Tableau Réactions : Repère global - Cas : Combinaison ELU 35A70

Enveloppe.

ANNEXE 6: Tableau Réactions: Repère global - Cas: Combinaison ELS 71A85

Enveloppe

ANNEXE 7 : note de calcul pour massif de fondation des culées

ANNEXE 8 : résultats dimensionnement de la dalle de transition

ANNEXE 9 : graphique donnant l'ordre de grandeur des réactions élastiques du sol

ANNEXE 10: photos du pont existant

ANNEXE 11 : photos des travaux pour le pont projeté

ANNEXE 12 : carte routière du Sénégal

ANNEXE 13 : vue de la modélisation des piles et de leurs chargement

ANNEXE 14: plan du tablier préfabriqué

ANNEXE 15: fondation pieu côté Tambacounda

ANNEXE 16: fondation pieu côté Ziguinchor

ANNEXE 17: fondation pieu culée Tambacounda

ANNEXE 18: fondation pieu culée Ziguinchor

ANNEXE 19: coupe longitudinale du pont

ANNEXE 20 : vue en plan des pieux de culée

ANNEXE 21 : vue en plan des pieux de pile

ANNEXE 212: annexe donnant les sollicitations maximales sur les piles et les culées

LISTE DES FIGURES

- Figure 1.1 : Structure générale d'un pont
- Figure 1.2: Pont levant
- Figure 1.3: Pont tournant
- Figure 1.4 : Pont basculant
- Figure 1.5 : Quelques exemples sur la continuité des ponts
- Figure 2.a : vue de la chaussée du pont existant
- Figure 2.b: effondrement des berges de la rive droite du pont existant
- Figure 2.1 : Éléments de base de la superstructure en pièces détaillées
- Figure 2.2: Poutre de rive en profil delta
- Figure 2.3 : Entraxe des traverses
- Figure 2.4 : Système de chargement Bc
- Figure 2.5 : Chargement Bc correspondant à une réaction maximale à la culée
- Figure ?.6: Chargement Bc correspondant à une réaction maximale à la pile
- Figure 2.7 : Système de chargement Bt
- Figure 2.8 : Système de chargement Mc120
- Figure 2.9: Chargement Mc120 correspondant à une réaction maximale à la culée
- Figure 2.10 : Chargement Mc120 correspondant à une réaction maximale à la pile
- Figure 2.11: Profilés delta soumis à l'action du vent
- Figure 3.1 : Courbe pressiométrique
- Figure 3.2 : Schéma de calcul de la pression limite nette équivalente
- rigure 3.3 : Schema de calcul de la contrainte horizontale totale

Figure 3.4 : Valeurs du frottement latéral unitaire

Figure 3.5: Coupe transversale sur pile

Figure 3.6 : Coupe longitudinale sur culée côté Tambacounda

Figure 3.7 : Schéma de stabilité par rapport au renversement de la culée

LISTE DES TABLEAUX

- Tableau 2.1: Valeur du coefficient a₁ en fonction de la classe et du nombre de voies chargées
- Tableau 2.2 : Valeur du coefficient bc en fonction de la classe et du nombre de

files considérées

- Tableau 2.3 : Valeur du coefficient bt en fonction de la classe
- Tableau 2.4: Combinaison des charges
- Tableau 2.5: Récapitulatif des efforts verticaux
- **Tableau 3.1 :** Valeurs du coefficient de portance k_p
- Tableau 3.2: Classification des sols
- Tableau 3.2 : Détermination des abaques
- Tableau 3.3: Pression limite et module œdométrique en fonction des types de sol
- Tableau 3.4 : Charge admissible nette aux états limites pour la pile côté Tambacounda
- Tableau 3.5 : Combinaison des charges obtenues pour la pile côté Tambacounda
- Tableau 3.6: Pression limite et module œdométrique en fonction des types de sol
- Tableau 3.7: Charge admissible nette aux états limites pour la pile côté Ziguinchor
- **Tableau 3.8:** Combinaison des charges obtenues pour la pile côté Ziguinchor
- Tableau 3.9: Pression limite et module œdométrique en fonction des types de sol
- Tableau 3.10 : Charge admissible nette aux états limites pour la culée côté Tambacounda
- Tableau 3.11 : Combinaison des charges obtenues pour la culée côté Tambacounda
- Tableau 3.12 : Pression limite et module œdométrique en fonction des types de sol
- **Tableau 3.13 :** Charge admissible nette aux états limites pour la culée côté Ziguinchor.
- Tableau 3.14 : Combinaison des charges obtenues pour la culée côté Tambacounda

- Tableau 3.15 : Combinaison des charges obtenues pour les deux piles en considérant l'effet de groupe
- **Tableau 3.17 :** Combinaison des charges obtenues pour les deux culées en considérant l'effet de groupe
- Tableau 3.18 : Vérification de la stabilité par rapport au renversement de la culée côté

 Ziguinchor
- **Tableau 3.19 :** Vérification de la stabilité par rapport au renversement de la culée côté

 Tambacounda
- Tableau 3.20 : Vérification de la stabilité par rapport au renversement des piles

LISTE DES UNITES ET SYMBOLES

Φ: Angle de frottement ou diamètre.

 γ : poids volumique.

Qadm: capacité portante admissible d'un sol.

q_p: résistance de pointe d'un pieu..

Qadm nètte : capacité portante admissible nette.

N: Newton, unité de force.

kN : le kilo Newton (1 kN = 1000 N)

kN/m3: le kilo Newton par mètre cube (1 kN/m3 = 1000 N/m3 = 0.1 tonne/m3)

MPa: le Méga Pascal (1 Mpa = 106 Pa).

m : unité de longueur, le mètre.

m²: unité de surface, le mètre carré.

B ou b : largeur, épaisseur ou diamètre.

L ou 1: longueur ou largeur.

D : Profondeur

a: Angle.

P: Pression.

 ν : Coefficient de poisson.

q_s: frottement latéral..

E_M: module pressiométrique.

pl: pression limite donnée par le pressiomètre.

S: entre axe ou surface.

INTRODUCTION

Le pont de Gouloumbou sur le fleuve Gambie est un ouvrage situé sur la route nationale RN° 6, reliant Tambacounda à Ziguinchor. Les dégradations avancées au niveau des piles et son caractère à une voie de circulation sont devenus incompatibles avec sa position sur la RN6 dont le rôle est fondamental dans la mobilité des personnes et des marchandises vers la République de Guinée et la République de Guinée Bissau ainsi que pour le contournement de la Gambie.

Par conséquent il convient de reconstruire le pont de Gouloumbou en double voie. Cette solution aurait l'avantage de continuer à assurer convenablement, pour ce pont, ses fonctions de désenclavement au niveau national, de fluidité du trafic et de pérennisation de sa contribution en tant qu'outil d'intégration sous régionale.

C'est ainsi que des études ont été entamées pour la construction d'un nouveau pont à Gouloumbou. Une fois les études réalisées, l'entreprise exécutante ayant gagné le marché ne disposait pas de moyens permettant de forer à une profondeur égale à celle où devrait reposer la base des pieux. La solution à cet incident consistait à diminuer la longueur des pieux tout en augmentant leur nombre.

La présente étude se propose de vérifier, à l'aide des rapports géotechniques, le dimensionnement des nouvelles fondations profondes. C'est donc un travail qui s'approche beaucoup plus du contrôle que de la conception. C'est pourquoi certains aspects qui, naguère faisaient partie intégrante des études de pont, n'y figurent pas. C'était aussi pour nous un prétexte pour comprendre davantage le dimensionnement des ponts. Voilà pourquoi, avec l'aval de l'encadrement interne, les études en béton armé ont été incluses dans le projet ainsi que la modélisation à l'outil informatique.

CENERALITES SUR LES PONTS

1ERE PARTIE : GENERALITES SUR LES PONTS

I. Définitions et composition des ponts

Le terme « Pont » désigne en général tout ouvrage permettant le franchissement en élévation d'un obstacle naturel (cours d'eau, vallée, etc....) ou artificiel (routes, chemin de fer, etc....). Lorsque l'obstacle à franchir est une dépression profonde de terrain qui sert ou non à l'écoulement des eaux, on parle de viaduc.

Un pont se compose de quatre parties : les fondations, les appuis, le tablier et les superstructures.

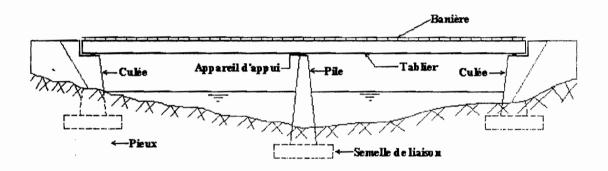


Figure 1.1 Structure générale d'un pont

I.1. Les fondations

Les efforts de toute nature agissant sur l'ouvrage se trouvent reportés sur les poutres qui les transmettent aux appuis constitués par les piles et les culées qui, elles, à leur tour ont pour mission de les reporter au sol par l'intermédiaire des fondations.

On distingue généralement trois types de fondations classés en fonction du rapport de la longueur d'encastrement D par rapport à la largeur ou le diamètre B de la fondation.

Ainsi on a:

- des fondations superficielles (semelles et radiers) lorsque D/B<4;
- des fondations semi-profondes (puits) lorsque
 4≤D/B<10;
- des fondations profondes (pieux) lorsque
 D/B≥10.

I.2. Les appuis

Il existe deux types d'appuis : les appuis de rive ou culées (culées noyées ou culées massives) et les appuis intermédiaires ou piles (piles constituées de colonnes ou piles constituées de voiles).

Les piles et les culées dépendent de deux éléments qu'elles unissent : le sol et le tablier. Elles doivent donc être conçues au mieux, en tenant compte de ces facteurs.

En plus de leur rôle de support des extrémités des ouvrages d'art, les culées doivent souvent soutenir les terres des ouvrages d'accès. Selon la nature des sols, le niveau d'appui sera proche de la surface (fondations superficielles) ou à grande profondeur (fondations profondes).

Sous l'effet des différences de température, ou sous l'application des surcharges, les tabliers se déplacent par rapport aux piles et aux culées. Il est donc nécessaire d'interposer entre eux des dispositifs permettant ces mouvements : ce sont *les appareils d'appui*. Ces appareils d'appui peuvent être fixes ou mobiles selon que l'ouvrage est en béton armé ou précontraint, à poutres préfabriquées (appuis en Néoprène, par exemple) ou coulées en place (noyau Freyssinet, par exemple) ou métallique (balanciers ou rotules...).

L3. Le Tablier

Le tablier est la partie de l'ouvrage supportant la chaussée (ou la voie ferrée) au dessus de la brèche à franchir. Une dalle, des entretoises et parfois des longerons sont associés aux poutres pour former le tablier. Il existe plusieurs types de tabliers :

- les tabliers en dalle ;
- les tabliers à poutres sous chaussée ;
- les tabliers à poutres latérales ;
- les tabliers en caisson :
- les tabliers métalliques :

I.3.1. Dalle

La dalle ou hourdis sert d'élément de couverture ; c'est elle qui reçoit la couche de roulement de la chaussée et les surcharges des véhicules. Outre celui de couverture, le rôle de la dalle est de reporter les charges permanentes et les surcharges sur les poutres, les longerons et les entretoises.

L3.2. Entretoises

Les entretoises sont perpendiculaires aux poutres qu'elles relient entre elles (sauf dans les ponts biais où elles sont parallèles aux appuis).

Elles ont un double rôle : celui de contreventement transversal s'opposant au déversement des poutres et celui de solidarisation, en répartissant les surcharges et le poids propre sur les poutres.

Les entretoises doivent être aussi raides que possible et assez nombreuses pour assurer la solidarité effective des poutres ; il faut que leur nombre ne soit pas exagéré et leur poids aussi réduit que possible. Il y a donc deux impératifs contradictoires qu'il faut concilier.

I.3.3. Longerons

Les longerons, essentiellement utilisés dans les ponts métalliques, sont disposés parallèlement à l'axe longitudinal de l'ouvrage et relient entre elles les différentes entretoises.

L3.4. Poutres principales

Les efforts dus au poids propre (de la dalle, des longerons et des entretoises) et aux surcharges sont transmis aux poutres qui les reportent sur les appuis constitués par les piles et les culées. On distingue les poutres latérales et les poutres sous chaussée.

Poutres latérales

Elles sont également appelées poutre de rive, poutre maîtresses ou, encore, poutres principales.

Dans ce type d'ouvrage, les charges sont supportées par deux poutres parallèles à l'axe longitudinal de la chaussée et situées aux bords extrêmes du tablier.

Poutres sous chaussées

Pour des raisons d'esthétique, dans les agglomérations, pour dégager la visibilité ou pour réserver un gabarit au-dessus de la brèche, la hauteur de la poutre se trouve être imposée. On a alors recours aux ponts à poutres sous chaussée. Un tel type d'ouvrage comporte un certain nombre de poutres sensiblement identiques, réparties de façon uniforme sous le tablier.

L3.5. Contreventement

Le contreventement est constitué par une poutraison croisée horizontale entre poutres latérales, le tout destiné à assurer la stabilité du tablier sous les efforts du vent.

I.4. Les superstructures

Les superstructures sont constituées par tous les éléments du tablier qui n'interviennent pas dans la résistance mécanique de l'ouvrage. C'est du poids mort qu'il faut supporter en permanence. Ce sont :

- la chaussée;
- les gargouilles;
- les trottoirs;
- les dispositifs de sécurité (garde-corps, glissières et barrières de sécurité) ;
- les corniches;
- les joints de chaussée;
- les lampadaires...

II. Eléments géométriques des ponts

Les éléments géométriques des ponts sont de plusieurs sortes. On distingue :

II.1. Les éléments verticaux

- <u>L'épaisseur du pont</u>: c'est la hauteur comprise entre le dessous des poutres et le dessus de la voie portée.
- <u>Le tirant d'air</u>: c'est la hauteur comprise entre le dessous des poutres et le niveau des eaux ou de la voie de communication au dessus de laquelle est construit le pont.

Dans le cas d'une eau navigable, cette hauteur doit permettre d'inscrire le gabarit de navigation des vaisseaux qui utilisent la voie navigable.

Lorsque le pont est situé au-dessus d'une voie de communication, le tirant d'air doit être égal à la hauteur libre exigée pour les voies respectives. En général, on prévoit un tirant d'air de 4.50 m pour les routes et 6.75 m pour les voies ferrées.

 La flèche f d'un pont en arc est la distance verticale comprise entre la clef (sommet de l'arc) et la ligne qui joint les naissances (extrémités de l'arc).

II.2. Les éléments horizontaux

La travée est la partie de pont comprise entre deux appuis consécutifs. Un pont peut comporter une ou plusieurs travées. Ces travées peuvent être indépendantes ou continues. Lorsqu'elles sont indépendantes, on parle de travées isostatiques.

L'ouverture d'une travée est la distance horizontale entre les faces intérieures des éléments d'infrastructures qui limitent la travée. Elle sert pour le calcul de l'hydraulique.

L'ouverture totale d'un pont est la somme des ouvertures des travées et doit être suffisante pour assurer l'écoulement des eaux de crue.

La portée d'une travée est la distance horizontale entre les axes des appareils d'appui. Elle sert pour le calcul de la résistance de la superstructure .Dans le cas des travées continues, elle coïncide avec l'entraxe de deux appuis consécutifs. Il n'en est pas de même pour les travées indépendantes.

La largeur (roulable) du pont est la distance entre dispositif de retenue ou bordures.

II.3. Angles et rapports

L'obliquité d'un pont est mesurée par l'angle aigu α compris entre l'axe longitudinal du pont et la direction du cours d'eau ou des voies traversées par le pont. Plus l'angle α est faible, plus le pont est oblique ou en biais. Quand $\alpha = 90^{\circ}$, le pont s'appelle normal.

La pente d'un pont est la tangente trigonométrique de l'angle que fait la voie avec la direction horizontale. Lorsque cet angle est nul, le pont est appelé palier

Le fruit de la face d'une pile ou d'une culée est la tangente de l'angle que fait cette face avec la verticale.

Le surbaissement d'un pont en arc est le rapport entre la flèche et la portée de l'arc.

L'élancement est le rapport entre l'épaisseur du tablier et la portée la plus déterminante. Lorsque l'épaisseur (donc l'inertie) du tablier est variable, on définit un élancement sur appui et un élancement à la clé (en milieu de travée).

Les élancements servent à faire les prédimensionnements. En effet pour chaque type de pont, il a été défini une plage d'élancements économiques permettant de dégrossir les problèmes de dimensionnement.

III. Classe et classification des ponts

III.1. Classe des ponts

L'article 3 du fascicule 61- titre II range les ponts-routes en 3 classes, en fonction de la largeur roulable et de la destination.

- Sont rangés en première classe :
 - tous les ponts supportant des chaussées de largeur roulable supérieure ou égale à 7 m :
 - tous les ponts supportant des bretelles d'accès à de telles chaussées ;
 - les ponts, de largeur roulable inférieure à 7 m, qui sont désignés par le C.P.S. En effet il y a lieu de ranger en première classe, quelle que soit leur largeur, les ponts sur lesquels il risque d'y avoir accumulation de poids lourds, tels que certains ponts urbains ou en zone industrielle.
- Sont rangés en deuxième classe les ponts, autres que ceux énumérés ci-dessus, supportant des chaussées à deux voies de largeur roulable comprise entre 5.50 m et 7 m valeurs limites exclues;
- Sont rangés en troisième classe les ponts, autres que ceux énumérés ci-dessus, supportant des chaussées à une ou deux voies de largeur roulable inférieure ou égale à 5.50 m.

La largeur roulable, est la largeur comprise entre dispositifs de sécurité ou bordures de trottoir. Elle comprend outre la chaussée, les bandes d'arrêt d'urgence et les bandes dérasées. La largeur chargeable, se déduit de la largeur roulable en déduisant 50 cm le long des dispositifs de sécurité. Les bordures de trottoir ne sont pas des dispositifs de sécurité.

III.2. Classification des ponts

Les ponts sont de différents types et on peut les classifier de plusieurs points de vue.

III.2.1. Classification suivant le fonctionnent mécanique

Selon cette classification, on distingue les caractéristiques suivantes :

 Les ponts poutres dont les réactions ne comportent que des composantes verticales :

On trouve dans cette catégorie les ponts à poutres sous chaussée, les ponts à poutres latérales, les ponts dalle, les ponts en caisson, etc.

- Les ponts en arc: ce sont tous les ponts dont les réactions d'appui comportent une composante horizontale. On classe dans cette catégorie les ponts en arc, les ponts à béquilles obliques ou droites, les portiques ouverts et les cadres fermés;
- Les ponts à câbles: ce sont tous les ponts portés par des câbles. Les charges verticales produisent des réactions inclinées divergentes.
 Dans cette catégorie, figurent les ponts à haubans et les ponts suspendus.

III.2.2. Classification suivant la destination des voies supportées

Suivant ce critère, on distingue les types de ponts suivants :

- Les ponts routes : ce sont les ponts qui portent une route lui permettant ainsi de franchir un obstacle ;
- Les ponts rails : ce sont les ponts qui portent un chemin de fer qui lui permet de franchir un obstacle ;
- Les ponts rails/ routes: ce sont les ponts qui portent une route et un chemin de fer à la fois;
- Les passerelles : ce sont des ouvrages réservés uniquement à la circulation des piétons ;
- Les ouvrages hydrauliques : ce sont les ouvrages destinés à faire passer un cours d'eau.

III.2.3. Classification suivant la position en plan

Suivant ce critère, on distingue les types de ponts suivants :

- Ponts droits: ce sont les ponts dont les lignes d'appuis font un angle droit avec l'axe du pont;
- Ponts biais: ce sont les ponts dont les lignes d'appuis font un angle (différent de l'angle droit) avec l'axe du pont. Il faut limiter dans la mesure du possible l'angle de biais, il ne doit pas trop s'éloigner de l'angle droit;
- Ponts courbes : ce sont les ponts dont l'axe présente une courbure.

III.2.4. Classification suivant la durée de vie

Suivant ce critère, les ponts sont classés en 3 catégories :

Les ponts définitifs ;

Ils sont construits pour une durée égale à celle du matériau, et tant qu'ils pourront supporter les charges accrues des véhicules.

Les ponts semi définitifs

Ce sont les ponts ayant, en général, l'infrastructure définitive et la superstructure provisoire;

Ils s'exécutent soit pour des raisons d'économie, soit quand on ne peut procurer, en temps utile, la superstructure définitive.

Les ponts provisoires.

Ils sont construits pour une durée relativement courte et sont utilisés soit pour le rétablissement rapide de la circulation, dans le cas de la déstructuration d'un pont définitif, soit pour assurer la circulation, pendant la construction ou la réparation d'un pont définitif.

III.2.5. Classification suivant la mobilité

Suivant ce critère, on distingue :

- les ponts fixes
- les ponts mobiles qui s'exécutent quand il est nécessaire d'augmenter temporairement le tirant d'air, pour le passage des vaisseaux.

Ils sont de trois sortes:

- les ponts levants dont le tablier est mobile en hauteur

Figure 1.2: Pont levant

- les ponts tournants dont le tablier est monté sur pivot, permettant de le faire tourner horizontalement.

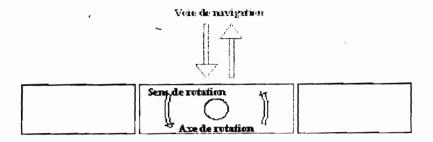


Figure 1.3: Pont tournant

les ponts basculants

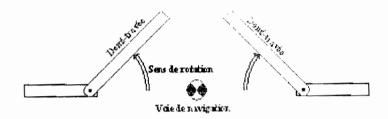


Figure 1.4: Pont basculant

III.2.6. Classification suivant la continuité de la superstructure

- ponts à poutres indépendantes où la superstructure est interrompue au dessus des piles.
- ponts à poutres cantilevers où la superstructure est interrompue entre les piles.
- ponts à poutres continues où la superstructure n'a pas d'interruption.

La liste n'est pas exhaustive car on trouve aussi d'autres critères de classification tels que le mode d'exécution, la position des voies supportées, etc.

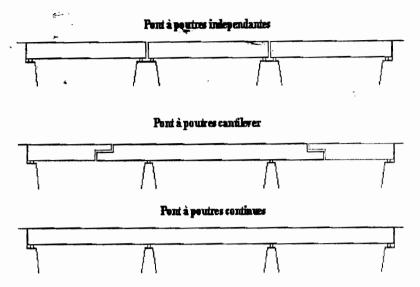


Figure 1.5: Quelques exemples sur la continuité des ponts

IV. Règles générales pour l'établissement d'un projet de pont

La conception d'un pont dépend de plusieurs facteurs qui influencent la solution à adopter. Les principaux facteurs qui influencent le type et les dimensions du pont sont les suivants :

IV.1. Direction du tracé par rapport à celle de l'obstacle

En général, il est préférable que le pont soit normal. Cependant si un changement du tracé produit des inconvénients du point de vue circulation, le pont sera projeté biais ou en courbe selon le cas.

IV.2. Débit maximum des eaux

Le régime des eaux ne doit pas être modifié par la construction d'un pont, ce qui produirait des changements du lit susceptibles d'avoir des conséquences pour les bénéficiaires d'amont : inondations, dégâts aux ouvrages existants. Pour cela, il faut que le débit maximum des eaux puisse passer sous le pont à la vitesse qu'elles avaient avant la construction.

Pour les ouvrages importants, il faudra donc :

- déterminer le débit maximum Q de la rivière à l'endroit où sera construit le pont;
- déterminer la vitesse d'écoulement v des eaux.

Une fois Q et v connus, ce qui ne peut se faire que de façon approximative, la surface comprise entre le fond de la rivière et le niveau des grandes eaux sera $S = \frac{Q}{v}$. La longueur du pont doit être telle que son débouché soit au moins égal à la valeur trouvée pour S.

IV.3. Nature du terrain du fond du cours d'eau ou de la rivière

Il faudra faire des sondages le long du tracé afin de trouver la nature des couches et déterminer la profondeur à laquelle on doit fonder les piles et les culées.

Cette profondeur dépend de deux facteurs :

- Résistance du terrain : en effet il faut que le terrain soit capable de supporter les charges transmises sans subir des tassements inadmissibles.
- Possibilité d'affouillement : il se peut que le terrain de fondation soit assez résistant mais qu'il soit affouillable aux grandes vitesses. Il faudra fonder à une profondeur qui dépasse la profondeur maximale d'affouillement possible.

IV.4. Hauteur disponible

Quand la hauteur de la voie de communication au dessus de l'obstacle est grande, il faut envisager la possibilité d'une solution en arc qui a l'avantage de l'économie et permet d'adopter de grandes portées.

Si la hauteur est réduite, on recourt aux solutions à poutres.

En tous les cas, une attention particulière sera accordée au tirant d'air surtout lorsque la rivière est navigable.

IV.5. Servitudes

La construction du pont ne doit pas créer de préjudices à d'autres intérêts publics. On veillera à prendre contact avec les institutions qui peuvent avoir des intérêts dans la région pour établir les servitudes que le projet doit respecter.

IV.6. Aspect esthétique

Tous les ouvrages doivent avoir un aspect extérieur esthétique et plus spécialement à l'intérieur des villes. L'aspect esthétique est souvent décisif dans le choix du matériau, du type et des dimensions des travées.

12

IV.7. Economie et possibilité d'exécution

La solution adoptée doit représenter le coût le plus réduit. En général, sauf dans le cas où la solution est imposée par d'autres facteurs, on doit étudier plusieurs solutions pour déterminer la plus économique.

Parallèlement, on doit tenir compte des possibilités d'exécution, la solution la plus économique pouvant demander un outillage dont on ne dispose pas.

V. Choix du type d'ouvrage

V.1. Comment se pose le problème du choix

L'objectif est de déterminer le type d'ouvrage le plus économique capable de satisfaire le mieux à toutes les exigences.

Il faut pour cela connaître à la fois l'ensemble des contraintes à respecter et l'ensemble des types d'ouvrages envisageables.

La comparaison de ces deux ensembles permet de retenir la solution, ou les solutions, qui apparaissent à première vue comme les meilleures, et qui feront par la suite l'objet d'études approfondies. C'est une opération de synthèse dans laquelle interviennent de nombreux paramètres et qui fait appel au jugement et à l'expérience du concepteur.

V.2. Récapitulation des types d'ouvrages actuels

Dans ce qui suit, la récapitulation des types d'ouvrages est faite d'après la portée principale, parce que c'est le paramètre le plus simple et l'un des plus importants. Pour simplifier l'exposé, on a distingué les ponts à une seule travée et les ponts à plusieurs travées, étant bien entendu que les deux solutions peuvent quelquefois être envisagées pour un même franchissement.

Ne sont pas cités dans cette énumération les types d'ouvrages très spéciaux ni certaines solutions en cours d'expérimentation.

V.2.1. Les ponts à une seule travée.

- Petits ouvrages hydrauliques d'ouverture inférieure à 8 m
 - si l'ouvrage est situé sous un fort remblai, la meilleure solution est le ponceau en plein cintre ;

- si le remblai est de hauteur moyenne, on peut aussi utiliser les aqueducs métalliques préfabriqués. Cette solution est intéressante surtout lorsque le terrain de fondation est mauvais;
- si la hauteur de remblai est faible ou nulle, la solution normale est celle des cadres et portiques.

L'ouverture de ces ouvrages est à fixer en fonction du débit de crue de la rivière.

Pour les portées inférieures à une quinzaine de mètres

- si l'ouvrage est situé sous remblai, adopter un ponceau voûté en plein cintre ;
- s'il y'a peu de remblai, la solution très largement utilisée est celle du pont-cadre en béton armé. C'est une structure très simple, en forme de cadre rectangulaire reposant sur la dalle inférieure et complétée par des murs en aile ou en retour également standardisé;
- s'il s'agit de remplacer un tablier sur des culées existantes, ou si le biais est trop fort pour qu'on puisse envisager un cadre, la solution la plus simple est celle de la dalle en béton armé.

Pour les portées allant d'une dizaine à une vingtaine de mètres

La solution la plus courante est celles des portiques en béton armé. C'est un pont à béquilles verticales, qui exerce une poussée sur ses appuis et qui est soumis aux poussées latérales des terres.

Pour les portées de 20 à 50 m

Sauf dans des cas très spéciaux où la nécessité de limiter au maximum le poids et l'épaisseur du tablier conduit à une solution métallique, le type d'ouvrage qui s'impose dans cette gamme de portées est la travée indépendante à poutres en béton précontraint.

Pour les portées de 50 à 100 m

C'est le domaine des travées indépendantes en acier. Pour des raisons d'aspect, on emploie de préférence des tabliers à âme pleine sous chaussée, constitués soit de poutres parallèles, soit de caissons, suivant la portée et l'élancement. Dans les ponts actuels les couvertures sont très largement des dalles participantes ou des dalles orthotropes.

Pour les portées de plus 100 m

C'est seulement dans des cas exceptionnels qu'on franchit une portée de plus de 100 m avec une seule travée. Les types de ponts adoptés dans ce cas sont entres autres :

- les ponts à travée indépendante en acier, à poutres latérales triangulées et tablier inférieur ;
- les ponts à béquilles obliques en acier;
- les ponts à béquilles obliques en béton précontraint ;
- les arcs en béton armé;
- les arcs en acier.

V.2.2. Les ponts à plusieurs travées

Pour les portées ne dépassant pas une vingtaine de mètres

La solution la plus courante est celle des ponts-dalles continus :

- en béton armé, lorsque la portée déterminante est inférieure à 15 m et lorsqu'il n'est pas nécessaire de réduire au maximum l'épaisseur du tablier.
- en béton précontraint pour des portées déterminantes de 15 à 21 m.

• Pour les portées de 20 à 50 m environ.

Plusieurs solutions sont possibles:

- les dalles à grands encorbellements, ou les dalles élégies pour des portées de 23 à 40 m environ. Dès que la portée dépasse 25 m, il est généralement préférable de donner à la dalle une épaisseur variable. Ces types de ponts sont souvent employés comme passages supérieurs à trois travées;
- le pont à béquilles en béton précontraint qui peut être considéré comme un ouvrage à trois travées ;
- le pont mixte à poutrelles métalliques continues et dalle participante, utilisé pour franchir une route ou une autoroute sans appui sur le terreplein central.
- les ponts à poutres en béton précontraint, de différentes sortes : soit à poutres préfabriquées, soit à poutres continues coulées sur cintre, soit à poutres construites par poussage.
- Pour les portées de 50 à 300 m environ.

Les deux-types a onviages les mas acres.

précontraint construits en encorbellement et les poutres continues en acier

- Les ponts en beton precontraint construits en encorbeilement ont en général une portée principale comprise entre 70 et 100 m :
- Les poutres continues en acier ont ete employées dans une gamme tres étendue de portées, depuis une trentaine de mètres jusqu'à plusieurs centaines de metres.

Pour les portées de plus de 300 m

C'était autrefois le domaine des ponts suspendus. On v trouve maintenant à la fois des ponts suspendus et des à haubans. La frontière entre les deux n'est pas nette. Le grand intérêt des ponts à haubans est qu'ils ne nécessitent pas de massif d'ancrage mais lorsqu'il est possible de fixer les câbles dans le rocher, le pont suspendu peut reprendre l'avantage.

2ème Partie : PRESENTATION DU PROJET ET DESCENTE DE CHARGES

I. Présentation du pont existant

Le pont de Gouloumbou sur le fleuve Gambie est un ouvrage situé sur la route nationale RN° 6, reliant Tambacounda à Ziguinchor vía Vélingara et Kolda. Il est un pont mixte de cinq travées dont l'infrastructure est en béton et la superstructure métallique. Il est long de 150 m environ avec une voie de circulation large de 4.20 m.

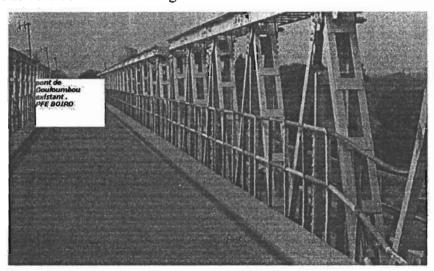


Figure 2.a : vue de la chaussée du pont existant

Le lit du bassin moyen du fleuve Gambie est incisé dans les sables du Continental Terminal. Les matériaux sont des alluvions fluviatiles sableux et limoneux. Il existe une couverture végétale moyenne du lit majeur qui est assez stable en dehors de la zone du pont. Au voisinage du pont de Gouloumbou, on constate l'effondrement des berges de la rive droite et le rehaussement du lit du même coté.

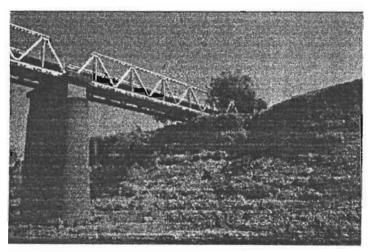


Figure 2.b: effondrement des berges de la rive droite du pont existant

Cette instabilité est due à la courbure du tronçon de cours d'eau et aux effets de l'obstruction du lit par les culées et piles du pont. Cette configuration du cours d'eau entraîne un rehaussement du niveau de la surface de l'eau et une accélération locale sur la rive extérieure de la courbe ; ces phénomènes ont tendance à déstabiliser les berges par l'érosion de la base et l'effondrement des parties hautes dans le lit surtout en période de fortes crues à hautes eaux et gros débits. Cette situation requiert d'envisager des mesures de protection de la berge droite (face extérieure de la courbe du cours d'eau) par un système de revêtement en perré, enrochement ou gabions.

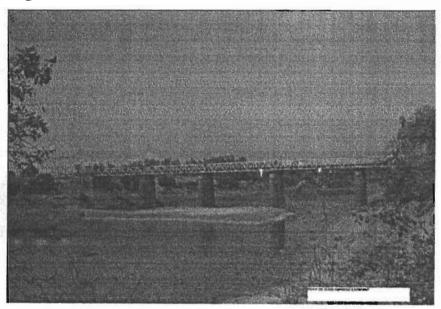


Figure 2.c: le pont existant, vue de loin

II. Description du pont projeté

L'ouvrage qui sera construit à 20 m environ du côté amont du pont existant est un pont mixte qui a les caractéristiques suivantes :

Largeur roulable

La largeur roulable est définie comme étant la largeur comprise entre dispositifs de retenue ou bordures ; elle comprend, donc outre la chaussée, proprement dite toutes les surlargeurs éventuelles telles que bande dérasée, bande d'arrêt, etc.

Lr = 6.31 m (roadwidth)

Largeur chargeable

La largeur chargeable se déduit de la largeur roulable :

- en enlevant une bande de 0,50 m le long de chaque dispositif de retenue (glissière ou barrière) lorsqu'il en existe ;
- en conservant cette même largeur roulable dans le cas contraire. (art.2.1 fascicule 61 titre II)

$$Lc = Lr - 2 \times 0.5 = 6.31 - 2 \times 0.5 = 5.31 \text{ m}$$
.

Classe du pont

 $Lr < 7 \text{ m} \implies le pont est de deuxième classe.}$

Nombre de voies N

Par convention, les chaussées comportent un nombre de voies de circulation égal à la partie entière du quotient par 3 de leur largeur chargeable, exprimée en mètres. Toutefois, les chaussées dont la largeur chargeable est comprise entre 5 m inclus, et 6 m sont considérées comme comportant deux voies de circulation.

Puisque $5m \le Lc \le 6m$ alors notre chaussée comporte deux voies de circulation.

- Longueur du pont : L = 157.5 m avec trois travées dont les deux de rive ont une portée de 63 m et celle intermédiaire une portée de 31.5 m, soit la moitié des deux précédentes.
- Largeur du tablier = 7.36 m

Le tablier est ininterrompu au niveau des appuis, ce qui fait de la superstructure un système hyperstatique.

- Fondations: sur pieux forés et tubés.
- Piles et culées : en béton armé
- Superstructure métallique: système de pont MABEY DELTA qui est une structure de type modulaire pré-étudié et préfabriqué dont les éléments de base sont des modules qui s'assemblent entre eux par le moyen de téton ou de boulon.

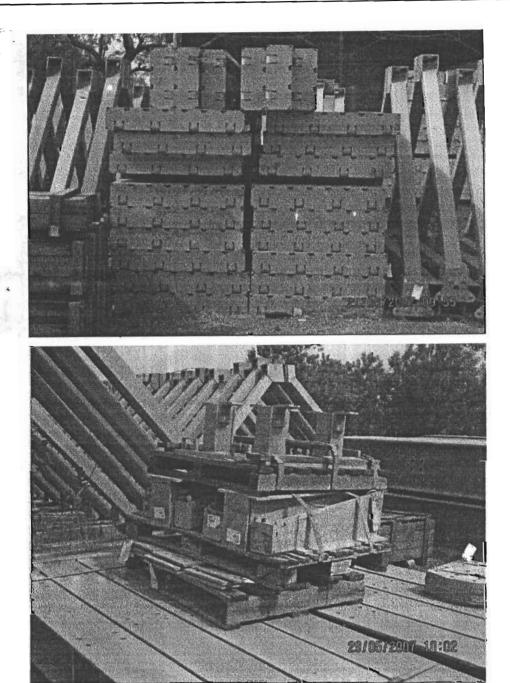


Figure 2.1 : Eléments de base de la superstructure en pièces détaillées.

III. Hypothèses générales de calcul

III.1. Règlement et textes

Fascicule spécial n°72-21 bis cahier des prescriptions communes fascicule 61,
 titre II CONCEPTION, CALCUL ET EPREUVE DES OUVRAGES D'ART

PRESENTATION DU PROJET ET

DESCENTE DE CHARGES

- Cahier des clauses techniques générales : fascicule 62, titre1, règles dénommées
 BAEL 91
- Fascicule 62 titre V: Règles, techniques de conception et de calcul des fondations des ouvrages de Génie Civil
- Fascicule n°4 fourniture d'acier titre 1 armature à haute résistance pour construction en béton armé
- Dalles de transition des ponts routes SETRA
- Environnement des appareils d'appui en élastomère fretté, recueil des règles de l'art.

III.2. Documents de référence

- Résultats des campagnes de reconnaissance géotechniques réalisées par le CEREEO
- Plan tablier comprenant les réactions pour les différents cas de charge fournis par MABEY et JOHNSON LTD.

III.3. Hypothèses de justification

Le tablier est constitué de poutres métalliques.

Les appuis du tablier avec leurs réactions pour les différents cas de charges sont donnés par MABEY et JOHNSON LTD.

Les pieux et semelles sont calculés en fissuration très préjudiciable.

Les poteaux, dalle de transition, poutres, chevêtres, murs culées sont calculées en fissuration très préjudiciable. (Article B2.4 BAEL 91)

L'enrobage des armatures sera de 3cm minimum en élévation, 5cm pour les ouvrages enterrés, poteau support chevêtre et 7 cm pour les pieux.

III.4. Matériaux de construction

III.4.1. Béton

- Béton pour poteaux et chevêtres ;
 - Masse volumique = 25 kN/m^3 ;
 - Caractéristiques de résistance :

fcj = 30 MPa
ftj =
$$0.6 + 0.06$$
 fcj = 2.4 MPa
Coefficient de Poisson
 $v = 0.2$ pour béton non fissuré
 $v = 0$ pour béton fissuré

- Béton pour pieux ;
 - Masse volumique = 25 kN/m³;
 - Caractéristiques de résistance :

fcj =
$$\frac{25 \text{ MPa limite}}{k_1 \times k_2}$$

 $k_1 = 1.2 \text{ bétonnés sous boues}$
 $k_2 = 1.05$
fcj = $\frac{25}{1.2 \times 1.05}$
fcj = 19.84
ftj = 0.6 + 0.06 fcj = 1.79 MPa
Coefficient de Poisson
 $v = 0.2$ pour béton non fissuré
 $v = 0$ pour béton fissuré
Contrainte tangente conventionnelle = $\frac{1.4 \times \text{Vu}}{\text{B} \times \text{d}}$

III.4.1.1. Etats limites ultimes: ELU

Justification sous sollicitations de flexion

$$\overline{\sigma bc} = \frac{0.85 \times fcj}{\theta \times \gamma b} = \frac{0.85 \times 30}{1 \times 1.5}$$

$$\overline{\sigma_{bc}} = 17 \,\mathrm{MPa}$$

 Justification des poutres sous sollicitation d'effort tranchant, cas où la fissuration est considérée comme préjudiciable (BAEL 91 A.5.1.21)

$$\tau_{\rm u} < \min \left(\frac{0.15 \times fcj}{\gamma b} ; 4 \text{ MPa} \right) = \min \left(\frac{0.15 \times 30}{1.5} ; 4 \right)$$

$$\tau_{\rm m}$$
 < 3 MPa

 Justification des dalles sous sollicitation d'effort tranchant, pas d'armature dans les plaques si :

$$\tau_{\rm u} < \frac{0.07 \times fcj}{\gamma b} = \frac{0.07 \times 30}{1.5}$$

$$\tau_{\rm u}$$
 < 1,4 MPa

III.4.1.2. Etats limites de service : ELS

Justification sous sollicitations de flexion $\overline{\sigma bc} = 0.6 * fcj = 0.6 * 30$ $\overline{\sigma bc} = 18 \text{ MPa}$

III.4.1.3. Modules de déformation

Instantanée:

Eij = 11 000 * fcj
$$^{1/3}$$
 = 11 000 *(1.1× 30 $^{1/3}$)

$$Eij = 35 282 MPa$$

<u>différée</u> :

$$Evj = 37000 fcj^{\frac{1}{3}} = 37000 \times (1.1 \times 30)^{\frac{1}{3}} = 11867 MPa$$

III.4.2. Acier

fe = 400 MPa
$$\gamma$$
s = 1,15

III.4.2.1 Etats limites ultimes: ELU

$$\overline{\sigma_s} = \frac{\text{fe}}{1.15} = 347 \, MPa$$

III.4.2.2 Etats limites de service : ELS

Cas de fissuration préjudiciable :

La contrainte limite admissible est donnée par :

$$\xi = \min \left\{ \frac{2}{3} \text{ fe} ; \max \left(0.5 \text{ fe} ; 110 \times \sqrt{\eta \times f_{128}}\right) \right\}$$

$$\xi = \min \left\{ \frac{2}{3} 400 ; \max (0.5 *400 ; 110 x \sqrt{1.6 \times 2.4}) \right\}$$

$$\xi = 200 \text{ MPa}$$

Cas de fissuration très préjudiciable :

$$\sigma_s = \max(110\sqrt{\eta f_{ij}}; \frac{2}{3}f_{ij}) \text{ avec } \eta = 1.6$$

$$\xi = 0.8 \text{ x } 200$$

 $\xi = 160 \text{ MPa}$

III.5. Actions et descente de charges

Les matériaux sont régis par la norme Française NFP 06-001 Les surcharges d'exploitation proviennent du Fascicule 61, titre II.

III.5.1. Charges permanentes

Masse volumique du béton : 2,5 T / m3

Masse volumique de l'acier : 7,8 T / m3

III.5.1.1. Poutres de rives

Profil delta

Figure 2.2 : Poutre de rive en profil delta

Sur une longueur de L = 63 m le nombre de profilés delta est Nb = 28.

Donc sur les deux côtés on a : $N_b = 2 \times 28 = 56$.

Masse par profilé = 1111kg/ml

Ainsi la masse par mètre linéaire est : $\frac{56 \times 1111}{63} = 987 kg / ml$.

Poutres hautes et basses

Leur nombre est de 4 et la masse par élément de 167 kg/ml

Donc leur masse totale est de $4 \times 167 = 668 kg / ml$

Le total des poutres de rive est alors 987 + 668 = 1655 kg / m/

III.5.1.2. Plancher

L'entraxe des ¹traverses est de 4.5 m et leur poids de 1311 kg

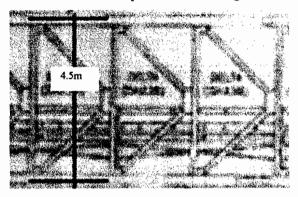


Figure 2.3: Entraxe des traverses

Leur poids par mètre linéaire est alors : $\frac{1311}{4.5} = 291 \text{ kg/ml}$.

La masse par mètre linéaire des corniches 70/70 est de $7 \times \frac{12.54}{4.5} = 19.5 \, kg$.

La masse par mètre linéaire du platelage de la chaussée est de

$$5 \times (1.05 + 10 + 0.19) \times 1 \times 0.006 \times 7800 = 156 \ kg / ml$$

La charge sur les trottoirs est de $2 \times (0.525 + 6 + 0.19) \times 1 \times 0.006 \times 7800 = 156 \text{ kg/ml}$

La charge due aux potelets et aux glissières est de 50 kg/ml

Par conséquent le total du plancher est de : $(828+156+50+291+19.5) = 1344.5 \, kg / ml$

Le poids total du pont par mètre linéaire est alors = 1655 + 1344.5 = 2999.5 kg/ml

Poids du pont par mètre linéaire = 3t/ml

III.5.1.3. Détermination des réactions correspondantes

Pour la travée de portée L = 63 m,
$$R = \frac{PL}{2} = \frac{3 \times 63}{2} = 94.5 T$$

Pour la travée de portée L = 31.5 m,
$$R = \frac{PL}{2} = \frac{3 \times 31.5}{2} = 47.25 T$$

III.5.2. Action des terres

■ Masse volumique : 2 T / m³

Angle de frottement interne : $\Phi = 25^{\circ}$

Coefficient de poussée active : $K_a = tg^2 \left(\frac{\Pi}{4} - \frac{\phi}{2} \right)$

$$K_a = tg^2 \left(\frac{180}{4} - \frac{25}{2} \right) = tg^2 \left(45 - 12.5 \right) = 0.406$$

- Vitesse des eaux estimée à 3m/s
- Hauteur d'eau maxi 15.65 m

III.5.3. Surcharges d'exploitation

III.5.3.1. Système A

Pour les ponts comportant des portées unitaires atteignant au plus 200 m, la chaussée supporte une charge uniforme dont l'intensité est égale au produit de la valeur A (/) par des coefficients a₁ et a₂ qui sont fonction de la classe du pont et du nombre de voies chargées.

La charge par unité de surface (A (I)) est donnée en fonction de la longueur chargée I par la formule :

$$A(l) = 0.23 + \frac{36}{l+12}$$
 avec $l \text{ en mètre et } A(l) \text{ en } t/m^2$

Le coefficient a₁ est donné dans le tableau 2.1 suivant :

Nombre de voies chargées			2	3	4	> 5
Classe du pont .	Première Deuxième Troisième		1 0.9 0.8	0,9 " "	0.75 "	0.7 "

Tableau 2.1 : Valeur du coefficient a₁ en fonction de la classe et du nombre de voies chargées

Pour un pont de deuxième classe à deux voies chargées $a_1 = 0.9$

Le coefficient $a_2 = \frac{v_o}{v}$

v étant la largeur d'une voie et vo ayant les valeurs suivantes :

- 3,5 m pour les ponts de première classe;
- 3,0 m pour les ponts de deuxième classe;
- 2,75 m pour les ponts de troisième classe.

Dans le cas de notre projet $a_2 = \frac{3}{6.31} = 0.95$

La charge par unité de surface (A (1)) devient alors :

$$A(l) = a_1 a_2 \left(0.23 + \frac{36}{l+12}\right) = 0.95 \times 9 \times \left(0.23 + \frac{36}{l+12}\right)$$

$$A(l) = 0.855 \left(0.23 + \frac{36}{l+12} \right)$$

Cette charge surfacique ainsi obtenue est appliquée uniformément sur toute la largeur de chacune des voies considérées.

<u>ler cas : 1 système de charges A (1) pour une seule travée de 63 m</u>

$$A(63) = 0.855 \left(0.23 + \frac{36}{63 + 12} \right) = 0.6071 \, t / m^2$$

La réaction correspondante au niveau de la culée est : $R_{c1} = 0.607 \times 6.31 \times \frac{63}{2} = 120.65 t$

La réaction correspondante au niveau de la pile est : $R_{p1} = 0.607 \times 6.31 \times \frac{63}{2} = 120.65 t$

2ème cas: 1 système de charges A (1) pour une seule travée de 31.5 m

$$A(31.5) = 0.855 \left(0.23 + \frac{36}{31.5 + 12}\right) = 0.9 t/m^2$$

La réaction correspondante au niveau de la pile est $R_{p2} = 0.9 \times 6.31 \times \frac{31.5}{2} = 89 t$

La réaction correspondante au niveau de la culée est nulle.

> 3ème cas : 1 système de charges A (l) pour une travée de rive et la travée intermédiaire de 31.5 m

Dans ce cas, l = 31.5 + 63 = 94.5

$$A(94.5) = 0.855 \left(0.23 + \frac{36}{94.5 + 12}\right) = 0.49 t/m^2$$

La réaction correspondante au niveau de la culée est $R_{c3} = 0.49 \times 6.31 \times \frac{63}{2} = 97 t$

La réaction correspondante au niveau de la pile est $R_{p1} = 0.49 \times 6.31 \times \frac{94.5}{2} = 146 t$

Aème cas: 1 Système de charges A (1) pour toute la longueur du pont

Dans ce cas 1 = 63 + 31.5 + 63 = 157.5 m

$$A(157.5) = 0.855 \left(0.23 + \frac{36}{157.5 + 12} \right) = 0.38 \cdot t / m^2$$

La réaction correspondante au niveau de la culée est $R_{c4} = 0.38 \times 6.31 \times \frac{63}{2} = 75.53 t$

La réaction correspondante au niveau de la pile est $R_{p4} = 0.38 \times 6.31 \times \frac{94.5}{2} = 113 t$

Les réactions maximales sur piles et culées sont alors :

$$R \max_{cul\acute{e}e} = \max_{cul\acute{e}e} (R_{c1}, R_{c2}, R_{c3}, R_{c4}) = 120.65 \ t$$
 $R \max_{cul\acute{e}e} = \max_{cul\acute{e}e} (R_{p1}, R_{p2}, R_{p3}, R_{p4}) = 146 \ t$

III.5.3.2. Système B

Le système de charges B comprend trois systèmes distincts dont il y a lieu d'examiner indépendamment les effets pour chaque élément des ponts :

Le système Bc se compose de camions types;

Le système Br se compose d'une roue isolée;

Le système Bt se compose de groupes de deux essieux dénommés essieux-tandems.

Les deux premiers systèmes Bc et Br s'appliquent à tous les ponts quelle que soit leur classe; le système Bt ne s'applique qu'aux ponts de première ou de deuxième classe.

Les charges du système B sont frappées de majorations dynamiques et le coefficient de majoration applicable aux trois systèmes Bc, Br, Bt est le même pour chaque élément

d'ouvrage. Le coefficient de majoration dynamique relatif à un tel élément est déterminé par

la formule :
$$\delta = 1 + \frac{0.4}{1 + 0.2 L} + \frac{0.6}{1 + 4 \frac{G}{S}} = 1 + \alpha + \beta$$

où
$$\alpha = \frac{0.4}{1 + 0.2L}$$
 et $\beta = \frac{0.6}{1 + 4\frac{G}{S}}$

L représente la longueur de l'élément exprimée en mètres, G sa charge permanente, et S sa charge B maximale.

La valeur de S à introduire dans la formule est celle obtenue après multiplication par le coefficient bc ou bt qui seront définies ultérieurement.

III.5.3.2.1. Système de charges Bc

(cf. Fascicule 61 art. 5.2)

Un camion type du système Bc comporte trois essieux, tous trois à roues simples munies de pneumatiques, et répond aux caractéristiques suivantes :

Masse totale	30 t				
Masse portée par chacun des essieux arrière	12 t				
Masse portée par l'essieu avant	6 t				
Longueur d'encombrement	10,50) m			
Largeur d'encombrement	2,50	m			
Distance des essieux arrière	1,50	m			
Distance de l'essieu avant au premier essieu arrière	4,50	m			
Distance d'axe en axe des deux roues d'un essieu	2	m			
Surface d'impact d'une roue arrière : carré de 0,25 m de côté					

Surface d'une roue avant : carré de 0,20 m de côté

On dispose sur la chaussée au plus autant de files ou convois de camions que la chaussée comporte de voies de circulation et l'on place toujours ces files dans la situation la plus défavorable pour l'élément considéré.

Dans le sens longitudinal, le nombre de camions par file est limité à deux. La distance des deux camions d'une même file est déterminée pour produire l'effet le plus défavorable. Les

camions homologues des diverses files sont disposés de front, tous les camions étant orientés dans le même sens.

Puisque notre chaussée comporte deux voies de circulation alors on y disposera deux camions par voie, ce qui fait au total 2 x 2 camions de 30 t.

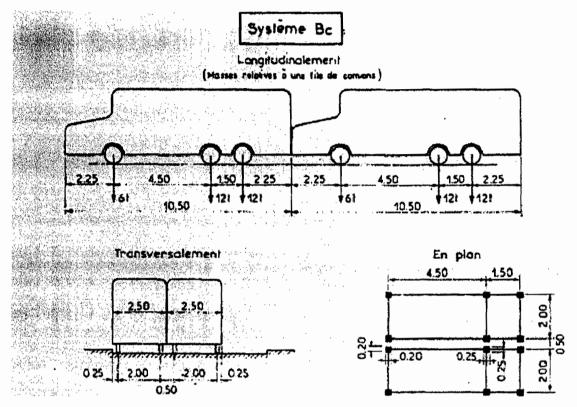


Figure 2.4 : Système de chargement Bc

En fonction de la classe du pont et du nombre de files considérées, les valeurs des charges du système Bc prises en compte sont multipliées par les cœfficients bc du tableau suivant :

· 医神经上颌 (4.5 年)			120 120 200 1 DV	11-15-14
				Negative is
Nombre de files	considéréesl	.2	J. 4	> 5
and the second second second				Lake delete e
A Table of the Control of the Contro	Première** 1.2	0 1,10	0.95 0.8	0.7
Classe du pont-	Deuxième 1.0	0 1.00		-
	Troisieme 1.0	8,0 0	1-1	

Tableau 2.2 : Valeur du coefficient bc en fonction de la classe et du nombre de files considérées

a- Calcul du coefficient de majoration bc

Classe du pont : 2ème classe

Nombre de voies = 2

Donc d'après le tableau 2.2: bc = 1

Pour
$$l = 63 \text{ m}$$
: $\alpha = \frac{0.4}{1 + 0.2 \times 63} = 0.029 \text{ ; } G = 3 \times 63 = 189 \text{ t}$

Ici Bmax =
$$4 \times 30t = 120 t \implies S = bc \times 120 = 1 \times 120 = 120 t$$

$$\beta = \frac{0.6}{1 + 4\frac{189}{120}} = 0.082$$

Donc $\delta = 1 + 0.029 + 0.082 = 1.111$

En définitive pour les culées, $Bc_{culée} = bc \times \delta \times B_c = 1 \times 1.111 \times 120 = 133 t$

Pour
$$l = 31.5 \text{ m}$$
: $\alpha = \frac{0.4}{1 + 0.2 \times 31.5} = 0.055 \text{ ; } G = 3 \times 31.5 = 94.5 \text{ t}$

Ici Bmax =
$$4 \times 30t = 120 t \implies S = bc \times 120 = 1 \times 120 = 120 t$$

$$\beta = \frac{0.6}{1 + 4\frac{94.5}{120}} = 0.145$$

Donc $\delta = 1 + 0.055 + 0.145 = 1.2$

En définitive pour les piles, $Bc_{vile} = bc \times \delta \times B_c = 1 \times 1.2 \times 120 = 144 t$

Calcul des réactions correspondantes

La réaction au niveau de la culée est : $R_c = Bc_{culée} \times \frac{L-d}{r}$ où

Bc_{culée} désigne la résultante totale du convoi sur la travée de rive de portée L = 63 et d l'abscisse de son point d'application. Cette abscisse est celle du barycentre des essieux pondérés de leurs abscisses. Rc est maximum lorsque d est minimum, ce qui correspond au cas où le convoi se déplace de la gauche vers la droite avec l'essieu arrière coïncidant avec l'axe de la culée.

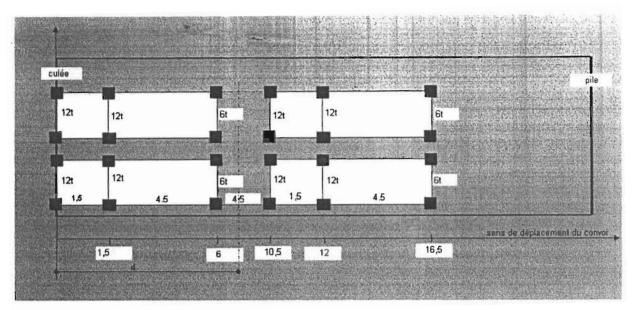


Figure 2.5 : Chargement Bc correspondant à une réaction maximale à la culée

Dans cette position:

$$d = \frac{\sum_{i} xiPi}{\sum_{i} Pi} \text{ où } xi \text{ est l'abscisse de l'essieu Pi}$$

$$d = \frac{0 \times 24 + 1.5 \times 24 + 6 \times 12 + 10.5 \times 24 + 12 \times 24 + 16.5 \times 12}{120} = 7.05 \text{ m}$$

$$Donc \ R_{cmax} = 133 \times \frac{63 - 7.05}{63}$$

$$R_{c \max} = 118 t$$

La réaction de la pile est : $R_p = Bc_{pile} \times \frac{d}{L}$

Rp est maximum lorsque d est maximum, situation qui se réalise lorsque la résultante du convoi passe par l'axe de la pile.

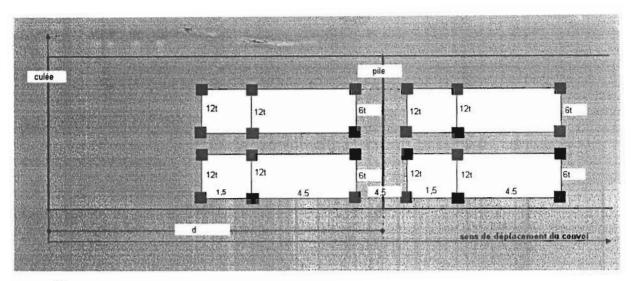


Figure 2.6 : Chargement Bc correspondant à une réaction maximale à la pile

Dans ce cas L = d.

Par conséquent,

$$R_{p \max} = Bc_{pile} = 144 t$$

III.5.3.2.2. Système de charge Bt

(cf. fascicule 61, article 5.4)

Un tandem du système Bt comporte deux essieux tous deux à roues simples munies de pneumatiques et répondant aux caractéristiques suivantes :

Masse portée par chaque essieu

16 t

Distance des deux essieux

1,35 m

Distance d'axe en axe des deux roues d'un essieu

2 m

La surface d'impact de chaque roue (portant 8 t) sur la chaussée est un rectangle uniformément chargé dont le côté transversal mesure 0,60 m et le côté longitudinal 0,25 m.

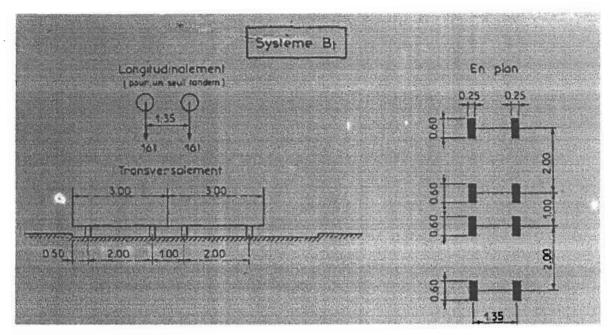


Figure 2.7 : Système de chargement Bt

Chaque tandem est supposé circuler dans l'axe d'une bande longitudinale de 3 m de large.

Pour les ponts à une voie un seul tandem est disposé sur la chaussée.

Pour les ponts supportant au moins deux voies, deux tandems au plus sont disposés de front sur la chaussée, les deux bandes longitudinales qu'ils occupent pouvant être contiguës ou séparées de façon à obtenir la situation la plus défavorable pour l'élément.

Nous avons donc 2 essieux tandem de 16T x 2 voies.

En fonction de la classe du pont, les valeurs des charges du système Bt prises en compte sont multipliées par les coefficients bt suivants :

Classe du pont	Première.	Deuxième.
Coefficient	0,1	0.9

Tableau 2.3 : Valeur du coefficient bt en fonction de la classe

a- Calcul du coefficient de majoration bt

Classe du pont : 2ème classe

Donc d'après le tableau 2. : bt = 0.9

b- Calcul du coefficient de majoration dynamique

Pour 1 = 63 m :
$$\alpha = \frac{0.4}{1 + 0.2 \times 63} = 0.029$$
 ; G = 3 × 63 = 189 t

Bmax =
$$4 \times 30t = 120 t \implies S = bc \times 120 = 0.9 \times 120 = 108 t$$

$$\beta = \frac{0.6}{1 + 4\frac{189}{108}} = 0.075$$

Donc $\delta = 1 + 0.029 + 0.075 = 1.104$

Ainsi pour les culées, $Bt_{culée} = bt \times \delta \times B_c = 0.9 \times 1.104 \times 64 = 63.59 t$

Pour I = 31.5 m
$$\alpha = \frac{0.4}{1 + 0.2 \times 31.5} = 0.055$$
; G = 3 × 31.5 = 94.5 t

Bmax =
$$4 \times 30t = 120 \text{ t} \implies S = bt \times 120 = 0.9 \times 120 = 108 \text{ t}$$

$$\beta = \frac{0.6}{1 + 4\frac{94.5}{108}} = 0.133$$

Donc
$$\delta = 1 + 0.055 + 0.133 = 1.188$$

Ainsi pour les piles,
$$Bt_{pile} = bt \times \delta \times B_c = 0.9 \times 1.21.188 \times 64 = 68 t$$

Calcul des réactions correspondantes

Comme précédemment la réaction au niveau des culées est $R_c = Bt_{culée} \times \frac{L-d}{L}$

Rc est maximum lorsque d est minimum, ce qui correspond au cas où l'essieu arrière du convoi coïncide avec l'axe de la culée.

Dans cette position
$$d = \frac{1.35}{2} \Rightarrow Rc \max = 63.59 \times \frac{\left(63 - \frac{1.35}{2}\right)}{63}$$

$$Rc \max = 63 t$$

La réaction de la pile est $R_p = Bt_{pile} \times \frac{d}{L}$

Rp est maximum lorsque d est maximum, ce qui a lieu lorsque la résultante du convoi passe par l'axe de la pile. Dans ce cas L = d.

Par conséquent,

$$R_{p\,\mathrm{max}} = Bt_{pile} = 68 t$$

III,5.3.3. Système de charges Mc120

(cf. fascicule 61 art. 9.3)

Un véhicule type du système Mc 120 comporte deux chenilles et répond aux caractéristiques suivantes :

Masse totale

110 t.

Longueur d'une chenille

6,10 m.

Largeur d'une chenille

1 m.

Distance d'axe en axe des deux chenilles 3,30 m.

Le rectangle d'impact de chaque chenille est supposé uniformément chargé.

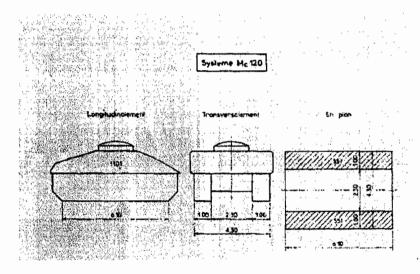


Figure 2.8 : Système de chargement Mc120

Les véhicules des systèmes Mc peuvent circuler en convoi ; dans le sens transversal un seul convoi est supposé circuler quelle que soit la largeur de la chaussée ; dans le sens longitudinal, le nombre des véhicules du convoi n'est pas limité et la distance des deux véhicules successifs est déterminée pour produire l'effet le plus défavorable. La distance libre entre leurs points de contact avec la chaussée doit être au moins égale à 30,50 m. Il en résulte que la distance entre axes des impacts sur la chaussée de deux véhicules successifs doit être au moins égale à 36,60 m pour le système Mc120.

Puisque le pont est constitué de travées continues et de grandes portées (63 m et 31.5 m), nous pourrons disposer sur la chaussée deux chenilles Mc120 en respectant les distances minimales entre points d'impact et en tenant compte des effets de la symétrie de la superstructure.

Les majorations dynamiques sont applicables aux charges militaires, le coefficient de majoration étant calculé par la même formule que celle qui est donnée pour le système B. Dans l'application de cette formule, le symbole S représente le poids des charges militaires qu'il est possible de disposer sur la même surface que celle qui est à considérer pour le système B suivant l'élément calculé.

• Pour I = 63 m
$$\alpha = \frac{0.4}{1 + 0.2 \times 63} = 0.029$$
; G = 3 × 63 = 189 t

$$S = 2 \times 110 = 220 t$$

$$\beta = \frac{0.6}{1 + 4\frac{189}{220}} = 0.135$$

Donc $\delta = 1 + 0.029 + 0.135 = 1.164$

Pour 1 = 31.5 +63 = 94.5 m
$$\alpha = \frac{0.4}{1 + 0.2 \times 94.5} = 0.02$$
; G = 3 × 94.5 = 283.5 t

$$S = 3 \times 110 = 330 t$$

$$\beta = \frac{0.6}{1 + 4\frac{94.5}{330}} = 0.28$$

Donc
$$\delta = 1 + 0.02 + 0.28 = 1.3$$

Calcul des réactions correspondantes

$$R_o = P_{Mo120} \times \frac{L - d}{L}$$

Rc est maximum lorsque d est minimum, ce qui correspond au cas où le point d'impact arrière de la deuxième chenille coïncide avec l'axe de la culée.

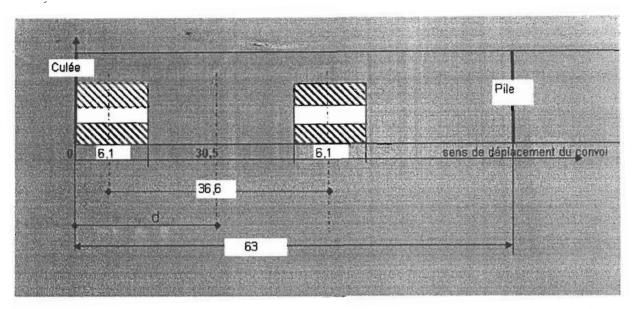


Figure 2.9 : Chargement Mc120 correspondant à une réaction maximale à la culée

Dans cette position
$$d = \frac{3.05 + 39.65}{2} = 21.35 \implies Rc \max = 1.164 \times 2 \times 110 \times \frac{(63 - 21.35)}{63}$$

$$Rc \max = 169 t$$

Pour rechercher l'effet le plus défavorable sur la pile on dispose le convoi tel qu'indiqué sur la figure suivante :

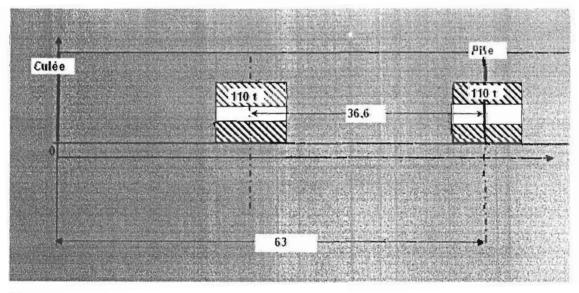


Figure 2.10 : Chargement Mc120 correspondant à une réaction maximale à la pile

La réaction maximale au niveau des piles est donc :

$$R_{p\text{max}} = 1.164 \times 110 \times \frac{63 - 36.6}{63} + 1.164 \times 110$$

 $R_{p\text{max}} = 182 \ t$

III.5.3.4. Efforts de freinage

(cf. fascicule 61 art. 6)

Les charges de chaussée des systèmes A et Bc sont susceptibles de développer des réactions de freinage, efforts s'exerçant à la surface de la chaussée, dans l'un ou l'autre sens de circulation.

Dans les cas courants la résultante de ces efforts peut être supposée centrée sur l'axe longitudinal de la chaussée.

III.5.3.4.1 Effort de freinage du à A(l)

L'effort de freinage correspondant à la charge A est égal à la fraction suivante du poids de cette dernière : $\frac{1}{20+0.0035\times S}$ expression dans laquelle S désigne en mètres carrés la surface chargée

$$f(I) = \frac{A(I)}{20 + 0.0035 \times S}$$
 Avec S est la surface chargée exprimée en m².

D'où
$$F = f \times S$$

L'effort de freinage croît, comme le poids total de la charge A, avec la surface chargée. L'attention est attirée sur ce que l'effet le plus défavorable n'est pas forcément obtenu en chargeant toute la longueur du tablier intéressant les appuis fixes.

Dans notre cas
$$F_{\text{max}} = f(157.5) \times S$$

$$f(157.5) = \frac{A(157.5)}{20 + 0.0035 \times 157.5 \times 6.31} = 0.016.$$

Donc

$$F_{\text{max}} = 0.016 \times 157.5 \times 6.31$$

 $F_{\text{max}} = 16 \ t$

III.5.3.4.1 Effort de freinage du à Bc

Chaque essieu d'un camion du système Bc peut développer un effort de freinage égal à son poids. Parmi les camions Bc que l'on peut placer sur le pont, un seul est supposé freiner. Par ailleurs les efforts de freinage développés par le système Bc ne sont pas susceptibles de

majorations pour effets dynamiques; les coefficients bc ne s'appliquent pas aux efforts de freinage développés par le système Bc.

Ainsi l'effort de freinage dû au système Bc est F = 30 t.

III.5.3.5. Charges sur trottoir

Les trottoirs et les pistes cyclables, qui leur sont assimilées, supportent des chargent différentes selon le rôle de l'élément structural considéré et selon qu'il s'agit de ponts portant à la fois une ou des chaussées et un ou des trottoirs, ou des ponts réservés exclusivement à la circulation des piétons et des cycles.

Une charge générale de 150 kg/m2 est appliquée pour la détermination des fermes maîtresses qui supportent à la fois une chaussée et un ou des trottoirs.

Une charge uniforme de 450 kg/m2 est appliquée pour la détermination des autres éléments, autres que les fermes maîtresses.

Sur les trottoirs en bordure d'une chaussée, il y a lieu de disposer dans la position la plus défavorable pour l'élément considéré une roue isolée de 6 tonnes dont la surface d'impact est un carré de 0,25 m de côté.

Les effets de cette roue ne se cumulent pas avec ceux des autres charges de chaussée ou de trottoirs. Ils sont à prendre en compte uniquement lorsqu'il s'agit d'état limite ultime.

Etant donné qu'il s'agit de dimensionner les éléments de fondation, nous considérons la surcharge de 150 kg/m2.

La largeur des trottoirs est l = 7.494 m -6.31 m = 1.18 m, ce qui donne une largeur de 0.59 m par trottoir.

Calcul des réactions correspondantes

$$I = 63 \Rightarrow R = 150 \times 1.18 \times \frac{63}{2} = 5.575 t$$

$$I = 31.5 \Rightarrow R = 150 \times 1.18 \times \frac{31.5}{2} = 2.788 t$$

$$I = 63 + 31.5 \Rightarrow R = 150 \times 1.18 \times \frac{63 + 31.5}{2} = 8.36 t$$

III.5.3.6. Effort du vent

Dans les circonstances courantes, on peut admettre, pour évaluer l'action du vent sur les ponts en service, les hypothèses simplificatrices suivantes :

Le vent souffle horizontalement dans une direction normale à l'axe longitudinal de la chaussée. Il développe sur toute surface frappée normalement une pression de 2kN /m².

Sur une surface partiellement masquée (par une poutre à treillis comportant des vides et des pleins par exemple), le vent développe la pression qui s'exerce en avant du masque, multipliée par le rapport de la surface des vides à la surface totale de ce masque (les surfaces sont évaluées en projection sur un plan normal au vent).

Pour le cas notre poutre à treillis, on considère un rapport des vides à la surface totale égale à 0.5 pour plus de sécurité.

Lorsque le vent souffle, le pont n'est supposé porter aucune charge de chaussée ou de trottoir et les effets du vent et des charges ne sont pas susceptibles de se cumuler.

Calcul des réactions horizontales correspondantes

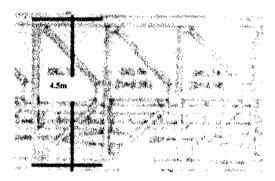


Figure 2.11: Profilés delta soumis à l'action du vent

Appuis de rive :

$$H = 0.5 \times \left(0.2 \times 4.5 \times \frac{63}{2}\right) = 14 t$$

Appuis centraux

$$H = 0.5 \times \left(0.2 \times 4.5 \times \frac{63 + 31.5}{2}\right) = 21 t$$

III.5.3.7. Action uniforme de la température

A partir de la température ambiante dont la valeur est prise égale à 25°c, on envisage les variations suivantes :

► Une partie rapidement variable de $\pm 10^{\circ}C \Rightarrow \Delta T_1 = 20^{\circ}C$

➤ Une partie lentement variable de +20°C et -10°C $\Rightarrow \Delta T_2 = 30$ °C

$$D'où \Delta T = \frac{\Delta T_1 + \Delta T_2}{2} = 25^{\circ}C$$

III.5.3.8. Choc accidentel sur pile

On considère un choc accidentel sur pile de F = 20t.

III.6. Combinaisons de charges

Charges						ELS					ELU		
	Ra	re		fréque	nic	const	ruction	132	rvice	(constru	iction	
G	1	1	Į	1	. 1	1	ŧ	1.35	1.35	1.35	1.35	1.35	ì
Eau	1	1	i	1	}	* *	抽去	1.35	1.35	1.35	7/34	71 y	l
Q	1.2	**	**	0.72	南州	0.8	0.8	1.6	p 1E	क्रा की	1.05	1.2	. ,
1	i	1.5	**	岩堆	1	1	1.5	0.8	××	* *	rk	* *	"
Y	**	**	1	pi w	**	1	**	**	1.5	W K	1.5	1.3	14 94

Tableau 2.4: Combinaison des charges

Type de ch	Appui d	e rive	Appui intermédiaire		
		Fascicule 61	MABEY	Fascicule 61	MABEY
	poids du pont	94,5	95	94,5	96
charges permanentes (t)	· · · · · · · · · · · · · · · · · · ·			47,25	49
	trottoirs	6		8	
1 1 12 1	Al + trottoirs	126	128	154	178
charges d'exploitations	Bc + trottoirs	124		152	
(t)	Bt + trottoirs	69		76	
	Mc120 + trottoirs	175		190	

Tableau 2.5: Récapitulatif des efforts verticaux

III.6.1 Effort vertical maximal sur culée

> Combinaison à l'ELU

La charge totale maximale reprise par la culée au sommet du chevêtre

est :
$$G_{\text{max cul\'ee}} = 1.35 \times 95 + 1.6 \times 175$$

$$G_{\text{max culée}} = 408 t$$

> Combinaison à l'ELS rare

Charge totale maximale reprise par la culée (au sommet du chevêtre)

$$G_{\text{max culée}} = 1 \times 95 + 1.2 \times 175$$

$$G_{\text{max culie}} = 305 t$$

> Combinaison à l'ELS fréquent

Charge totale maximale reprise par la culée (au sommet du chevêtre)

$$G_{\text{max culée}} = 1 \times 95 + 0.72 \times 175$$

$$G_{\text{max culive}} = 221 t$$

III.6.2. Effort vertical maximal sur pile

> Combinaison à l'ELU

Charge totale maximale reprise par la pile (au sommet du chevêtre)

$$G_{\text{max pile}} = 1.35 \times 96 + 1.6 \times 190$$

$$G_{\text{max pile}} = 433 t$$

Combinaison à l'ELS rare

Charge totale maximale reprise par la pile (au sommet du chevêtre)

$$G_{\text{max nile}} = 1 \times 96 + 1.2 \times 190$$

$$G_{\text{max pile}} = 324 t$$

Còmbinaison à l'ELS fréquent

Charge totale maximale reprise par la pile (au sommet du chevêtre)

$$G_{\text{max pile}} = 1 \times 96 + 0.72 \times 190$$

$$G_{\text{max pile}} = 233 t$$

DISTORY DESIGNATIONS

3ème Partie: ETUDE ET DIMENSIONNEMENT DES FONDATIONS

I. Calcul de la charge admissible par la méthode pressiométrique

L1. Généralités sur l'essai pressiométrique Ménard

L'essai pressiométrique Ménard est un essai de chargement du sol en place. Il consiste à dilater radialement au sein du sol une sonde cylindrique et à déterminer la relation entre la pression appliquée au sol et le déplacement de la paroi de la sonde.

L'essai proprement dit est précédé d'essais d'étalonnage qui ont pour but de déterminer les différentes corrections à apporter aux valeurs brutes.

Après avoir effectué toutes les corrections sur les valeurs brutes, on détermine les caractéristiques pressiométriques (pression limite, pression de fluage, et module pressiométrique) des terrains analysés.

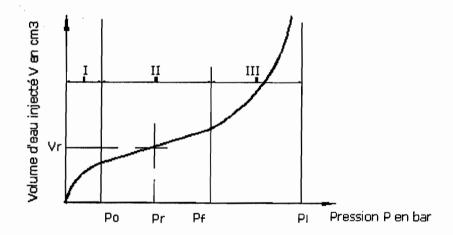
La pression limite est par définition la pression correspondant à un volume injecté Vx tel que Vx = Vs + 2V1.

Vs étant le volume de la cellule centrale déterminé à partir de l'essai d'étalonnage;

V1 = volume ordonné à l'origine de la zone pseudo élastique.

La pression de fluage peut être déduite de la courbe de fluage. Cette dernière s'obtient en portant en ordonnées pour chaque pression, la variation de volume entre t = 30s et t = 60s; c'est la courbe d'équation : $\Delta V^{60-30} = f(P)$

On peut également déduire la pression de fluage à partir de la pression limite selon l'équation suivante :


$$\mathbf{P}_{\mathbf{r}} = 1.7 \times \mathbf{P}_{\mathbf{r}} - 0.7 \,\mathbf{P}_{\mathbf{0}}.$$

La pression de fluage est la pression correspondant à la fin de la zone pseudo - élastique.

Le module pressiométrique est déduit de la courbe pressiométrique V = f (P). La courbe pressiométrique comprend typiquement trois phases :

- la phase initiale qui est la phase de mise en contact de la paroi de la sonde avec le sol.
 Elle est également appelée la phase de recompaction. A la fin de cette zone la pression mesurée Po est égale à la pression initiale horizontale au niveau du sol.
- la deuxième phase est la phase pseudo élastique.
- La troisième phase est la phase des grands déplacements ou phase dite plastique.

La deuxième phase est la phase la plus importante. Au cours de cette phase, le volume augmente progressivement en fonction de la pression exercée. Une relation linéaire entre la pression et le volume peut être trouvée. Dans cette partie quasi-linéaire de la courbe, on détermine le module de déformation pressiométrique **Em** et la pression de fluage **Pf.**

I : Phase de mise en contact de la paroi de sonde avec le sol

II: Phase pseudo-élastique

III: Phase plastique ou des grandes déformations

Figure 3.1 : Courbe pressiométrique

Le module pressiométrique est donné par la relation suivante :

$$E_{M} = 2 \times (1 + \mu) \times \left(V_{S} + \frac{V_{1} + V_{2}}{2}\right) \times \frac{P_{2} - P_{1}}{V_{2} - V_{1}} = 2 \times (1 + \mu) \times V \cdot \frac{\Delta P}{\Delta V}$$

 μ = coefficient de Poisson, pris conventionnellement égal à 0.33 ;

V = volume de la sonde au point d'inflexion de la courbe dans la zone pseudo – élastique ;

 $V = V_0 + Vr$; $V_0 = Vs$ est le volume au repos de la sonde qui, en pratique, est égal à 550 cm³ et $Vr = \frac{V_1 + V_2}{2}$ le volume d'eau injecté au point d'inflexion de la zone pseudo élastique (volume correspondant au milieu de cette zone).

 $\frac{\Delta P}{\Delta V}$: Pente de la partie linéaire de la courbe dans la zone pseudo élastique.

I.2. Contrainte de rupture et résistance de pointe

La contrainte de rupture est donnée par l'expression suivante :

$$q_u = k_p \times ple^*$$
 (Page 91 - fascicule 62-Titre V).

Dans cette formule k_p désigne le facteur de portance et ple^* la pression limite nette équivalente au pressiomètre. Cette dernière est donnée par la figure suivante :

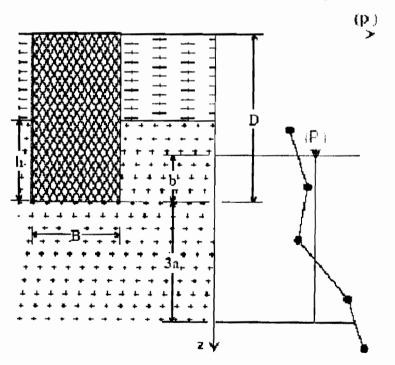


Figure 3.2 : Schéma de calcul de la pression limite nette équivalente

C'est la moyenne géométrique des pressions limites au niveau de la pointe du pieu.

$$ple* = \frac{1}{3a+b} \int_{D-b}^{D+3a} p_l^*(z) dz$$

Avec
$$a = \frac{B}{2} \operatorname{si} B > 1 \text{ m},$$

a = 0.5 m si B < 1 m

b = min {a, h} où h est la hauteur de l'élément de fondation dans la couche porteuse.

Sur ce schéma p représente la pression limite nette $pl^* = pl - p_o$

Où p_o représente la contrainte horizontale totale dans le sol au moment de l'essai pressiometrique. Lorsque sa vaieur n'est pas precisee dans le rapport geotechnique, p_o est calculée par la relation :

$$p_o = u + K_o \sigma'_{vo}$$
:

- σ_{w} est la contrainte verticale effective (ou intergranulaire) dans le soi au niveau considéré,
- u est la pression interstitielle à ce niveau,
- K_o est le coefficient de poussée des terres au repos de la formation concernée dont la valeur, à défaut d'autre indication, peut être prise égale à 0.5.

La figure ci-après donne un exemple de calcul de p0.

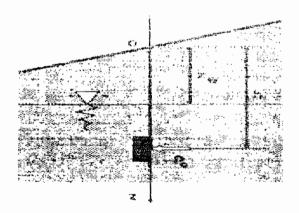


Figure 3.3 : Schéma de calcul de la contrainte horizontale totale

$$p_o = (h - z_w).\gamma_w + K_0.\left[\int_0^h \gamma(z)dz - (h - z_w).\gamma_w\right]$$

La pression limite nette équivalente p_{le}^* peut également être calculée à partir de la formule suivante :

$$p_{le}^* = \sqrt[3]{p_{l_1} \cdot p_{l_2} \cdot p_{l_3}}$$

Les trois valeurs pl_1 , pl_2 et pl_3 représentent les pressions limites pl mesurées à un mêtre au dessus de la pointe, au niveau de la pointe et à un mêtre en dessous de la pointe.

$$pl_1 = pl_2 = pl_3 = ple$$

La résistance de pointe Q_{pu} est donnée par :

Pour une couche uniforme, on a :

$$Q_{pu} = A \times q_u = A \times k_p \times ple^*$$

A désigne la section du pieu.

Lorsque le pieu est incliné d'un angle α par rapport à la verticale, cette expression devient

$$Q_{pu} = A \times q_u = A \times k_p \times ple^{\bullet} \times \cos \alpha$$

Le coefficient de portance k_p est fonction de la catégorie du sol, de la nature du pieu et n'est applicable qu'au-delà de la profondeur critique Dc, en deçà on pourra appliquer une interpolation linéaire entre 0 et Dc. Ses valeurs, données par le fascicule 62-titre V, sont fournies au tableau 3.1.

Nature des terrains		Eléments mis en œuvre sans refoulement du sol	Eléments mis en œuvre avec refoulement du so		
	A	1,1	1,4		
Argiles, Limons	В	1,2	1,5		
	C	1,3	1.6		
	A	1,0	4.2		
Sables, Graves	В	1.1	3.7		
	C	1.2	3,2		
	A	1,1	1,6		
Craies	В	1,4	2.2		
	С	1.8	2.6		
Marnes; marno-ca	caires	1,8	2.6		

Tableau 3.1 : Valeurs du coefficient de portance $k_{_{p}}$

CLASSE DE SOL		DESCRIPTION	PRESSIOMETRE P ₁ (MPa)
	A	Argiles et limons mous	< û,7
Argiles, Limons	В	Argiles et limons fermes	1.2 2.0
	C	Argiles très fermes à dures	> 2.5
	A	Läches	< 0,5
Sables, Graves	В	Moyennement compacts	1.0 2.0
	С	Compacts	> 2.5
	Λ	Modes	× 0,7
Craies	В	Alterées	1.0 2.5
	C	Compactes	> 3.0
Marnes; marno-calcaires	Α	Tendres	1.5 (4.0)
	В	Compacts	> 4.5

Tableau 3.2: Classification des sols

I.3. Terme de frottement latéral

Les valeurs du frottement latéral unitaire qs ont été établies empiriquement à partir d'essais de chargement de pieux. La valeur du frottement latéral qs, à une profondeur z, est donnée par les courbes du jeu d'abaques ci-dessous en fonction de la valeur de la pression limite nette $p_l^*(z)$. La courbe à utiliser est fonction de la nature du sol et de l'élément de fondation considéré.

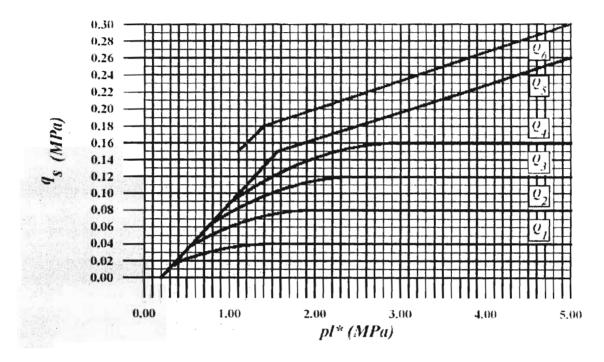


Figure 3.4 : Valeurs du frottement latéral unitaire

		Argiles, limons		Sables, graves			Craies			Marnes	
	Λ	В	C	A	В	(Λ	В	C	Λ	В
Foré simple	Qı	$Q_1,Q_2^{(l)}$	$Q_2Q_3^{(0)}$				Q_I	Q_3	$Q_{F}Q_{5}^{(l)}$	Q_1	$Q_EQ_S^{(l)}$
Foré boue	Q_1	Q_{I_2}	Q ₂ ⁽¹⁾	Q_I	$Q_2Q_1^{(2)}$	$Q_{2}Q_{2}^{(2)}$	Q_I	Q_1	$Q_FQ_5^{(l)}$	Q_1	$Q_E Q_S^{(b)}$
Foré tubé (tube récupéré)	Q_I	Qi	Q2 ⁽³⁾	Q_I	$Q_2,Q_1^{(2)}$	$Q_3Q_2^{(2)}$	Q_I	Q_2	$Q_kQ_l^{(0)}$	Qı	Q_{I}
Foré tubé (tube perdu)		Q_I			Q_I	Q ₂		(1)		Q_2	Q_3
Puits (5)	Q_I	Q2	Qı				Q_I	Q_2	Q_3	Q,	Ų
Métal battu fermé	Qı	(22		Q2	Q_3		(1)		Q_3	Ų,
Battu préfabriqué béton	Qı	<u>(</u>	Q_2		Q;			(3)		Q3	Q ₄
Battu moulé	Q_{I}	(22		Q2	Q_3	Q_I	Q_2	Q_3	Q_3	Q,
Battu enrobé	Q_I	Q_2			Q_{J}	Q,		(4)		Q_3	Q,
Injecté basse pression	Q_I	(22		Q_3		Q_2	Q_3	Q,		Q_{δ}
Injecté haute pression (6)		Qı	Qs		Qs	Q ₀		Qs	Q ₆		Q_b

Tableau 3.2 : Détermination des abaques

- (1) Réalésage et rainurage en fin de forage.
- (2) Pieux de grandes longueurs (supérieure à 30m).
- (3) Forage à sec, tube non louvoyé.
- (4) Dans le cas des craies, le frottement latéral peut être très faible pour certains types de pieux. Il convient d'effectuer une étude spécifique dans chaque cus.
- (5) Sans tubage ni virole foncé perdu (parois rugueuses)
- (6) Injection sélective et répétitive à faible débit.

Le terme de frottement latéral est donné par la formule :

$$Q_{su} = P \sum q_{si} \times e_i = P \sum q_{si} \times l_i \cos \alpha$$

Où l_i désigne la longueur du pieu sur la tranche de sol considérée, e_i son épaisseur, q_{si} le terme de frottement latéral unitaire, P le périmètre de la section droite du pieu et α l'inclinaison du pieu par rapport à la verticale.

Le fascicule 62, titre V indique que :

❖ La charge de fluage en compression Qc d'un élément de fondation profonde mis en œuvre sans refoulement du sol est évaluée, à partir de *Qpu* et *Qsu*, par la formule :

$$Q_c = 0.5 \times Q_{pu} + 0.7 \times Q_{su}$$
 (Fascicule 62, page 85)

L'expression de la charge limite en compression Qu d'un élément de fondation profonde est la suivante :

$$Qu = Qpu + Qsu$$

❖ La charge admissible nette à l'ELS est donnée par le tableau suivant en fonction de la nature des combinaisons considérées :

> ELU

	Qmax
	Qu
Combinaisons fondamentales	1,40

> ELS

	Qmax
	Qc
Combinaisons rares	1,10
	Qc
Combinaisons quasi permanentes	1,40

II. Fondation des piles

II.1. Résultats des sondages

Les sondages réalisés au niveau de l'emplacement futur des piles ont révélé ce qui suit :

 Au niveau de la pile située du côté de Tambacounda, une couche de sables moyens entre 25.00 m et 40.00 m, surmontée d'une couche de limons sableux de 14 m d'épaisseur. Au dessus des limons sableux, on retrouve une couche de limons feuilletés de 8.00 m d'épaisseur surmontés par un remblai latéritique récemment mis en place pour les besoins des travaux. Au niveau de la pile située du côté de Ziguinchor, une couche de sables moyens entre 16.00 m et 40.00 m, surmontée par une couche de limons sableux d'épaisseur 4.00 m au dessus de laquelle on trouve les limons feuilletés de 9.00 m d'épaisseur.

II.2. Pile côté Tambacounda

II.2.1. Calcul de la charge de la charge admissible

L'exploitation de l'essai pressiométrique a permis de déterminer la pression limite qui intervient dans le calcul de la charge admissible et le module pressiométrique qui permet de calculer les tassements. Les résultats sont consignés dans le tableau suivant :

Nature des sols	Pression limite	Module pressiométrique
	(Pl en bars)	(EM en bars)
limons feuilletés	6.2 – 16.3	245 - 362
limons sableux	5.6 – 15.9	96 - 254
sables moyens	6.5 – 21.6	32 - 238

Tableau 3.3: Pression limite et module œdometrique en fonction des types de sol

Calcul de y à partir des essais de laboratoire

- couche de 11m à 16m :

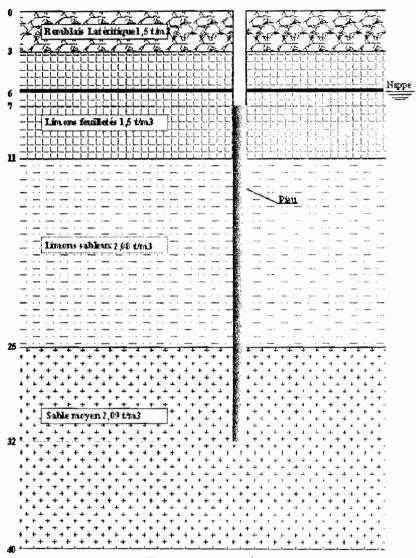
$$w=14.7%$$

$$\gamma_d = 1.828 \text{ T/m}^3$$

On applique la formule $\gamma = \gamma_d (1+w)$

AN:
$$\gamma = 1.828(1 + 0.147) = 2.097 \text{ T/m}^3$$

- couche de 16m à 25m


w=30.7%

$$\gamma_d = 1.592 \text{ T/m}^3$$

 $\gamma = 1.592(1 + 0.307) = 2.081 \text{ T/m}^3$

- couche de 25m à 40m

w=17.2%

$$\gamma_d = 1.785 \text{ T/m}^3$$

 $\lambda = 1.785(1+0.172) = 2.092 \text{ T/m}^3$

Fondation Pieu côté Tamba

Ne disposant pas de données pour la couche de limons feuilletés, on suppose un $\gamma=1.5$ T/m3 car pour les argiles et les limons 1.2 T/m3 $\leq \gamma \leq 1.8$ T/m3

Pour le remblai latéritique, prenons $\gamma = 1.5$ T/m3 pour nous mettre dans un cas défavorable qui est plus sécuritaire pour le dimensionnement.

• Calcul de la résistance de pointe Qpu

Dans ce qui suit nous calculerons la valeur de la pression horizontale en guise de comparaison avec celle donnée par le rapport géotechnique. Lorsque l'écart entre ces deux valeurs est faible, le dimensionnement se fera par rapport aux résultats du rapport.

Nous considérerons que les 1.5 m au dessus de la nappe sont saturés par remontée capillaire. Le pieu repose à une profondeur de 32 m.

•
$$\dot{a} z = 32$$
 $u = [32 - (6 - 1.5)] \times \gamma_w = 27.5T/m^2$
 $\sigma'_{vo} = \sigma_{vo} - u$
 $\sigma_{vo} = 1.5 \times 11 + 2.081 \times (25 - 11) + 2.09(32 - 25) = 60.264 \text{ T/m}^2$
 $\sigma'_{vo} = 60.264 - 27.5 = 32.76T/m^2$
 $\rho_0 = 27.5 + 0.5 \times 32.76 = 45.38T/m^2$

Les essais pressiométriques donnent, à z = 32.30m, pl = 90 T/m² comme pression limite et $\sigma_{hs} = 0.422$ MPa comme contrainte horizontale. Cette valeur étant peu différente de celle trouvée par le calcul manuel alors $ple^* = 90 - 42.2 = 47.8$ T ≈ 48 T/m²

Déterminons le facteur de portance k_p

Puisque pl = 0.9MPa alors le sol d'ancrage correspond à la catégorie B du classement pour les sables et graves (tableau 2), donc $k_n = 1.1$. Par conséquent :

$$Q_{pu} = A \times k_p \times ple^* \times \cos \alpha = \frac{\pi D^2}{4} \times k_p \times ple^* \times \cos \alpha = \frac{\pi \times 1^2}{4} \times 1.1 * 48 \times \cos 7^{\circ}$$

$$\boxed{Q_{pu} = 41 \text{ T}}$$

Calcul du terme de frottement latéral Osu

Le terme de frottement latéral est donné par la formule :

$$Q_{su} = P \sum q_{si} \times e_i = P \sum q_{si} \times l_i \cos \alpha$$

Où li désigne la longueur du pieu sur la tranche de sol considérée, ei son épaisseur, q_{si} le terme de frottement latéral unitaire, P le périmètre de la section droite du pieu et α l'inclinaison du pieu par rapport à l'horizontale.

- couche de 3 à 11m : limons feuilletés

La pression limite étant comprise entre 6.2 bars et 16.3 bars, le sol est de classe B.

- couche de 11à 25m : limons sableux

La pression limite est comprise entre 5.6 bars et 15.9 bars, donc le sol est de classe B.

- couche de 25 à 40m : sables moyens

Puisque la pression limite est comprise entre 6.5 bars et 21.6 bars, le sol est de classe B.

Le calcul de notre fondation se fera pour des *pieux forés tubés de 25 m de longueur*, ce qui correspond à la courbe Q1 du graphique donnant q_{si} en fonction de pl^* (figure3). Le frottement latéral sera négligé sur 1.5 m de la partie supérieure des pieux pour tenir compte du remaniement du sol lié aux opérations de mise en œuvre.

L'analyse des frottements unitaires moyens nous a conduit à considérer une couche unique avec une pression limite équivalente :

$$ple^* = 0.92MPa$$

La lecture donne $q_s = 0.0312MPa = 3.12T/m^2$

La longueur *li* du pieu sur la tranche de sol considérée est li = 25 - 1.5 = 23.5 m

Par conséquent l'épaisseur e, de la couche, en tenant compte de l'inclinaison des pieux de

$$\alpha = 7^{\circ}$$
, est: $e_i = l_i \times \cos \alpha = 23.5 \times \cos 7^{\circ} = 23.3m$

D'où
$$Q_{su} = P \sum_{i} q_{si} \times e_{i} = \pi D \times q_{si} \times l_{i} \cos \alpha = \pi \times 1 \times 3.12 \times 23.3$$

$$Q_{su} = 228T$$

Calcul de la charge admissible nette

La valeur de la charge admissible est consignée dans le tableau suivant en fonction de l'état limite considéré et de la nature des combinaisons :

	Pile côté Tambacounda	
résistance de pointe Qpu (t)	41	1
terme de frottement latéral Qsu (t)	228	
charge de fluage en compression Qc (t)	180,1	
charge limite en compression Qu (t)	269	
	ELU	
Combinaisons fondamentales	Qadm nette (t)	192
	ELS	
Combinaisons rares	Qadm nette (t)	164
Combinaisons quasi permanentes	Qadm nette (t)	129

Tableau 3.4 : Charge admissible nette aux états limites pour la pile coté Tambacounda

II.2.2. Détermination du nombre de pieux

Le nombre de pieux n requis s'exprime par :

 $\mathbf{n} = \frac{Q}{Q_{adm}}$ où Q désigne la charge arrivant au sommet des pieux. Cette charge est égale à la

charge maximale supportée par la pile à laquelle on ajoute le poids du chevêtre, des poteaux de pile et de la semelle de répartition.

- Poids propre du chevêtre : $2.5 \times (11.96 \times 3 \times 1.5) = 53.82 t$
- Poids propre des poteaux : $2 \times \left[2.5 \times \left(\pi \times \frac{2.5^2}{4} \times 15.60 \right) \right] = 382.88 t$
- Poids propre de la semelle de répartition : $2.5 \times (8 \times 17 \times 1.4) = 476 t$
- Le total est : $Gpp = 53.82 + 382.88 + 476 = 912.7 \approx 913 t$

La descente de charges avait donné, en fonction de la nature des combinaisons, la charge maximale reprise par les piles. Ainsi on a

Combinaison à l'ELU

La charge totale maximale arrivant au sommet des pieux est :

$$Q = G_{\text{max pile}} + 1.35 \times Gpp = 433 + 1.35 \times 913 = 1666 t$$

Combinaison à l'ELS rare

La charge totale maximale arrivant au sommet des pieux est :

$$Q = G_{\text{max pile}} + Gpp = 324 + 913 = 1237 t$$

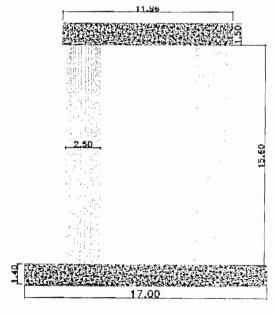


Figure 3.5 : Coupe transversale sur pile

> Combinaison à l'ELS fréquent

La charge totale maximale arrivant au sommet des pieux est

$$Q = G_{\text{max pile}} + Gpp = 233 + 913 = 1146t$$

Le nombre de pieux nécessaires est consigné dans le tableau suivant en fonction de l'é.at limite considéré et de la nature des combinaisons :

Pile côté Tambacounda	
PAU	
Combinaisons fondamentales	
Qadm nette (t)	192
Charge totale maximale supportée Q	1666
Nombre de pieux	9
ELS	
Combinaisons rares	
Qadm nette (t)	164
Charge totale maximale supportée Q	1237
Nombre de pieux	8
Combinaisons quasi permanentes	
Qadm nette (t)	129
Charge totale maximale supportée Q	1146
Nombre de pieux	9

Tableau 3.5 : Combinaison des charges obtenues pour la pile coté Tambacounda

Par conséquent le nombre de pieux requis, en première approximation, est n = 9 pieux.

L'effet de groupe sera étudié ultérieurement afin de déterminer la valeur définitive à adopter.

II.3. Pile côté Ziguinchor

II.3.1. Calcul de la charge de la charge admissible

L'exploitation de l'essai pressiométrique a permis de déterminer la pression limite qui intervient dans le calcul de la charge admissible et le module pressiométrique qui permet de calculer les tassements. Les résultats sont consignés dans le tableau suivant :

Nature des sols	Pression limite	Module pressiométrique
	(Pl en bars)	(EM en bars)
limons feuilletés	5,5 - 16,0	151 - 256
limons sableux	8,9 - 11,2	150 - 275
sables moyens	6,5 - 20,8	32 - 361

Tableau 3.6 : Pression limite et module œdometrique en fonction des types de sol

Calcul de y à partir des essais de laboratoire

- couche de 12m à 16m:

$$w=13.6\%$$

 $\gamma_d=1.92 \text{ T/m}3$

On a la formule $\gamma = \gamma_d(1+w)$

AN:
$$\gamma = 1.92 (1 + 0.136) = 2.18 \text{ T/m}^3$$

- couche de 16m à 25m

w=17%

$$\gamma_d = 1.489 \text{ T/m}^3$$

 $\gamma = 1.489(1+0.17)= 1.74 \text{T/m}^3$

- couche de 25m à 40m

w=14.6%

$$\gamma_d = 1.521 \text{ T/m}^3$$

 $\gamma = 1.521(1+0.146)=1.74 \text{ T/m}^3$

Ne disposant pas de données pour la couche de limons feuilletés, on suppose un $\gamma = 1.5 \text{ T/m}3$ car pour les argiles et les limons $1.2 \text{ T/m}3 \le \gamma \le 1.8 \text{ T/m}3$

Pour le remblai latéritique, prenons $\gamma = 1.5$ T/m3 pour nous mettre dans un cas défavorable qui est plus sécuritaire pour le dimensionnement.

• Calcul de la résistance de pointe Qpu

Dans le calcul, nous considérerons que les 1.5m au dessus de la nappe sont saturés par remontée capillaire. Le pieu repose à une profondeur de 32 m.

a
$$\dot{a} z = 32$$
 $u = [32 - (6 - 1.5)] \times \gamma_w = 27.5T/m^2$
 $\sigma'_{yo} = \sigma_{yo} - u$

$$\sigma_{vo} = 1.5 \times 12 + 2.18(16 - 12) + 1.74(32 - 16) = 54.56 \text{ T/m}^2$$

$$\sigma'_{vo} = 54.56 - 27.5 = 27.06T/m^2$$

$$p_o = 27.5 + 0.5 \times 27.06 = 41.03T/m^2$$

Les essais pressiométriques donnent, à z = 32.30m, $pl = 90 \text{ T/m}^2$ comme pression limite et $\sigma_{hs} = 0.422 \text{ MPa}$ comme contrainte horizontale.

Ainsi
$$ple^* = 90 - 42.2 = 47.8 \text{ T} \approx 48 \text{ T/m}^2$$

Déterminons le facteur de portance k_n

Puisque pl = 0.9MPa alors le sol d'ancrage correspond à la catégorie B du classement pour les sables et graves, donc $k_n = 1.1$

Par

conséquent :

$$Q_{pu} = A \times k_p \times ple^* \times \cos \alpha = \frac{\pi D^2}{4} \times k_p \times ple^* \times \cos \alpha = \frac{\pi \times l^2}{4} \times 1.1 * 48 \times \cos 7^\circ$$

$$\boxed{Q_{pu} = 41 \text{ T}}$$

Calcul du terme de frottement latéral Qsu

$$Q_{su} = P \sum_{i} q_{si} \times e_{i} = P \sum_{i} q_{si} \times l_{i} \cos \alpha$$

- couche de 3 à 12m : limons feuilletés

La pression limite étant comprise entre 5.5 bars et 16 bars, le sol est de classe B.

- couche de 12 à 16m : limons sableux

La pression limite est comprise entre 8.9 bars et 11.2 bars, donc le sol est de classe B.

- couche de 16 à 40m : sables moyens

Puisque la pression limite est comprise entre 6.5 bars et 20.8 bars, le sol est de classe B. Le calcul de notre fondation se fera pour des pieux forés tubés de 25 m de longueur, ce qui correspond à la courbe Q1 du graphique donnant q_{si} en fonction de pl^* . Le frottement latéral

sera négligé sur 1.5 m de la partie supérieure des pieux pour tenir compte du remaniement du sol lié aux opérations de mise en œuvre.

L'analyse des frottements unitaires moyens nous a conduit à considérer une couche unique avec $q_c = 0.03 MPa = 3.T/m^2$

La longueur *li* du pieu sur la tranche de sol considérée est li = 25 - 1.5 = 23.5 m

Par conséquent l'épaisseur e_i de la couche, en tenant compte de l'inclinaison des pieux de $\alpha=7^\circ$, est : $e_i=l_i\times\cos\alpha=23.5\times\cos7^\circ=23.3m$ Ainsi $Q_{su}=P\sum q_{si}\times e_i=\pi D\times q_{si}\times l_i\cos\alpha=\pi\times1\times3\times23.3$

$$Q_{su} = 219 T$$

• Calcul de la charge admissible nette

La valeur de la charge admissible est consignée dans le tableau suivant en fonction de l'état limite considéré et de la nature des combinaisons :

	Pile côté Ziguinchor	
résistance de pointe Qpu (t)	41	
terme de frottement latéral Qsu (t)	219	
charge de fluage en compression Qc (t)	173,8	
charge limite en compression Qu (t)	260	
	ELU	
Combinaisons fondamentales	Qadm nette (t)	186
	ELS	
Combinaisons rares	Qadm nette (t)	158
Combinaisons quasi permanentes	Qadm nette (t)	124

Tableau 3.7: Charge admissible nette aux états limites pour la pile coté Ziguinchor

II.3.2. <u>Détermination du nombre de pieux</u>

La charge totale maximale arrivant au sommet des pieux étant la même pour les piles, on a alors le tableau suivant :

Pile côté Ziguinchor	
ELÜ	
Combinaisons fondamentales	
Qadm nette (t)	186
Charge totale maximale supportée Q	1666
Nombre de pieux	9
ELS	
Combinaisons rares	
Qadm nette (t)	158
Charge totale maximale supportée Q	1237
Nombre de pieux	8
Combinaisons quasi permanentes	
Qadm nette (t)	124
Charge totale maximale supportée Q	1146
Nombre de pieux	10

Tableau 3.8 : Combinaison des charges obtenues pour la pile coté Ziguinchor

Par conséquent le nombre de pieux requis, en première approximation, est n=10 pieux. L'effet de groupe sera étudié et permettra de déterminer la valeur définitive à adopter.

III. Fondation des culées

III.1. Résultats des sondages

Les sondages réalisés au niveau de l'emplacement futur des culées ont révélé ce qui suit :

- Au niveau de la culée située du côté de Tambacounda, une couche de limons sableux entre 20.00 m et 45.00 m, surmontée par une couche de limons feuilletés de 15 m d'épaisseur au dessus de laquelle on trouve de la grave limoneuse entre 0 et 5.00 m
- Au niveau de la culée située du côté de Ziguinchor, une couche de limons sableux entre 20.00 m et 40.00 m, surmontée d'une couche de sables moyens de 5 m d'épaisseur. Au dessus des sables moyens, on retrouve une couche de limons feuilletés surmontée par 1.5 m de remblai latéritique récemment mis en place.

62

III.2. Culée côté Tambacounda

III.2.1. Calcul de la charge de la charge admissible

L'exploitation de l'essai pressiométrique a permis de déterminer la pression limite qui intervient dans le calcul de la charge admissible et le module pressiométrique qui permet de calculer les tassements. Les résultats sont consignés dans le tableau suivant :

Nature des sols	Pression limite	Module pressiométrique
	(Pl en bars)	(EM en bars)
Grave limoneuse	7.1 – 12.6	59 - 83
limons feuilletés	4.4 – 14.3	81 - 234
limons sableux	7.1 – 30.0	32 - 190

Tableau 3.9: Pression limite et module œdometrique en fonction des types de sol

D'après les calculs précédents, on peut, à défaut de résultats des essais de laboratoire, supposer une valeur constante de $\gamma = 1.7 T/m^3$.

• Calcul de la résistance de pointe Opu

Les calculs sont effectués pour un pieu reposant à 39 m de profondeur, c'est-à-dire dans les limons sableux. A cette profondeur :

 $u = [39 - (6 - 1.5)] \times \gamma_w = 34.5T/m^2$ en supposant une saturation de 1.5 m au dessus de la nappe par remontée capillaire.

$$\sigma'_{vo} = \sigma_{vo} - u$$

$$\sigma_{vo} = 1.7 \times 39 = 66.3 T$$

$$\sigma'_{vo} = 66.3 - 34.5 = 31.8 T/m^{2}$$

$$p_{o} = 34.5 + 0.5 \times 31.8 = 50.4 T/m^{2}$$

Les résultats des essais pressiométriques indiquent que pour la couche de limons sableux (allant de 20 m à 45 m) $71T/m^2 \le pl \le 300T/m^2$.

• à z = 20, $u = [20 - (6 - 1.5)] \times \gamma_w = 15,5T/m^2$ en supposant une saturation de 1.50 m au dessus de la nappe par montée capillaire.

$$\sigma'_{vo} = \sigma_{vo} - u$$

$$\sigma_{vo} = 1.7 \times 20 = 34T$$

$$\sigma'_{vo} = 34 - 15.5 = 18,5T/m^2$$

$$p_{x} = 15.5 + 0.5 \times 18,5 = 24,75T/m^2$$

• à z = 45, $u = [45 - (6 - 1.5)] \times \gamma_w = 40.5T/m^2$ en supposant une saturation de 1.50 m au dessus de la nappe par montée capillaire.

$$\sigma'_{vo} = \sigma_{vo} - u$$

$$\sigma_{vo} = 1.7 \times 45 = 76.5T$$

$$\sigma'_{vo} = 76.5 - 40.5 = 36T / m^2$$

$$p = 40.5 + 0.5 \times 36 = 58.5T / m^2$$

Donc entre 20 m et 45 m $24.75T/m^2 \le p_o \le 58.5T/m^2 \Longrightarrow -58.5T/m^2 \le p_o \le -24.75T/m^2$ Puisque entre 20 m et 45 m $-71T/m^2 \le pl \le 300T/m^2$ alors

$$(71-58.5)T/m^2 \le pl - p_0 \le (300-24.75)T/m^2 \Leftrightarrow 12.5T/m^2 \le pl^* \le 275.25T/m^2$$

A z = 39, les essais pressiométriques indiquent que $pI'' = 201.4T/m^2$.

Le calcul qui précède avait pour but de vérifier la fiabilité de la valeur donnée par les rapports géotechniques d'autant plus qu'une confusion a été faite entre la pression limite et la pression limite nette dans la détermination de la charge admissible pour les piles. Par ailleurs les résultats des rapports n'ont pas été très indicatifs en ce qui concerne les sondages pressiométriques à l'emplacement futur des culées.

Déterminons le facteur de portance k_p

Pour les limons sableux $0.7MPa \le pl \le 3MPa$, ce qui correspond à la catégorie B du classement pour les limons sableux, donc $k_p = 1.1$. Par conséquent :

$$Q_{pu} = A \times k_p \times ple^* \times \cos \alpha = \frac{\pi D^2}{4} \times k_p \times ple^* \times \cos 7^\circ = \frac{\pi \times 1^2}{4} \times 1.1 \times 201.4 \times \cos 7^\circ$$

$$\boxed{Q_{pu} = 173 \text{ T}}$$

• Calcul du terme de frottement latéral Osu

$$Q_{su} = P \sum_{i} q_{si} \times e_{i} = P \sum_{i} q_{si} \times I_{i} \cos \alpha$$

- couche de 0 à 5m : grave limoneuse

La pression limite étant comprise entre 7.1 bars et 12.6 bars, le sol est de classe B.

- couche de 5 à 20m : limons feuilletés

La pression limite est comprise entre 4.4 bars et 14.3 bars, donc le sol est de classe B.

- couche de 20 à 45m : limons sableux

Puisque la pression limite est comprise entre 7.1 bars et 30 bars, le sol est de classe B.

Le calcul de notre fondation se fera pour des *pieux forés tubés*. Eu égard à la classification des sols, à la longueur des pieux et à leur mode d'exécution, la lecture se fera sur la courbe Q1 du graphique donnant q_n en fonction de pl^* .

Les rapports géotechniques, après analyse des frottements unitaires, ont considéré, pour le calcul du frottement latéral, deux couches dont les caractéristiques sont les suivantes :

- \triangleright lère couche : qsi = 2.1T/m² ; li = 17.55 m ; ei = li \times cos α =17.4 m
- \geq 2ème couche : qsi = 8.0T/m² ; li = 05.95 m ; ei = li \times cos α =5.9 m

Pour tenir compte d'un éventuel remaniement du sol dû aux opérations de mise en œuvre, le terme de frottement latéral a été neutralisé sur une hauteur de 1.5 m. c'est ce qui justifie la longueur du pieu dans la première couche li = 17.55 m au lieu de 19.05.

Par conséquent
$$Q_{su} = P \sum_{i} q_{si} \times e_{i} = \pi \times 1(2.1 \times 17.4 + 8 \times 5.9)$$

$$Q_{su} = 263 T$$

• Calcul de la charge admissible nette

La valeur de la charge admissible est consignée dans le tableau suivant en fonction de l'état limite considéré et de la nature des combinaisons :

	Culée côté Tambacounda	-
résistance de pointe Qpu (t)	173	
terme de frottement latéral Qsu (t)	263	
charge de fluage en compression Qc (t)	270,6	
charge limite en compression Qu (t)	436	
	ELU	
Combinaisons fondamentales	Qadm nette (t)	311
	ELS	
Combinaisons rares	Qadm nette (t)	246
Combinaisons quasi permanentes	Qadm nette (t)	193

Tableau 3.10 : Charge admissible nette aux états limites pour la culée coté Tamba

III.2.2. Calcul du nombre de pieux

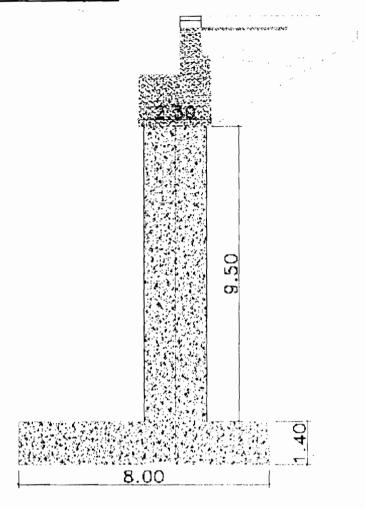


Figure 3.6 : Coupe longitudinale sur culée côté Tambacounda

- Poids propre du chevêtre : $2.5 \times (11 \times 2.3 \times 1.5) = 94.875 t$
- Poids propre des poteaux : $4 \times [2.5 \times (2 \times 1 \times 9.5)] = 190 t$
- Poids propre de la semelle de répartition : $2.5 \times (8 \times 11 \times 1.4) = 308 t$
- Mur en retour: $2.5 \times 0.3 \left[0.75 \times 4.97 + \left(\frac{3.20 0.75}{2} \right) \times 4.97 0.95 \times 0.3 \right] = 7.15 t$
- Mur garde grève : $2.5 \times 1.7 \times 0.3 \times 11 = 14 t$
- Dalle de transition : $(0.7 \times 2 + 0.3 \times 2.5) \times 8.3 \times \frac{6}{2} = 53.54 t$

Pour plus de sécurité on a choisi le poids propre des terres supportées par la dalle égale à 2 t /m3.

• Le total est : Gpp = 94.875 + 190 + 308 + 7.15 + 14 + 70.25 = 667 t

La descente de charges avait donné, en fonction de la nature des combinaisons, la charge maximale reprise par les culées. Ainsi on a

Combinaison à l'ELU

La charge totale maximale arrivant au sommet des pieux est :

$$Q = G_{\text{max culce}} + 1.35 \times Gpp = 408 + 1.35 \times 667 = 1308 t$$

Combinaison à l'ELS rare

La charge totale maximale arrivant au sommet des pieux est :

$$Q = G_{\text{max culée}} + Gpp = 305 + 684 = 972 t$$

Combinaison à l'ELS fréquent

La charge totale maximale arrivant au sommet des pieux est :

$$Q = G_{\text{max pule}} + Gpp = 221 + 667 = 888t$$

Le nombre de pieux nécessaires est consigné dans le tableau suivant en fonction de l'état limite considéré et de la nature des combinaisons :

Culée côté Tambacounda ELU	
Combinaisons fondamentales	
Qadm nette (t)	311
Charge totale maximale supportée Q	1308
Nombre de pieux	5
ELS .	
Combinaisons rares	
Qadm nette (t)	246
Charge totale maximale supportée Q	972
Nombre de pieux	4
Combinaisons quasi permanentes	
Qadm nette (t)	193
Charge totale maximale supportée Q	888
Nombre de pieux	5

Tableau 3.11 : Combinaison des charges obtenues pour la culée coté Tambacounda

Le tableau montre que le nombre de pieux nécessaires, en première approximation, est

L'effet de groupe sera étudié ultérieurement afin de déterminer la valeur définitive à adopter.

III.3. Culée côté Ziguinchor

III.3.1. Calcul de la charge de la charge admissible

L'exploitation de l'essai pressiométrique a permis de déterminer la pression limite qui intervient dans le calcul de la charge admissible et le module pressiométrique qui permet de calculer les tassements. Les résultats sont consignés dans le tableau suivant :

Nature des sols	Pression limite	Module pressiométrique
	(Pl en bars)	(EM en bars)
limons feuilletés	4.3 – 12.6	11 - 102
sables moyens	12.5 – 30.8	108 - 284
limons sableux	6.6 – 10.7	66 - 179

Tableau 3.12 : Pression limite et module œdometrique en fonction des types de sol

On réitère la même supposition que celle précédente en maintenant une valeur constante de $\gamma = 1.7 T/m^3$.

Calcul de la résistance de pointe ()pu

Les calculs sont effectués pour un pieu de longueur 25 m, reposant à 30 m de profondeur, dans les limons sableux. A cette profondeur :

$$u = [30 - (6 - 1.5)] \times \gamma_w = 25,5T/m^2$$
 en supposant une saturation de 1.5 m au dessus de la nappe par remontée capillaire.

$$\sigma'_{vo} = \sigma_{vo} - u$$

$$\sigma_{vo} = 1.7 \times 30 = 51T$$

$$\sigma'_{vo} = 51 - 25.5 = 25.5T/m^{2}$$

$$p_{o} = 25.5 + 0.5 \times 25.5 = 38.25T/m^{2}$$

Les résultats des essais pressiométriques indiquent que pour la couche de limons sableux (allant de 20 m à 40 m) $66T/m^2 \le pl \le 107T/m^2$.

à z = 20,
$$u = [20 - (6 - 1.5)] \times \gamma_w = 15.5T/m^2$$

 $\sigma'_{vo} = \sigma_{vo} - u$

$$\sigma_{vo} = 1.7 \times 20 = 34 T$$

$$\sigma'_{100} = 34 - 15.5 = 18,57^{\circ}/m^2$$

$$p_a = 15.5 + 0.5 \times 18,5 = 24,75T/m^2$$

•
$$\dot{a} z = 40, \ u = [40 - (6 - 1.5)] \times \gamma_w = 35.5 T / m^2$$

$$\sigma'_{yy} = \sigma_{yy} - u$$

$$\sigma_{yy} = 1.7 \times 40 = 68T$$

$$\sigma'_{yz} = 68 - 35.5 = 32.5T/m^2$$

$$p_{1} = 35.5 + 0.5 \times 32,5 = 51,75T/m^{2}$$

Donc entre 20 m et 40 m:

$$24.75T/m^2 \le p_0 \le 51.75T/m^2 \Longrightarrow -51.75T/m^2 \le -p_0 \le -24.75T/m^2$$

Puisque entre 20 m et 40 m $66T/m^2 \le pl \le 107T/m^2$ alors

$$(66-51.75)T/m^2 \le pl-p_0 \le (107-24.75)T/m^2 \iff 14,25T/m^2 \le pl^* \le 82,25T/m^2$$

A z = 30, les essais pressiométriques indiquent que $pl^2 = 79.2T/m^2$

Déterminous le facteur de portance k_n

Pour les limons sableux $0.66MPa \le pI \le 1.07MPa$, ce qui correspond à la catégorie B du classement pour les limons sableux, donc $k_n = 1.1$. Par conséquent :

$$Q_{pu} = A \times k_p \times ple^* \times \cos \alpha = \frac{\pi D^2}{4} \times k_p \times ple^* \times \cos 7^\circ = \frac{\pi \times 1^\circ}{4} \times 1.1 * 79.2 \cdot \cos 7^\circ$$

$$\boxed{Q_{pu} = 68 \text{ T}}$$

• Calcul du terme de frottement latéral ()su

$$Q_{su} = P \sum_{i} q_{si} \times e_{i} = P \sum_{i} q_{si} \times l_{i} \cos \alpha$$

- couche de 0 à 15m : limons feui/letes

La pression limite étant comprise entre 4.3 bars et 12.6 bars, le sol est de classe A

- couche de 15 à 20m : sables moyens

La pression limite est comprise entre 12.5 bar et 30.8 bars, donc le sol est de classe C

- couche de 20 à 40m : limons sableux

Puisque la pression limite est comprise entre 6.6 bars et 10.7 bars, le sol est de classe B.

Les rapports géotechniques, après analyse des frottements unitaires moyens, ont considéré pour le calcul du frottement latéral trois couches dont les caracteristiques sont les suivantes

- ≥ 1ére couche (limons feuilletés) : qsi = 3.3T/m²; li = 8.5 m; ei = li × cosα=8.44 m
- > 2eme couche (sables moyens) : qsi = 3.9T/m² ; li = 5.0 m ; ei = li × cos α =4.96 m
- > 3eme couche (limons sableux) : qsi = $2.6T/m^2$; li = 10.0 m; ei = $li \times cos \alpha = 9.92$ m

Pour tenir compte d'une déconsolidation du sol en surface au cours des travaux, le terme de frottement latéral a été neutralisé sur une hauteur de 1.5 m. C'est ce qui justifie la longueur du pieu dans la première couche li = 8.5 m au lieu de 10.

Par conséquent
$$Q_{su} = P \sum_{i} q_{si} \times e_{i} = \pi \times 1(8.44 \times 3.3 + 3.9 \times 4.96 + 2.6 \times 9.92)$$

$$Q_{su} = \frac{Q_{su} - 229 T}{Q_{su} - 229 T}$$

• Calcul de la charge admissible nette

La valeur de la charge admissible est consignée dans le tableau suivant en fonction de l'état limite considéré et de la nature des combinaisons :

	Culée côté Ziguinchor	
résistance de pointe Qpu	68	
terme de frottement latéral Qsu	229	
charge de fluage en compression Qc	194,3	
charge limite en compression Qu	297	
	ELU	
Combinaisons fondamentales	Qadm nette	212
	ELS	
Combinaisons rares	Qadm nette	177
Combinaisons quasi permanentes	Qadm nette	139

Tableau 3.13 : Charge admissible nette aux états limites pour la culée coté Ziguinchor

III.3.2. Calcul du nombre de pieux

- Poids propre du chevêtre : $2.5 \times (11 \times 2.3 \times 1.5) = 94.875 t$
- Poids propre des poteaux : $4 \times [2.5 \times (2 \times 1 \times 2.3)] = 46 t$
- Poids propre de la semelle de répartition : $2.5 \times (8 \times 11 \times 1.4) = 308 t$
- Mur en retour: $2.5 \times 0.3 \left[0.75 \times 4.97 + \left(\frac{3.20 0.75}{2} \right) \times 4.97 0.95 \times 0.3 \right] = 7.15t$
- Mur garde grève : $2.5 \times 1.7 \times 0.3 \times 11 = 14 t$
- Dalle de transition : $(0.7 \times 2 + 0.3 \times 2.5) \times 8.3 \times \frac{6}{2} = 53.54 \text{ }I$
- Le total est : Gpp = 94.875 + 190 + 308 + 7.15 + 14 + 70.25 = 623t

La descente de charges avait donné, en fonction de la nature des combinaisons, la charge maximale reprise par les culées. Ainsi on a :

➤ Combinaison à l'ELU

La charge totale maximale arrivant au sommet des pieux est :

$$Q = G_{\text{max culée}} + 1.35 \times Gpp = 408 + 1.35 \times 623 = 1249 t$$

➤ Combinaison à l'ELS rare

La charge totale maximale arrivant au sommet des pieux est :

$$Q = G_{\text{max culée}} + Gpp = 305 + 623 = 928 t$$

Combinaison à l'ELS fréquent

La charge totale maximale arrivant au sommet des pieux est :

$$Q = G_{\text{max pile}} + Gpp = 221 + 623 = 844t$$

Le nombre de pieux nécessaires est consigné dans le tableau suivant en fonction de l'état limite considéré et de la nature des combinaisons :

Culée côté Ziguinchor	
ELU	,
Combinaisons fondamentales	
Qadm nette (t)	212
Charge totale maximale supportée Q	1249
Nombre de pieux	6
ELS	
Combinaisons rares	
Qadm nette (t)	177
Charge totale maximale supportée Q	928
Nombre de pieux	6
Combinaisons quasi permanentes	
Qadm nette (t)	139
Charge totale maximale supportée Q	844
Nombre de pieux	7

Tableau 3.14 : Combinaison des charges obtenues pour la culée coté Tambacounda

Le nombre de pieux, en première approximation, est donc n = 7 pieux.

L'effet de groupe sera étudié et permettra de déterminer la valeur définitive à adopter.

IV. Comportement du groupe de pieux

IV.1. Coefficient d'efficacité des groupes de pieux

Le coefficient d'efficacité f du groupe de pieux est un coefficient correcteur qui s'applique à la force portante du pieu isolé et permet d'évaluer la force portante de l'un des pieux du groupe. Il se définit comme suit :

$$f = \frac{Q_g}{\sum Q_i} = \frac{Q_g}{n \cdot Q_{i_1}}$$

 $Q_{\rm g}$ désigne la capacité portante du groupe de pieux ;

 Q_i est la capcité portante d'un pieu isolé.

n est le nombre de pieux

Parmi les différentes méthodes qui ont été avancées pour le calcul de la capacité portante d'un groupe de pieux, nous indiquerons la méthode basée sur le coefficient d'efficacité. Plusieurs

formules ont été avancées pour le calcul du coefficient d'efficacité f. Nous proposons ici la formule de « Los Angeles » :

$$f = 1 - \frac{B}{L} \cdot \frac{1}{\pi \cdot m \cdot n} \left[m(n-1) + n(m-1) + \sqrt{2}(m-1)(n-1) \right]$$
 (0.1)

Dans laquelle:

m : nombre de rangées ;

n : nombre de pieux dans chaque rangée ;

B: diamètre d'un pieu;

L : entraxe des pieux d'une même rangée.

La charge portante limite d'un pieu du groupe est alors donnée par : $Q_l = f \cdot Q_l$

Et la charge portante limite du groupe est donnée par : $Q_a = N \cdot f \cdot Q_t$

N étant le nombre de pieux du groupe.

Dans ce qui suit nous calculerons le coefficient d'efficacité pour les piles et les culées

D'après les résultats obtenus on peut fixer, en première approximation, le nombre de pieux à N = 10. Ces pieux seront disposés en deux rangées de 5 avec un entraxe entre pieux de même rangée L = 3.00 m

Donc

$$f = 1 - \frac{1}{3} \cdot \frac{1}{\pi \times 2 \times 5} \left[2(5-1) + 5(2-1) + \sqrt{2}(2-1)(5-1) \right]$$

$$f = 0.802$$

Ce coefficient est utilisé pour recalculer le nombre de pieux nécessaires pour reprendre la charge pondérée $Q' = \frac{Q}{f}$.

En introduisant cette nouvelle valeur dans les tableaux précédents on aboutit à :

Pile côté Tambacounda		
EIU		
Combinaisons fondamentales		
Qadm nette (t)	192	
Charge totale maximale supportée Q	1666	
Q' = Q/f	2192	
Nombre de pieux	12	
$\widetilde{EKS}_{-}^{\mu}$, where $\widetilde{EKS}_{-}^{\mu}$, where $\widetilde{EKS}_{-}^{\mu}$		
Combinaisons rares		
Qadm nette (t)	164	
Charge totale maximale supportée Q	1237	
Q' = Q/f	1628	
Nombre de pieux	10	
Combinaisons quasi permanentes		
Qadm nette (t)	129	
Charge totale maximale supportée Q	1146	
Q' = Q/f	1508	
Nombre de pieux	12	

Pile côté Ziguinchor					
ELU	·				
Combinaisons fondamentales					
Qadm nette (t)	186				
Charge totale maximale supportée Q	1666				
Q' = Q/f	2192				
Nombre de pieux	12				
ELS					
Combinaisons rares					
Qadm nette (t)	158				
Charge totale maximale supportée Q	1237				
Q' = Q/f	1628				
Nombre de pieux	11				
Combinaisons quasi permanentes					
Qadm nette (t)	124				
Charge totale maximale supportée Q	1146				
Q' = Q/f	1508				
Nombre de pieux	13				

Tableau 3.15 : Combinaison des charges obtenues pour les deux piles en considérant l'effet de groupe

Le nombre de pieux est passé à 12 pour la pile du côté de Tambacounda et à 13 pour celle du côté de Ziguinchor.

Pour des raisons de mises en œuvre nous fixons le nombre de pieux sous piles à 15. Ils seront disposés en 3 rangées de 5 avec un entraxe L = 3,00 m.

Le nouveau coefficient d'efficacité est :

$$f = 1 - \frac{1}{3} \cdot \frac{1}{\pi \times 3 \times 5} \left[3(5-1) + 5(3-1) + \sqrt{2}(3-1)(5-1) \right]$$

$$f = 0.76$$

Lorsqu'on introduit la valeur du coefficient f dans la formule $Q' = \frac{Q}{f}$, cette nouvelle valeur conduit aux tableaux suivants :

Pile côté Tambacounda	
JPEO	Marie Control
Combi: aisons fondamentales	
Qadm nette (t)	192
Charge totale maximale supportée Q	1666
Q' = Q/f	2192
Nombre de pieux	12
PES -	
Combinaisons rares	
Qadm nette (t)	164
Charge totale maximale supportée Q	1237
Q' = Q/f	1628
Nombre de pieux	10
Combinaisons quasi permanentes	
Qadm nette (t)	129
Charge totale maximale supportée Q	1146
Q' = Q/f	1508
Nombre de pieux	12

Pile côté Ziguinchor	
ELU	
Combinaisons fondamentales	
Qadm nette (t)	186
Charge totale maximale supportée Q	1666
Q' =Q/f	2192
Nombre de pieux	12
ELS	
Combinaisons rares	
Qadm nette (t)	158
Charge totale maximale supportée Q	1237
Q' = Q/f	1628
Nombre de pieux	11
Combinaisons quasi permanentes	
Qadm nette (t)	124
Charge totale maximale supportée Q	1146
Q' = Q/f	1508
Nombre de pieux	13

Tableau 3.16 : Combinaison des charges recalculées pour les deux piles en considérant l'effet de groupe pour le nouveau choix

La lecture de ces tableaux prouve que le nombre de pieux N=15 est très sécuritaire étant donné qu'il faut au maximum 13 pieux par pile pour pouvoir supporter la charge maximale qui arrive au niveau des fondations.

Dans le projet il a été retenu sous chaque pile 18 pieux disposés en 3 files de 6. Dans ces conditions le coefficient d'efficacité est :

$$f = 1 - \frac{1}{3} \cdot \frac{1}{\pi \times 3 \times 6} \left[3(6-1) + 6(3-1) + \sqrt{2}(3-1)(6-1) \right]$$

$$f = 0.76$$

Ce coefficient étant le même que celui précédemment trouvé, la même conclusion reste valable.

> Au niveau des culées le nombre de pieux a été fixé à 12, soit 3 files de 4. Dans ces conditions le coefficient d'efficacité est :

$$f = 1 - \frac{1}{3} \cdot \frac{1}{\pi \times 3 \times 4} \left[3(4-1) + 4(3-1) + \sqrt{2}(3-1)(4-1) \right]$$

$$f = 0.77$$

En introduisant ce coefficient dans la formule $Q' = \frac{Q}{f}$, on obtient :

Culée côté Tambacounda		Culée côté Ziguinchor				
Eleu		ELU TV TV A				
Combinaisons fondamentales		Combinaisons fondamentales				
Qadm nette (t)	311	Qadm nette (t)	212			
Charge totale maximale supportée Q	1308	Charge totale maximale supportée Q	1249			
Q' = Q/f	1699	Q' =Q/f	1622			
Nombre de pieux	6	Nombre de pieux	8			
ELS		Land Control of the C	<u> </u>			
Combinaisons rares		Combinaisons rares				
Qadm nette (t)	246	Qadm nette (t)	177			
Charge totale maximale supportée Q	972	Charge totale maximale supportée Q	928			
Q' = Q/f	1262	Q' = Q/f	1205			
Nombre de pieux	6	Nombre de pieux	7			
Combinaisons quasi permanentes		Combinaisons quasi permanentes				
Qadm nette (t)	193	Qadm nette (t)	139			
Charge totale maximale supportée Q	888	Charge totale maximale supportée Q	844			
Q' = Q/f	1153	Q' = Q/f	1096			
Nombre de pieux	6	Nombre de pieux	8			

Tableau 3.17 : Combinaison des charges obtenues pour les deux culées en considérant l'effet de groupe

L'analyse de ces deux tableaux montre que le nombre de pieux par culée, N = 12, est très sécuritaire puisque qu'il faut un maximum de 8 pieux par culée pour supporter la charge transmise aux fondations.

V.2 Tassement des groupes de pieux

Les tassements d'un pieu isolé sous une charge nominale sont généralement faibles (inférieurs à 1 ou 2 cm) et l'on ne s'en préoccupe pas. Par contre, les dimensions d'un groupe de pieux sont telles qu'il peut transmettre les charges qu'il supporte à des profondeurs assez

importantes au dessous de la pointe des pieux, ce qui peut entraîner des tassements non négligeables des couches sous-jacentes.

On utilise la méthode de Terzaghi et Peck pour avoir une idée des tassements. Pour ce faire on considère une semelle fictive située au 2/3 de la longueur des pieux et qui supporte les charges permanente Q appliquées sur la semelle de liaison. On calcule le tassement de cette semelle en prenant une répartition des contraintes en profondeur à 1 pour 2. Le calcul du tassement de cette semelle fictive est fait par la méthode pressiométrique d'après la formule :

$$w = \frac{\alpha}{9E_c} q \lambda_c B + \frac{2}{9E_d} q B_0 \left(\lambda_d \frac{B}{B_0} \right)^{\alpha}$$

w est le tassement total

 α est le coefficient de structure;

 λ_c et λ_d sont des coefficients de forme, ils dépendent du rapport $\frac{L}{B}$;

B est la largeur de la semelle;

B₀ est une dimension de référence égale à 0.6 m;

q est la contrainte moyenne appliquée par la fondation. Dans cette méthode, à la profondeur z,

$$q = q_0 \frac{B}{B+z}$$
 avec $q_0 = \frac{Q}{S}$, S désignant la section de la semelle de liaison; $S = B \times L$ avec L

la longueur de la semelle;

 E_{o} et E_{d} sont les modules pressiométriques équivalents respectivement dans les zones sphériques et déviatoriques. Leurs valeurs sont indiquées dans le rapport géotechnique.

Calcul du tassement sous les culées

Le tableau ci-dessous montre la valeur des différents paramètres et la valeur du tassement :

Culée côté Ziguinchor

α	$\lambda c = \lambda d$	В	Во	Bf	L	Q(t)	qo(t / m²)	q(t / m²)	Ec (t / m ²)	Ed (t/m²)
0,5	1	11,00	0,60	27,67	8,00	844	9,59	3,81	890	865
	•			w==	11	mm				

Culée côté Tambacounda

α	$\lambda c = \lambda d$	В	Во	Bf	L	Q(t)	qo(t / m²)	q(t / m²)	Ec (t / m ²)	Ed (t / m ²)
0,5	1	11,00	0,60	27,67	8,00	888	10,09	4,01	970	1009,6
				w=	10	mm				<u></u>

> Calcul du tassement sous les piles

Pile côté Ziguinchor

α	$\lambda c = \lambda d$	В	Во	Bf	L	Q(t)	qo(t / m²)	$q(t/m^2)$	Ec (t / m ²)	Ed (t / m ²)
0,50	0,5	17,00	0,60	33,67	8,00	1146	8,43	4,25	1890	1216
				w=	5	mm				

Pile côté Tambacounda

α	$\lambda c = \lambda d$	В	Во	Bf	L	Q(t)	qo(t / m²)	q(t / m²)	Ec (t / m ²)	Ed (t / m ²)
0,5	1	17	0,60	33,67	8,00	1146	8,43	4,25	2380	1193
				w=	7	mm				

es valeurs des tassements absolus sont admissibles et les tassements différentiels tolérables.

V. Etude de la stabilité des fondations

V.1. Stabilité par rapport au renversement des culées

V.1.1. Culée côté Ziguinchor

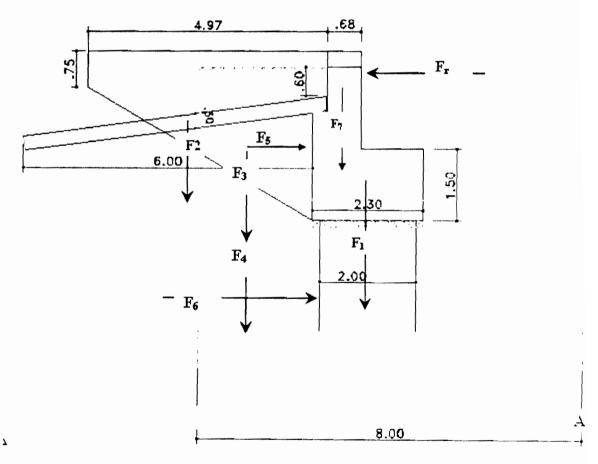


Figure 3.7 : Schéma de stabilité par rapport au renversement de la culée

Les culées sont sollicitées par les forces Fi définies par :

F₁: la réaction du tablier + le poids propre de la culée (chevêtre, poteaux et semelle),

$$F_1 = 221 + 95 + 46 + 308 = 670 t$$
;

 F_2 : le poids propre de la dalle de transition, $F_2 = 53.54 \text{ t}$;

 F_3 : le poids propre du mur en retour, F_3 = 7.15 t

F₄: La force verticale due au remblai à gauche de la culée et entre les poteaux,

$$F4=(3.20-0.6 + 2.30)\times 2\times \frac{(8-2)}{2}\times 11 + 2.30\times 2\times 2\times (11-4\times 1) = 388 t;$$

F5= poussée des terres sur chevêtres :

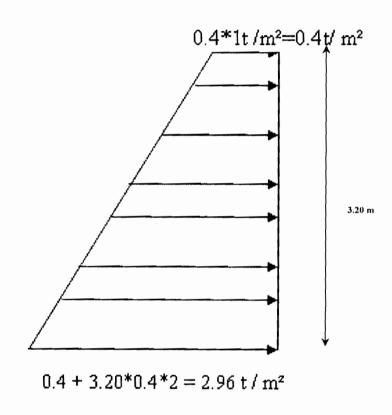


Figure 3.8 : Poussée des terres sur chevêtres

$$F_5 = \left(\frac{0.4 + 2.96}{2}\right) \times 3.20 \times 11 = 59 \ t$$

 F_6 : Poussée des terres sur poteaux, $F_6 = 4 \times \left(\frac{0.4 \times 2.30 \times 2 + 2.96}{2}\right) \times 2.30 \times 1 = 22 \text{ t}$;

 F_7 : poids propre du mur garde grève, $F_7 = 14 t$;

Fr: la force maximale de freinage qui correspond au freinage de Bc, Fr = 30 t.

Lorsque les moments sont calculés par rapport à un pivot où la force de freinage est stabilisatrice, on la répartit entre les appuis afin que son effet soit le plus défavorable possible. Dans ce cas la valeur à considérer sera 30/4 = 7.5 t.

Le calcul est effectué par rapport au pivot A et dans les conditions les plus favorables au renversement, avant la mise en place des maçonneries du côté amont de la culée. Les résultas sont consignés dans le tableau suivant :

Désignation des					Moments (tonne.m	ètre)		
forces	Forces		Valeur	Bras de levier				
	Verticales	Horizontales	(tonne)	(m)	Stabilisant	Renversant		
Poids propre de la						{		
culée et réaction du				{		[
tablier	F1		670	4,27	2860,9	1		
Poids propre						}		
dalle de transition	F2		53.54	8,35	447.059	1		
Poids propre				}		1 1		
mur en retour	F3		7	7,57	52,99			
Force verticale due								
au remblai	F4		388	5,7	2211,6]		
Poids propre du						1		
mur garde grève	F7_		14	5,01	70,14			
Force de freinage		Fr	7,5	6,9	51,75			
Poussée des								
terres sur chevêtre		F5	59	4,77		-281,43		
Poussée des								
terres sur poteaux		F6	22	2,39		-52,58		
Totaux					5694.439	-334,01		
Rapport moments sta	Rapport moments stabilisants sur moments renversants 17							

Tableau 3.18 : Vérification de la stabilité par rapport au renversement de la culée coté
Ziguinchor

Le facteur de sécurité vis-à-vis du renversement est donné par :

$$Fs = \frac{M_{Stabilisant}}{M_{Re nversant}} = 17 > 1.5 \Rightarrow$$
 la stabilité par rapport au renversement de la culée est vérifiée

V.1.2. Culée côté Tambacounda

Les deux culées différent par la hauteur des poteaux et leur excentrement par rapport à l'axe de la semelle de répartition. La même démarche que celle précédente est adoptée et les résultas sont répertoriés dans le tableau suivant :

Désignation	F	orces	Valeur	Bras de levier	Moments (tm)	
Dongmarion	Verticales		(tonne)	(m)	Stabilisant	Renversant
Poids propre de la						
culée et réaction						
du tablier	F1		814	5	-4070	4
Poids propre						}
dalle de						{
transition	F2		53.54	8,85	-473.829	
Poids propre			l			
mur en retour	F3		7	7,82	-54,74	1
Force verticale						
remblai	F4		969	2,4	-2325,6	1
Poids propre			1			
mur garde grève	F7		14	5,34	-74,76	1
Force de freinage		Fr	7,5	14,1	-105,75	
Poussée des		}	1			1
terres sur chevêtre		F5	59	12,5		737,5
Poussée des						
terres sur poteaux		F6	200,64	9,77		1960,2528
				Totaux	-7104.679	2697,7528
Rapport moments s	stabilisants s	sur moments re	enversants	<u> </u>	2.6	

Tableau 3.19 : Vérification de la stabilité par rapport au renversement de la culée coté

Tambacounda

Le facteur de sécurité vis-à-vis du renversement :

$$Fs = \frac{M_{Stabilisant}}{M_{Re \, nversant}} = 2.6 \succ 1.5 \Rightarrow \text{ la stabilité par rapport au renversement de la culée est vérifiée}$$

V.2. Stabilité par rapport au renversement des piles

Puisque les piles sont identiques alors on se contentera de faire une seule étude de stabilité. Pour la stabilité de la pile, nous avons les forces suivantes :

F1= la réaction du tablier + le poids propre de la pile (chevêtre, poteaux et semelle) = 1196 t; La force de freinage Fr = 30 t est prise dans le sens renversant.

Fc = 20 t = choc accidentel sur pile; cette force est considérée dans son cas le plus défavorable (sens reversant) et appliquée à la moitié de la hauteur des poteaux.

La force due à l'eau est négligée dans la mesure où les piles sont constituées de deux poteaux circulaires de diamètre 2.5 m. La surface offerte à l'action dynamique de l'eau est faible tandis que les forces s'équilibrent mutuellement dans le sens perpendiculairement à l'écoulement.

Les résultas sont consignés dans le tableau suivant :

					Momen	nts (t.m)
Désignation	Fo	orces		Bras de levier		
	Verticales	Horizontales	(tonne)	(m)	Stabilisant	Renversant
Poids propre de						
la culée et						1
réaction du	}	1				
tablier	F1		1146	4	4584	
Force de						
freinage		Fr	30	19,5		-585
choc accidentel						
sur pile		Fc	20	9,2		-184
				Totaux	4584	-769
Rapport moments	stabilisants	6,0				

Tableau 3.20 : Vérification de la stabilité par rapport au renversement des piles

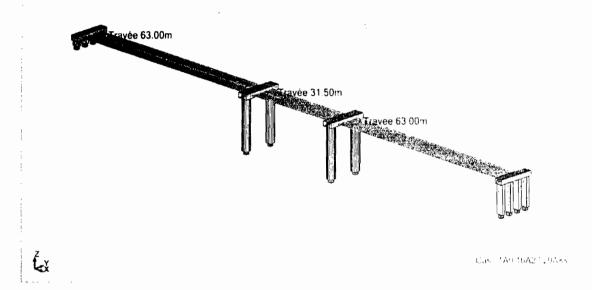
$$Fs = \frac{M_{Stabilisant}}{M_{Re\ mersant}} = 6.0 \succ 1.5 \Rightarrow \text{ la stabilité par rapport au renversement de la pile est vérifiée}$$

Puisque les fondations sont sur pieux, il n'est pas nécessaire de vérifier la stabilité vis-à-vis du glissement.

4ème partie: MODELISATION ET ETUDE EN BETON ARME

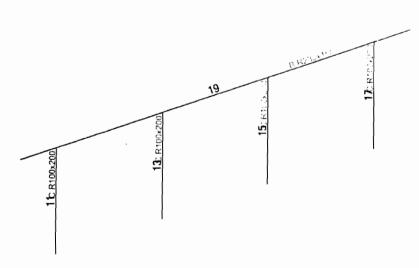
Cette partie est consacrée, d'une part, à la modélisation des piles, des culées et des chevêtres et d'autre part au dimensionnement en béton armé. Une partie de la tâche se fera manuellement tandis que l'autre fera appel à un logiciel du nom de roboBAT.

I. Modélisation du tablier et étude des cas de charges

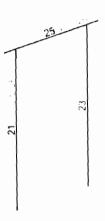

Après l'introduction des différents paramètres de la modélisation le logiciel génère une note de calcul qui récapitule les données de l'étude ainsi que les résultats.

NOTE DE CALCUL

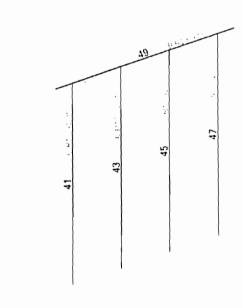
Projet : modélisation des appuis du nouveau pont mixte de Gouloumbou



Vue en 3D de l'ouvrage


Le tablier du pont est un élément métallique préfabriqué. Dans la modélisation nous avons choisi un matériau quelconque dont on supprime le poids propre que l'on remplace par celui du pont réel car c'est le seul paramètre qui intervient dans la justification des éléments de fondation.

Vue Culée coté Ziguinchor (X=0)


Cas 1A9 16A27 29A88

Vue Piles (X=63.00m - 94.50m)

Ĺ×

Vue Culée coté Tamba (X=157.50m)

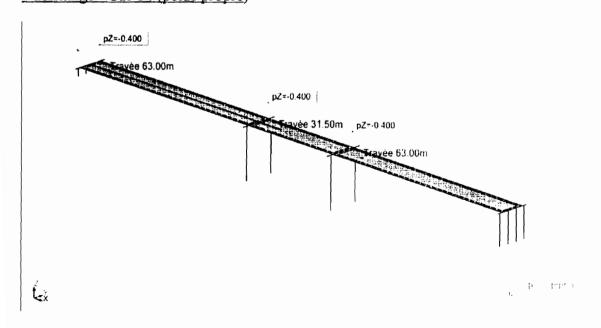
Ž,

Tableau Panneaux

85

Panneau	Nom	Type de maillage	Relâchements linéaires	Surface [m2]
1	Travée 63.00m	Coons	Rotule(bbbl)-1_Bord(1),1_Bord(3)	471,24
2	Travée 31.50m	Coons	Rotule(bbbl)-2_Bord(1),2_Bord(3)	235,62
3	Travée 63.00m	Coons	Rotule(bbbl)-3_Bord(1),3_Bord(3)	471,24

Tableau Nœuds: voir Annexe 1


Tableau des barres : voir Annexe 2

Caractéristiques des barres

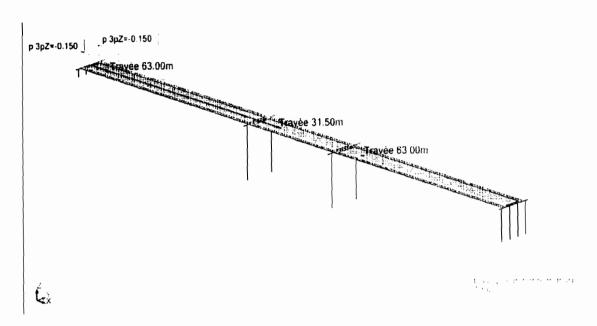
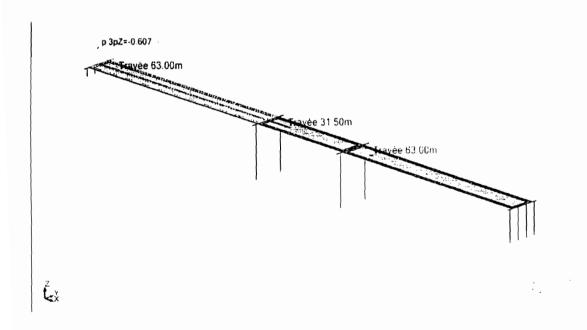
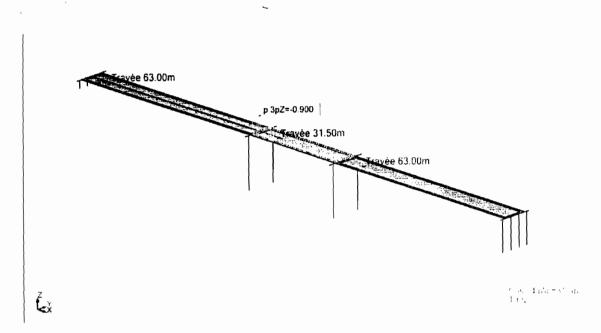
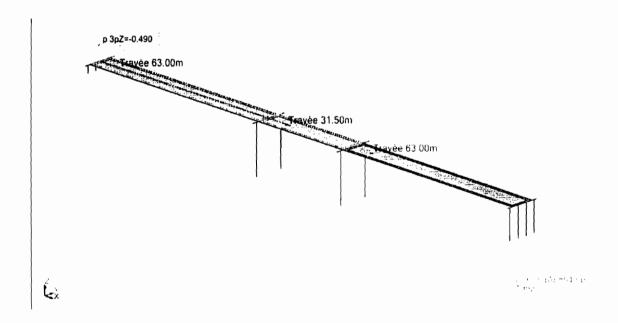
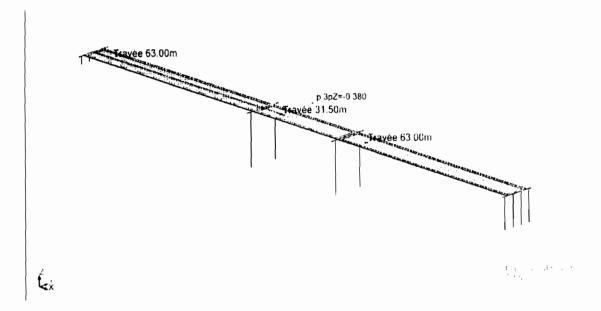

Nom de la section	Liste des barres	AX [cm2]	AY [cm2]	AZ cm2	IX [cm4]	IY [cm4]	IZ [cm4]
B R230x150	19 49	34500,00	28750,0	28750,	15409792	6468750	15208750
		0	00	000	5,751	0,000	0,000
B R300x150	25 35	45000,00	37500,0	37500,	23154327	8437500	33750000
		0	00	000	2,438	0,000	0,000
C C_250	21 23 31 33	49087,38	41417,4	41417,	38349519	1917475	19174759
		5	81	481	6,971	98,486	8,486
C R100x200	11A17P2	20000,00	16666,6	16666,	45736942	6666666	16666666,
	41A47P2	0	67	667	,704	6,667	667

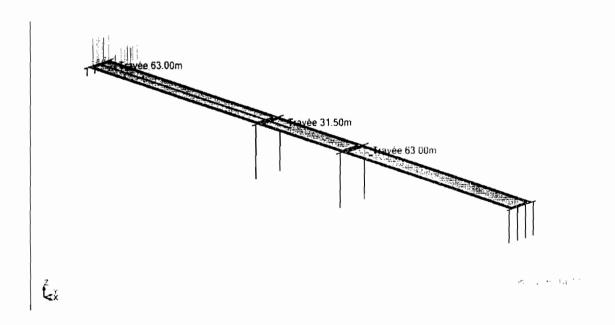
Tableau Chargements - Cas simples: 1A9 16A27: voir Annexe 3

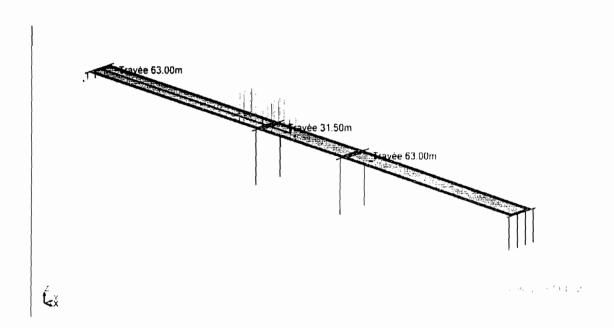

Vue charge - Cas 1: (poids propre)

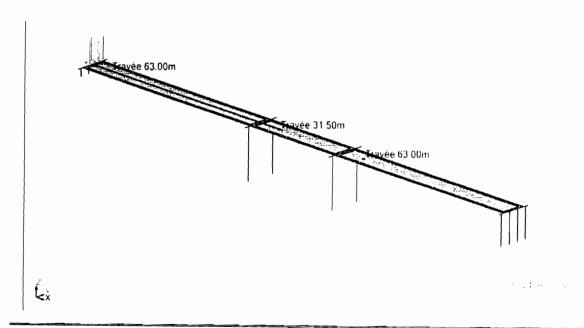

Vue charge - Cas 2 : (surcharge trottoirs)

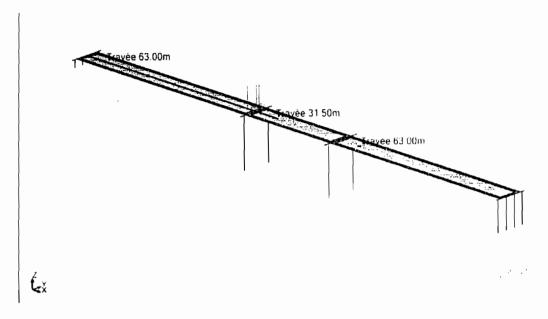

Vue charge - Cas 3: (A(1=63))

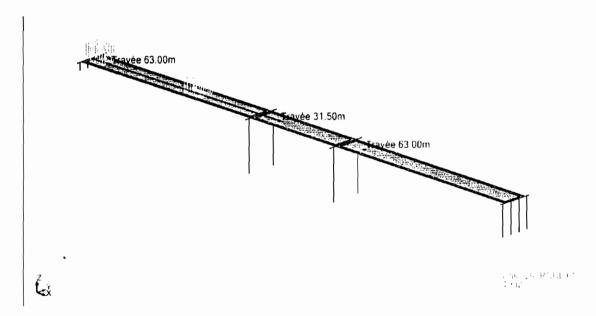

Vue charge - Cas 4: (A(l=31.5))


Vue charge - Cas 5 : (A(1=94.5))


Vue charge - Cas 6: (A(l=157.5))


Vue charge - Cas 22: (Bc-ROUL7/1)


Vue charge - Cas 23: (Bc-ROUL7/2)-


Vue charge - Cas 24: (Bt-ROUL8/1)

Vue charge - Cas 25: (Bt-ROUL8/2)

Vue charge - Cas 26: (Mc120-ROUL9/1)

Vue charge - Cas 27: (Mc120-ROUL9/2)

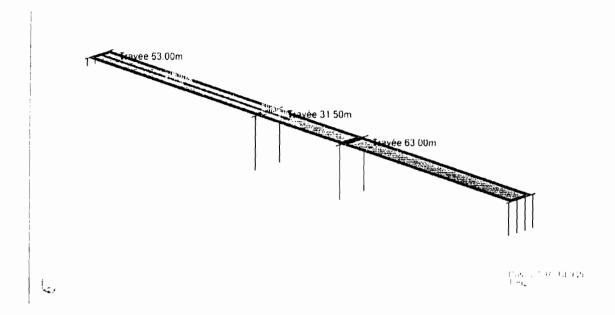


Tableau des combinaisons de cas - Cas: 35A88 : voir Annexe 4

Tableau Réactions: Repère global - Cas: Poids Propre - Enveloppe

Repère global - Cas : 1 (poids propre)

Noeud/Cas	FZ [T]
11/ 1	17,202>>
11/ 1	17,202<<
13/ 1	29,915>>
13/ 1	29,915<<
<u>15/ 1</u>	29,937>>
15/ 1	29,937<<
17/ 1	17,194>>
17/ 1	17,194<<
21/ 1	70,686>>
21/ 1	70,686<<
23/ 1	70,686>>
23/ 1	70,686<<

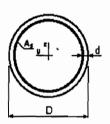
<u>Tableau Réactions : Repère global - Cas: Combinaison ELU 35A70 - Enveloppe</u> : Voir Annexe 5

<u>Tableau Réactions : Repère global - Cas: Combinaison ELS 71A85 - Enveloppe</u> : Voir Annexe 6.

II. Dimensionnement Poteaux circulaires des piles

Le dimensionnement des poteaux de piles se fera en considérant deux cas : le cas de la section comprimée et celui de la section fléchie. La section d'acier retenue sera celle qui est la plus grande.

II .1. Calcul d'une Section Comprimée


1. Hypothèses:

Béton : fc28 = 30,00 (MPa)

Acier: fe = 400,00 (MPa)

- Fissuration préjudiciable
- Prise en compte de l'élancement
- Pas de prise en compte des dispositions sismiques
- Charges appliquées après 90 jours
- Calcul suivant BAEL 91 mod. 99

2. Section:

$$D = 250,0 \text{ (cm)}$$

 $d = 7,0 \text{ (cm)}$

3. Forces:

Les valeurs trouvées avec la descente de charges seront introduites dans la calculette BA

N(T)

Etat Limite Ultime (fondamental)

243,00

Etat Limite de Service

181,00

4. Résultats :

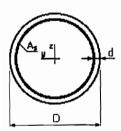
Béton :

$$\sigma$$
 (ELS) = 0,36 (MPa)
0,6 fcj = 18,00 (MPa)

> Acier:

Section théorique $A_s = 0.0 \text{ (cm2)}$ Section minimum $A_{s \text{ min}} = 49.1 \text{ (cm2)}$ Section maximum $A_{s \text{ max}} = 2454.4 \text{ (cm2)}$

II .2. Calcul de Section en Flexion Déviée Composée


La section du poteau est soumise à l'action d'un effort normal N, d'un moment dû à l'action du vent dont la valeur maximale correspond à celle fournie par le constructeur et à un autre dû à l'action de la force de freinage d'un camion Bc. Par conséquent elle est calculée en flexion déviée composée. Toutefois il faudra tenir compte de l'article 14.2 du fascicule 61 qui précise que lorsque le vent souffle, le pont n'est supposé porter aucune charge mobile, de chaussée ou de trottoir. Par conséquent on étudiera les moments séparément afin de voir lequel est plus défavorable. C'est ce qui justifie les deus cas ELU et les deux cas ELS.

Hypothèses :

Béton : fc28 = 30,00 (MPa) Acier : fe = 400,00 (MPa)

- Fissuration préjudiciable
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

Section

$$D = 250,0$$
 (cm)
 $d = 7,0$ (cm)

> Efforts appliqués

Cas N°	Type	N (T)	$\mathbf{M}_{\mathbf{y}}\left(\mathbf{T}^{\mathbf{*}}\mathbf{m}\right)$	$\mathbf{M}_{\mathbf{Z}}\left(T^{\mathbf{*}}m\right)$
1.	ELU	96,00	539,00	0,00
2.	ELU	71,00	0,00	411,00
3.	ELS	71,00	300,00	0,00
4.	ELS	71,00	0,00	308,00

Résultats :

Sections d'Acier:

Section théorique As = 147,6 (cm2) Section minimum $A_{S min} = 49,1$ (cm2) Section maximum $A_{S max} = 2454,4$ (cm2)

Analyse par Cas:

Cas N° 1: Type ELU N = 96,00 (T)
$$M_V = 539,00 \text{ (T*m)}$$
 $M_Z = 0,00 \text{ (T*m)}$

Coefficient de sécurité : 1,30

Position de l'axe neutre : y = 33,3 (cm)

Bras de levier : Z = 226,4 (cm) Déformation du béton : $\varepsilon_b = 1,59$ (%)

Déformation de l'acier : $\varepsilon_s = 10,00$ (‰)

Contrainte de l'acier :

- tendue : $\sigma_S = 348,17 \, (MPa)$

- comprimée : $\sigma_S' = 245,98$ (MPa)

Cas N° 2: Type ELU N = 71,00 (T) $M_V = 0.00 (T*m)$ $M_Z = 411.00 (T*m)$

Coefficient de sécurité : 1,69

Position de l'axe neutre : y = 33,1 (cm)

Bras de levier : Z = 226,5 (cm) Déformation du béton : $\epsilon_b = 1,58$ (%)

Déformation de l'acier : $\varepsilon_s = 10,00$ (%)

Contrainte de l'acier :

- tendue : $\sigma_s = 348,17 \, (MPa)$

- comprimée : $\sigma_S' = 244,07$ (MPa)

Cas N° 3: Type ELS N = 71,00 (T) $M_V = 300,00 \text{ (T*m)}$ $M_Z = 0,00 \text{ (T*m)}$

Coefficient de sécurité : 1,03

Position de l'axe neutre : y = 61,4 (cm)

Bras de levier : Z = 216,3 (cm)

Contrainte maxi du béton : $\sigma_b = 4,72$ (MPa)

Contrainte limite : 0.6 fcj = 18,00 (MPa)

Contrainte de l'acier :

- tendue : $\sigma_S = 208,54 \text{ (MPa)}$

- comprimée : $\sigma_{S}' = 62,03$ (MPa)

Contrainte limite de l'acier : $\sigma_{s lim} = 215,56$ (MPa)

Cas N° 4: Type ELS N = 71,00 (T) $M_V = 0.00 \text{ (T*m)}$ $M_Z = 308,00 \text{ (T*m)}$

Coefficient de sécurité : 1,00

Position de l'axe neutre : y = 61,2 (cm)

Bras de levier: Z = 216.4 (cm)

Contrainte maxi du béton : $\sigma_b = 4.85$ (MPa)

Contrainte limite : 0.6 fcj = 18,00 (MPa)

Contrainte de l'acier :

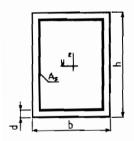
- tendue : $\sigma_{S} = 215,56 \text{ (MPa)}$

- comprimée : $\sigma_{S}' = 63,72 \text{ (MPa)}$

Contrainte limite de l'acier : $\sigma_{s lim} = 215,56$ (MPa)

III. Dimensionnement Poteaux rectangulaires des culées

Le même raisonnement fait pour les piles reste valable.


III .1. Calcul d'une Section Comprimée

> Hypothèses :

Béton : fc28 = 30,00 (MPa) Acier : fe = 400,00 (MPa)

- Fissuration préjudiciable
- Prise en compte de l'élancement
- Pas de prise en compte des dispositions sismiques
- Charges appliquées après 90 jours
- Calcul suivant BAEL 91 mod. 99

> Section:

b = 100,0 (cm)

h = 200,0 (cm)

d = 7.0 (cm)

> Forces:

Etat Limite Ultime (fondamental)

Etat Limite de Service

N (T)

139,00

104,00

Béton

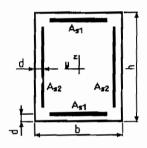
 σ (ELS) = 0.51 (MPa) 0.6 fcj = 18.00 (MPa)

> Acier

Section théorique $A_S = 0.0 \text{ (cm2)}$

Section minimum $A_{s min} = 20,0 \text{ (cm2)}$

Section maximum $A_{s max} = 1000,0 \text{ (cm2)}$


III.2 Calcul de Section en Flexion Déviée Composée

> Hypothèses:

Béton : fc28 = 30,00 (MPa) Acier : fe = 400,00 (MPa)

- Fissuration préjudiciable
- Pas de prise en compte des dispositions sismiques
- Calcul suivant BAEL 91 mod. 99

> Section

$$b = 200,0$$
 (cm)

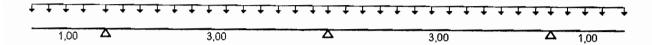
$$h = 100,0$$
 (cm)

$$d = 7.0$$
 (cm)

> Efforts appliqués

Cas NO	Туре	N (T)	$\mathbf{M_y}(\mathrm{T*m})$	$\mathbf{M}_{\mathbf{Z}}\left(\mathbf{T}^{\mathbf{*}}\mathbf{m}\right)$
1.	ELU	24,00	119,00	0,00
2.	ELU	18,00	0,00	132,00
3.	ELS	18,00	66,00	0,00
4.	ELS	18,00	0,00	99,00

> Résultats


Sections d'Acier :

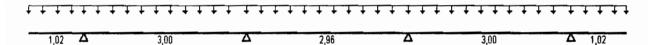
Section théorique $A_{S1} = 24.3$ (cm2) Section théorique $A_{S2} = 11.9$ (cm2) Section minimum $A_{S \text{ min}} = 20.0$ (cm2) Section maximum $A_{S \text{ max}} = 1000.0$ (cm2)

97

IV. Etude de la semelle de liaison de la culée côté Tambacounda

Notre semelle repose sur un système de 12 pieux répartis en trois files de 4. Parallèlement à l'axe du pont nous modélisons le massif comme une poutre sur trois appuis que sont les pieux.

Nous avons une charge répartie au mètre linéaire $q = P_{els} = \frac{P}{L} = \frac{888}{4 \times 8} = 28 t/m$


Les dimensions de cette poutre sont : L = 8 m, b = 2.96 m, h = 1.40 m

La fissuration est préjudiciable, nous travaillerons à l'ELS.

Une simulation avec Robot conduit au ferraillage de la poutre avec la note de calcul associée voir annexe.

Perpendiculairement à l'axe du pont nous modélisons le massif comme une poutre sur quatre appuis que sont les pieux. Nous avons une charge répartie au mètre linéaire :

$$q = P_{els} = \frac{P}{L} = \frac{888}{3 \times 8} = 27 t/m$$
.

Les dimensions de cette poutre sont : L = 11 m, b = 3 m, h = 1.40 m.

Une simulation avec robot donne le ferraillage correspondant ainsi que la note de calcul (voir en annexe).

Les chevêtres n'ont pas fait l'objet d'une étude car les appareils d'appui sont placés au niveau de l'axe des poteaux. Ainsi les charges sont directement transmises. Le chevêtre peut être considéré comme soumis à la seule action de son poids propre.

V. Etude des pieux des piles

La semelle étant de grande dimension elle est supposée assez rigide pour pouvoir répartir les efforts uniformément entre les différents pieux.

L'un des éléments fondamentaux de la modélisation des pieux est la prise en compte de la nature du sol. En effet les pieux sont supposées encastrés dans le sol (effet du facteur de pointe) et subissant latéralement des réactions élastiques dans le sens de circulation du pont et

dans le sens perpendiculaire. Les valeurs de ces reactions dependent de la conesion et de l'angle de frottement interne du sol et sont donnés par le un graphique (voir les annexes).

	Type de charge	Valeurs de la charge
PERM1	force nodale	FZ=-96,000(T)
PERM1	force nodale	FZ=-456,500(T)
PERMI	force nodale	FZ=-190,000(T)
PERM1	force nodale	FY=-35,000(T)
PERMI	force nodale	FY=35,000(T)
PERM1	force nodale	FX=15,000(T)
PERM1	force nodale	FX=-15,000(T)
PERMI	force nodale	FY=20,000(T)

Tableau de chargement des piles

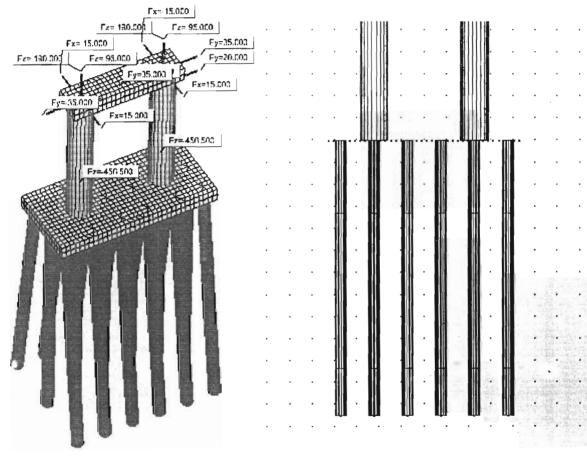
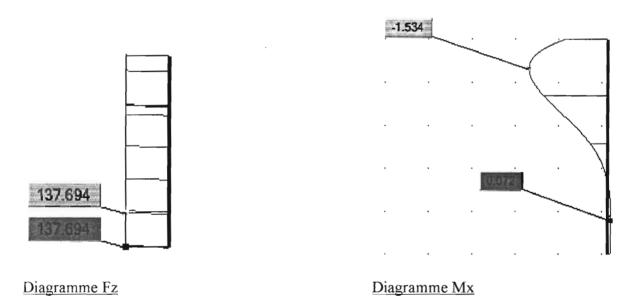


Figure de chargement des piles

sélection d'un pieu chargé

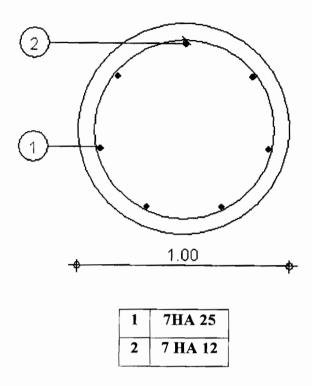
pile pre

PHASE DE CALCUL


Matrice de rigidité

Décomposition frontale

Cas


Statistique			Ressources		L	Itilisé	
Nombre de noeuds Nombre d'éléments	: :	864 806	Mémoire : Disque :	31.621 171.457		7.438 7.113	
Nombre d'équations Largeur du front Initiale	: :	5076 1380	Cas Début des ca		1 02:36:00		
Optimisée	:	198	Durée estimée : Priorité des calculs :		11 sec Normale	•	
			Pause	<i>A</i>	Arrêter	Aide	

Phase de calcul des piles

Le pieu est sollicité en flexion composée avec N = 138 t et M = -1.534 t.m.

Après avoir introduit les valeurs on obtient 7 HA 25 comme armatures longitudinales avec 7 HA 12 comme cadres, espacés de 40 cm

VI. <u>Ftude manuelle des éléments propres aux culées</u>

Une culée bien conçue doit satisfaire aux exigences de la fonction culée, à savoir :

- Une bonne transmission des efforts au sol de fondation ;
- Le soutènement des terres
- La limitation des déplacements verticaux (tassement) et horizontaux afin de ne pas entraver le fonctionnement des appareils d'appui.

Dans cette partie nous tenterons d'étudier :

- La dalle de transition
- Le corbeau de la dalle de transition.

L'article 8 du fascicule 61 stipule qu'en vue de la justification des éléments structures susceptibles d'être soumis à des efforts de la part des remblais d'accès aux ponts, on considère que ces remblais sont susceptibles de recevoir une charge de 1t /m², répartie sur toute la largeur de la plateforme.

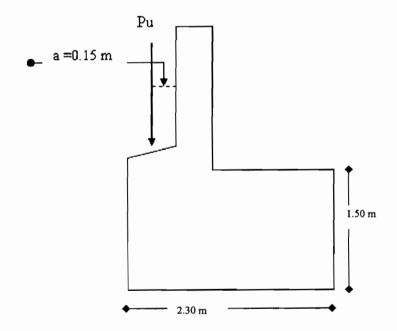
En outre, pour la justification des éléments de faible dimension (tel que mur garde grève), ce fascicule recommande de disposer sur le remblai les systèmes Bt ou Br (sans majoration dynamique), qui peuvent donner des effets plus défavorables que celui de 1t/m².

VI.1. Etude de la dalle de transition

Dimensions de la dalle : (6 m x 8.30 m x 30 cm).

La dalle est soumise à une action permanente G constituée de son poids propre et du remblai qu'elle supporte.

$$G = (0.7 \times 2 + 0.3 \times 2.5) \times 8.3 \times 6 = 107 \ t$$
$$G = 2.15 t / m^2 \ ; G = 12.89 t / ml$$


La surcharge d'exploitation est $Q = 1 t / m^2$ car notre dalle est de grande dimensions.

$$\rho = \frac{lx}{ly} = \frac{6}{8.3} = 0.72 \implies$$
 la dalle porte dans les deux directions.

Les étapes de calcul et les résultats sont résumés dans le tableau de l'annexe 10.

VI.2. Etude du corbeau de la dalle de transition

Le corbeau d'appui est encastré dans le mur garde grève, il supporte la dalle de transition. Il est dimensionné comme une console courte car la hauteur utile dans la section d'encastrement est supérieure à distance d'application de la résultante de la charge au nu de la section d'encastrement. Le calcul en BA est régi par l'annexe E6 du fascicule 62 titre I BAEL 91 révisé 99.

Vérification de la contrainte de cisaillement

Il faut que τu ≤τulim

$$\tau_{u} = \frac{V_{u}}{bo * d} * \frac{1}{1 - 0.6 \frac{H_{u}}{V_{u}}}$$
 Avec d la hauteur utile de la console; d est plafonné à 4a pour

les charges ponctuelles et à 41 pour les charges réparties. Prenons d = 41 = 4*0.3 = 1.2 m.

Hu: Force horizontale (Ici force de freinage de 30 T).

$$V_u = Pu = 1.35G + 1.5Q$$
. $Q = 1t / m^2$ et $G = (0.7 \times 2 + 0.3 \times 2.5) \times 8.3 \times \frac{6}{2} = 53.54 t$

Donc
$$V_u = 1.35 \times 53.54 + 1.5 \times 1 \times 8.3 \times \frac{6}{2} = 110 \text{ t}$$

bo = épaisseur de la console

$$\tau_u \lim = \min \begin{cases} 0.03(2+\delta)fcj \\ 4MPa. \end{cases}$$

$$\delta = \min \begin{cases} \frac{d}{a} = 4 \\ 4 \end{cases}$$

$$\tau_u \lim = \min \begin{cases} 0.03(2+\delta) fcj \\ 4MPa. \end{cases} = 4 MPa$$

A.N:
$$\tau_u = \frac{1.1}{0.3 \times 1.2} \times \frac{1}{1 - 0.6} \frac{0.03}{0.11}$$

$$\tau u = 3.7 \text{ MPa}$$

On a bien verifiée!

Détermination des armatures

Armatures supérieures tendues

$$A = \frac{M_u}{Z * fe} * \gamma_s + \frac{H_u}{fe} * \gamma_s$$
 Avec Mu= Vu × a = 110 x 0.15 = 16.5 t.m

$$Z = \min \begin{cases} 0.7d(1+0.1\delta) \\ 1.2a(0.8+0.2\delta) \end{cases} = 0.29$$

$$A = \frac{0.0165}{1.20} + \frac{0.3}{1.20}$$

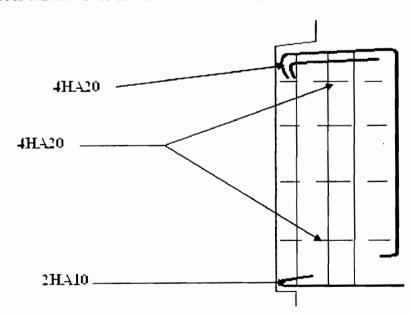
$$A = \frac{0,0165}{0.29 \times \frac{400}{1,15}} + \frac{0,3}{\frac{400}{1,15}}$$

$$A = 10.26$$
 cm²

Armatures inférieures

$$A_i = \frac{A}{10} = \frac{10.26}{10}$$

$$Ai = 1,03 \text{ cm}^2$$


Armatures de répartition horizontales

Des armatures horizontales sont prévues sur la hauteur de la console et dont la section est égale $Ar = \lambda A$ - Ai

$$\lambda = \max \begin{cases} \frac{1}{4} (\delta + \frac{12\tau_u}{fcj} - 1) \\ \frac{1}{10} \end{cases} = 1.12$$

$$Ar=10.46$$
 cm² 4 HA20 (12.56 cm²)

Enfin, on placera des cadres verticaux, non calculés, pour résister aux éventuels efforts de torsion, pour servir de coutures de fendage lorsque les barres supérieures de diamètre relativement important sont terminées par des ancrages courbes disposés dans les plans verticaux et pour maintenir les armatures horizontales.

CONCLUSION ET RECOMMANDATIONS

Ce projet de fin d'études a constitué une occasion pour moi de comprendre les principes qui régissent le calcul des ponts; les sollicitations à tenir en compte pour la justification des divers éléments et la réglementation en vigueur dans ce domaine. Il m'a permis de mettre en pratique les cours de mécanique des sols, de béton armé et de structures, entre autres. Par ailleurs, il m'a fait gagné de l'expérience aussi bien sur le plan pédagogique que sur le plan pratique par les visites de terrain, le suivi des travaux de forage et de coulage des pieux, les échanges avec les différents intervenants du projet, etc.

La modélisation a été un prétexte pour moi de me familiariser davantage avec le logiciel RoboBAT, de découvrir les avantages et les limites de l'outil informatique et de me faire une meilleure idée par rapport à l'usage des logiciels. En effet, le recours à un outil de calcul automatique n'épargne pas de la réflexion et de la rigueur dans la démarche en ce sens que le logiciel obéit à des ordres qui, s'ils ne sont pas bien donnés, ne pourraient jamais conduire à des résultats satisfaisants. Plus particulièrement dans le cadre du dimensionnement des ponts, il convient d'avoir une maîtrise de la réglementation en vigueur (fascicules 61 et 62) dans ses moindres détails afin de savoir manipuler les combinaisons de charges, de comprendre les notes de calculs informatiques avec leurs divers composants tels que les études de cas, la considération des états limites, etc.

En guise de recommandations, j'appelle à plus de prudence et de rigueur dans le dimensionnement des ouvrages d'art. En effet, le prédimensionnement d'un ouvrage en l'absence de données géotechniques détaillées n'est pas un mal en soi si toutefois on prend le soin, une fois la nature du terrain connue avec plus de précision, de procéder aux vérifications nécessaires afin d'éviter le surdimensionnement qui est prompt à faire grimper les coûts de l'ouvrage ou, au pire des cas, le sous dimensionnement qui constitue un danger permanent pour les futurs usagers. Il incombe aussi aux bureaux de contrôle d'exiger des notes de calculs plus détaillées et aux maîtres d'ouvrage de veiller à l'entretien périodique des ponts pour leur assurer une plus grande durabilité.

Sur le plan pédagogique, il serait très recommandé d'introduire dans le programme des projets pratiques sur le dimensionnement des ponts afin de mieux préparer les produits de l'école aux réalités du milieu professionnel.

BIBLIOGRAPHIE

- 1. Conception des ponts par Guy GRATTESAT, éditions eyrolles- ENCP
- 2. Cours de ponts par ECS Réunion d'ingénieurs
- 3. Cours de ponts 4éme édition par Alfio SENI EPT (M)
- 4. Les essais in situ en mécanique des sols 1. Réalisation et interprétation, Maurice CASSAN
- 5. Manuel canadien d'ingénierie de fondations, 2eme édition
- 6. Cours pratique de mécanique des sols 2. Calcul des ouvrages, J. COSTET G. SANGLERAT
- 7. Pratique du BAEL 91, Jean Perchat, Jean Roux, Editions Eyrolles.
- 8. Fascicules 62 titre I BAEL 91 modifié 99

Règles de réalisation des essais au pressiomètre Ménard et exploitation des résultats obtenus pour le dimensionnement des fondations (version 1996), APAGEO SEGELM.

9. Fascicule 62 - Titre V : Règles techniques de conception des fondations des ouvrages de génie civil.

Par le Ministère de l'Equipement et du logement et du Ministère des Transports' de la France (1993 – 182 pages)

10. Fascicule spécial n° 72-21 bis Cahier des Prescriptions Communes, Fascicule 61, Titre II: Conception, Calcul et Epreuves des Ouvrages d'Art.

Par le Ministère de l'Equipement et du logement et du Ministère des Transports de la France (1971 – 70 pages)

- 11. Rapport géotechnique du CEREEQ pour le pont de Gouloumbou
- 12. Rapport géotechnique du CEREEQ pour les échangeurs de la Patte d'oie
- 13 .Projet de fin d'études Ecole Supérieure Polytechnique (centre de Thiès), 2004 :
- « Conception et dimensionnement du nouveau pont de Diaroumé et choix de ses fondations ».
- 14. Projet de fin d'études Ecole Supérieure Polytechnique (centre de Thiès), 2004 :
- « Méthodologie de dimensionnement des fondations d'ouvrages d'art en béton armé : Application aux ponts-routes sur micros pieux ».
- 15. Rapport mensuel n° 1 du projet de construction du pont mixte de Gouloumbou, STUDI International.

ANNEXE 1: Tableau des nœuds

ANNEXE 2 : Tableau des barres

ANNEXE 3: Tableau Chargements - Cas simples: 1A9 16A27

ANNEXE 4: Tableau des combinaisons de cas - Cas: 35A88

ANNEXE 5: Tableau Réactions: Repère global - Cas: Combinaison ELU 35A70

Enveloppe.

ANNEXE 6: Tableau Réactions: Repère global - Cas: Combinaison ELS 71A85

Enveloppe

ANNEXE 7 : note de calcul pour le massif de fondation des culées

ANNEXE 8 : résultats dimensionnement de la dalle de transition

ANNEXE 9 : graphique donnant l'ordre de grandeur des réactions élastiques du sol

ANNEXE 10: photos du pont existant

ANNEXE 11 : photos des travaux pour le pont projeté

ANNEXE 12 : carte routière du Sénégal

ANNEXE 13 : vue de la modélisation des piles et de leur chargement

ANNEXE 14: plan du tablier préfabriqué

ANNEXE 15: fondation pieu côté Tamba

ANNEXE 16: fondation pieu côté Ziguinchor

ANNEXE 17: fondation pieu culée Tamba

ANNEXE 18: fondation pieu culée Ziguinchor

ANNEXE 19: coupe longitudinale du pont

ANNEXE 20: vue en plan des pieux de culée

ANNEXE 21 : vue en plan des pieux de pile

ANNEXE 22: annexe donnant les sollicitations maximales sur les piles et les culées fournies

par le constructeur du tablier

ANNEXE 1 : Tableau des nœuds

				····
Noeud	X [m]	Y [m]	Z [m]	Appui
11	0,0	-4,48	-2,30	Encastrement
12	0,0	-4,48	0,0	
13	0,0	-1,48	-2,30	Encastrement
14	0,0	-1,48	0,0	
15	0,0	1,48	-2,30	Encastrement
16	0,0	1,48	0,0	
17	0,0	4,48	-2,30	Encastrement
18	0,0	4,48	0,0	
19	0,0	-5,50	0,0	
20	0,0	5,50	0,0	
21	63,00	-4,48	-	Encastrement
			15,60	
22	63,00	-4,48	0,0	
23	63,00	4,48	-	Encastrement
			15,60	
24	63,00	4,48	0,0	
25	63,00	-5,98	0,0	
26	63,00	5,98	0,0	
31	94,50	-4,48	-	Encastrement
			15,60	
32	94,50	-4,48	0,0	
33	94,50	4,48	-	Encastrement
			15,60	
34	94,50	4,48	0,0	
35	94,50	5,98	0,0	
36	94,50	5,98	0,0	
41	157,5	-4,48	-9,50	Encastrement
	157.5	4.40	- 0 0	
42	157,5	-4,48	0,0	
43	157,5	-1,48	-9,50	Encastrement
43	137,3	-1,40	-9,50	Elicastrellicit
44	157,5	-1,48	0,0	
	0	,		
45	157,5	1,48	-9,50	Encastrement
	0			·
46	157,5	1,48	0,0	,

	0			
47	157,5 0	4,48	-9,50	Encastrement
48	157,5	4,48	0,0	
49	157,5	5,50	0,0	
50	157,5	-5,50	0,0	

ANNEXE 2 : Tableau des barres

Barre	Noeud 1	Noeud 2	Section	Matériau	Longueur [m]	Gamma [Deg]	Type de barre
11	11	12	C R100x200	BETON	2,30	180,0	Poteau BA
13	13	14	C R100x200	BETON	2,30	180,0	Poteau BA
15	15	16	C R100x200	BETON	2,30	0,0	Poteau BA
17	17	18	C R100x200	BETON	2,30	0,0	Poteau BA
19	19	20	B R230x150	BETON	11,00	0,0	Poutre BA
21	21	22	C C_250	BETON	15,60	0,0	Poteau BA
23	23	24	C C 250	BETON	15,60	0,0	Poteau BA
25	25	26	B R300x150	BETON	11,96	0,0	Poutre BA
31	31	32	C C_250	BETON	15,60	0,0	Poteau BA
33	33	34	C C_250	BETON	15,60	0,0	Poteau BA
35	35	36	B R300x150	BETON	11,96	0,0	Poutre BA
41	41	42	C R100x200	BETON	9,50	180,0	Poteau BA
43	43	44	C R100x200	BETON	9,50	180,0	Poteau BA
45	45	46	C R100x200	BETON	9,50	0,0	Poteau BA
47	47	48	C R100x200	BETON	9,50	0,0	Poteau BA
49	50	49	B R230x150	BETON	11,00	0,0	Poutre BA

ANNEXE 3 : Tableau Chargements - Cas simples : $1 \Lambda 9 16 \Lambda 27$

]	T	
Cas	Nom du cas	Nature	Type de charge	Liste	Valeurs de la charge
1	poids prpre	permanente	(EF) surfacique uniforme	1A3	PZ=-0,400[T/m2]
2	surcharge trottoir	d'exploitation	(EF) surfacique 3p (contour)	1A3	PZ1=-0,150[T/m2] P1(0, 3.15, 0) P2(0, 3.74, 0) P3(158, 3.74, 0) P4(158, 3.15, 0)
2	surcharge trottoir	d'exploitation	(EF) surfacique 3p (contour)	1A3	PZ1=-0,150[T/m2] P1(0, -3.74, 0) P2(0, -3.15, 0) P3(158, -3.15, 0) P4(158, -3.74, 0)
3	A(l=63)	d'exploitation	(EF) surfacique 3p (contour)	1	PZ1=-0,607[T/m2] P1(0, -3.15, 0) P2(0, 3.15, 0) P3(63, 3, 0) P4(63, - 3.15, 0)
4	A(l=31.5)	d'exploitation	(EF) surfacique 3p (contour)	2	PZ1=-0,900[T/m2] P1(63, -3.15, 0) P2(63, 3.15, 0) P3(94.5, 3.15, 0) P4(94.5, -3.15, 0)
5	A(1=94.5)	d'exploitation	(EF) surfacique 3p (contour)	12	PZ1=-0,490[T/m2] P1(0, -3.15, 0) P2(0, 3.15, 0) P3(94.5, 3.15, 0) P4(94.5, -3.15, 0)
6	A(l=157.5)	d'exploitation	(EF) surfacique 3p (contour)	1A3	PZ1=-0,380[T/m2] P1(0, 3.15, 0) P2(158, 3.15, 0) P3(158, -3.15, 0) P4(0, -3.15, 0)
22	ROUL7/1	d'exploitation	(EF) force dans le point		FZ=-6,670[T] X=10,50[m] Y=-0,25[m]
22	ROUL7/1	d'exploitation	(EF) force dans le point		FZ=-6,670[T] X=10,50[m] Y=0,25[m]
22	ROUL7/1	d'exploitation	(EF) force dans le point		FZ=-6,670[T] X=10,50[m] Y=-2,25[m]
22	ROUL7/1	d'exploitation	(EF) force dans le		FZ=-6,670[T] X=10,50[m] Y=2,25[m]

		T	point	
22	ROUL7/1	d'exploitation	(EF) force	E7- 6 670FT1 V-12 005 13V 0 255 3
	1.000,	a exploitation	dans le	FZ=-6,670[T] X=12,00[m] Y=-0,25[m]
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-6,670[T] X=12,00[m] Y=0,25[m]
	11002.77	a expronution	dans le	1.2-0,0/0[1] X-12,00[m] Y=0,25[m]
			point	
22	ROUL7/1	d'exploitation	(EF) force	F7- 6 670[T] V-12 00[-1 V- 2 25[-1
		- Capionation	dans le	FZ=-6,670[T] X=12,00[m] Y=-2,25[m]
		ļ	point	<u> </u>
22	ROUL7/1	d'exploitation	(EF) force	FZ=-6,670[T] X=12,00[m] Y=2,25[m]
}			dans le	12 -0,0/0[1] A-12,00[m] 1-2,25[m]
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-3,330[T] X=16,50[m] Y=-0,25[m]
			dans le	12 -3,550[1] A-10,50[m] 10,25[m]
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-3,330[T] X=16,50[m] Y=0,25[m]
			dans le	12 3,550[1] 1-0,50[m] 1-0,25[m]
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-3,330[T] X=16,50[m] Y=-2,25[m]
	}	·	dans le	,[-],[m] , 2,20 [m]
			point	1
22	ROUL7/1	d'exploitation	(EF) force	FZ=-3,330[T] X=16,50[m] Y=2.25[m]
			dans le	, , , , [m]
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-6,670[T] Y=-0,25[m]
			dans le	
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-6,670[T] Y=0,25[m]
			dans le	
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-6,670[T] Y=-2,25[m]
			dans le	
-	205-25-2		point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-6,670[T] Y=2,25[m]
		1	dans le	
22	DOLU 7/1	11	point	D7 ((70FP) V 1 70F 3 V 0 277 3
22	ROUL7/1	d'exploitation	(EF) force	FZ=-6,670[T] X=1,50[m] Y=-0,25[m]
			dans le	
22	ROUL7/I	douglaitatian	point (FF) force	F7- 6 670FF1 V-1 50F-1 V-0 05F-1
22	KOOL//I	d'exploitation	(EF) force dans le	FZ=-6,670[T] X=1,50[m] Y=0,25[m]
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-6,670[T] X=1,50[m] Y=-2,25[m]
22	KOUL//I	Generation	dans le	12-0,070[1] A-1,30[III] 12,23[III]
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-6,670[T] X=1,50[m] Y=2,25[m]
	11002///	2 cmpromation	dans le	~ 0,0.0[1] 1 1,00[m] 1 2,00[m]
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-3,330[T] X=6,00[m] Y=-0,25[m]
		2 5	dans le	,[.] 0,00[.m] 1 0,50[.m]
			point	
22	ROUL7/1	d'exploitation	(EF) force	FZ=-3,330[T] X=6,00[m] Y=0,25[m]
			dans le	,

			point	
22	ROUL7/1	d'exploitation	(EF) force dans le point	FZ=-3,330[T] X=6,00[m] Y=-2,25[m]
22	ROUL7/1	d'exploitation	(EF) force dans le point	FZ=-3,330[T] X=6,00[m] Y=2,25[m]
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-6,670[T] X=65,25[m] Y=-0,25[m
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-6,670[T] X=65,25[m] Y=0,25[m]
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-6,670[T] X=65,25[m] Y=-2,25[m
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-6,670[T] X=65,25[m] Y=2,25[m]
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-6,670[T] X=66,75[m] Y=-0,25[m
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-6,670[T] X=66,75[m] Y=0,25[m]
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-6,670[T] X=66,75[m] Y=-2,25[m
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-6,670[T] X=66,75[m] Y=2,25[m]
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-3,330[T] X=71,25[m] Y=-0,25[m
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-3,330[T] X=71,25[m] Y=0,25[m]
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-3,330[T] X=71,25[m] Y=-2,25[m
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-3,330[T] X=71,25[m] Y=2,25[m]
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-3,330[T] X=60,75[m] Y=2,25[m]
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-3,330[T] X=60,75[m] Y=-2,25[n
23	ROUL7/2	d'exploitation	(EF) force dans le point	FZ=-3,330[T] X=60,75[m] Y=0,25[m]
23	ROUL7/2	d'exploitation	(EF) force dans le	FZ=-3,330[T] X=60,75[m] Y=-0,25[n

	 		point	
23	ROUL7/2	d'exploitation	(EF) force	F7- ((70[T] V 5(00] 1 V 0 00]
23	ROOLIIZ	dexploitation	dans le	FZ=-6,670[T] X=56,25[m] Y=2,25[m]
1	1	ł	point	1
23	ROUL7/2	d'exploitation	(EF) force	F7- 6 670[T] V-56 255 1 V 2 255 1
23	ROOLIIZ	dexploitation	dans le	FZ=-6,670[T] X=56,25[m] Y=-2,25[m]
ł	[}	point	
23	ROUL7/2	d'exploitation	 	E7. CCOCETA CCOCE AND ORGAN
23	KOOL //2	dexploitation	(EF) force dans le	FZ=-6,670[T] X=56,25[m] Y=0,25[m]
23	ROUL7/2	d'exploitation	point (FF) forms	ET COMPLY COSE 111 COSE
23	ROUL 1/2	dexploitation	(EF) force dans le	FZ=-6,670[T] X=56,25[m] Y=-0,25[m]
	1		1	
23	ROUL7/2	dla1 = '4 = 4' =	point	DG CCGOCOLLA GARAGE
23	KOUL//2	d'exploitation	(EF) force	FZ=-6,670[T] X=54,75[m] Y=2,25[m]
	i		dans le	
23	ROUL7/2	11 - 1 - 14 - 41	point	777
23	ROUL//2	d'exploitation	(EF) force	FZ=-6,670[T] X=54,75[m] Y=-2,25[m]
	1		dans le	
22	DOLL 7/2	10 1 1 1	point	
23	ROUL7/2	d'exploitation	(EF) force	FZ=-6,670[T] X=54,75[m] Y=0,25[m]
	[dans le	
	20112		point	
23	ROUL7/2	d'exploitation	(EF) force	FZ=-6,670[T] X=54,75[m] Y=-0,25[m]
			dans le	
	DOI!!	 	point	
24	ROUL8/1	d'exploitation	(EF) force	FZ=-7,950[T] X=1,35[m] Y=2,50[m]
			dans le	
	DOLLY OV	1	point	
24	ROUL8/1	d'exploitation	(EF) force	FZ=-7,950[T] X=1,35[m] Y=-2,50[m]
			dans le	
24	DOLL 0/1	1 1 1 1	point	Da a contra vi a con la vi a con la
24	ROUL8/1	d'exploitation	(EF) force	FZ=-7,950[T] X=1,35[m] Y=0,50[m]
			dans le	
24	DOI 11 0/1	11 1 1 1 1	point	FIG. 5 OCCUPANT 1 OCC 1 NV OCCU
24	ROUL8/1	d'exploitation	(EF) force	FZ=-7,950[T] X=1,35[m] Y=-0,50[m]
			dans le	
24	DOLL 0/1	11 1 1 1	point	PG
24	ROUL8/1	d'exploitation	(EF) force	FZ=-7,950[T] Y=2,50[m]
			dans le	,
24	DOLU 0/1	dlavalaitatia	point (FF) force	E7- 7 050FF1 V- 2 505 -1
24	ROUL8/1	d'exploitation	(EF) force	FZ=-7,950[T] Y=-2,50[m]
			dans le	
24	ROUL8/1	d'exploitation	point (FF) force	FZ=-7,950[T] Y=0,50[m]
4 4	KOUL8/I	d exploitation	(EF) force dans le	[[[[[[[[[[[[[[[[[[[
			point	
24	ROUL8/1	d'exploitation	(EF) force	FZ=-7,950[T] Y=-0,50[m]
44	KOOL6/1	d exploitation	dans le	[127,550[1] 10,50[III]
			point	
25	ROUL8/2	d'exploitation	(EF) force	FZ=-7,950[T] X=63,67[m] Y=2,50[m]
43	KOUL6/2	d exploitation	dans le	12-1,550[1] X-05,07[m] 1-2,50[m]
			point	
25	ROUL8/2	d'exploitation	(EF) force	FZ=-7,950[T] X=63,67[m] Y=-2,50[m]
43	ROOLS/2	d exploitation	dans le	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			Suito IV	

			7		
25	DOLUGO (2	11 1 1 1 1 1 1	point	_	
25	ROUL8/2	d'exploitation	(EF) force		FZ=-7,950[T] X=63,67[m] Y=0,50[m]
1	j		dans le		
25	ROUL8/2	Alassa Late et	point		
25	ROUL8/2	d'exploitation	(EF) force	1	FZ=-7,950[T] X=63,67[m] Y=-0,50[m]
	1		dans le	1	1
0.5	DOLL 0/0		point	ļ	
25	ROUL8/2	d'exploitation	(EF) force	1	FZ=-7,950[T] X=62,32[m] Y=2,50[m]
	, 	1	dans le	l	
25	DOLIT 0/O	11 1 1 1 1	point		`
25	ROUL8/2	d'exploitation	(EF) force		FZ=-7,950[T] X=62,32[m] Y=-2,50[m]
	l		dans le	1	[
25	DOLLY 0/0		point		
25	ROUL8/2	d'exploitation	(EF) force	İ	FZ=-7,950[T] X=62,32[m] Y=0,50[m]
		}	dans le	1	
25	D 01 17 0 /0		point		
25	ROUL8/2	d'exploitation	(EF) force		FZ=-7,950[T] X=62,32[m] Y=-0,50[m]
			dans le	1	
	DOLU 0/1	11 1 1 1 1	point	1.	PG1 10 500 501
26	ROUL9/1	d'exploitation	(EF)	1 2	PZ1=-10,500[T/m2] PZ2=-
			surfacique		10,500[T/m2] PZ3=-10,500[T/m2]
1 1		ļ	3p	1	N1X=6,10[m] N1Y=-1,15[m]
[[ļ	(contour)	l	N1Z=0,0[m] N2X=6,10[m] N2Y=-
1 1		1		ł	2,15[m] N2Z=0,0[m] N3X=0,0[m]
i l		}		i	N3Y=-2,15[m] N3Z=0,0[m] P1(6.1, -
		1		ľ	1.15, 0) P2(6.1, -2.15, 0) P3(0, -2.15,
26	ROUL9/1	d'exploitation	(EF)	12	0) P4(0, -1.15, 0) PZ1=-10,500[T/m2] PZ2=-
20	ROOL9/1	dexploitation	surfacique	1 2	10,500[T/m2] PZ3=-10,500[T/m2]
) }		1	3p		N1X=6,10[m] N1Y=2,15[m]
		1	(contour)		N1Z=0,0[m] N2X=6,10[m]
J]	(contour)		N2Y=1,15[m] N2Z=0,0[m]
					N3X=0,0[m] N3Y=1,15[m]
j					N3Z=0,0[m] P1(6.1, 2.15, 0) P2(6.1,
		1			1.15, 0) P3(0, 1.15, 0) P4(0, 2.15, 0)
26	ROUL9/1	d'exploitation	(EF)	12	PZ1=-10,500[T/m2] PZ2=-
-		3 5	surfacique		10,500[T/m2] PZ3=-10,500[T/m2]
			3p		N1X=42,70[m] N1Y=-1,15[m]
[(contour)		N1Z=0,0[m] N2X=42,70[m] N2Y=-
			,		2,15[m] N2Z=0,0[m] N3X=36,60[m]
					N3Y=-2,15[m] N3Z=0,0[m] P1(42.7, -
					1.15, 0) P2(42.7, -2.15, 0) P3(36.6, -
					2.15, 0) P4(36.6, -1.15, 0)
26	ROUL9/1	d'exploitation	(EF)	12	PZ1=-10,500[T/m2] PZ2=-
		'	surfacique		10,500[T/m2] PZ3=-10,500[T/m2]
			3p		N1X=42,70[m] N1Y=2,15[m]
			(contour)		N1Z=0,0[m] N2X=42,70[m]
			-		N2Y=1,15[m] N2Z=0,0[m]
]			N3X=36,60[m] N3Y=1,15[m]
					N3Z=0,0[m] P1(42.7, 2.15, 0)
					P2(42.7, 1.15, 0) P3(36.6, 1.15, 0)
					P4(36.6, 2.15, 0)
27	ROUL9/2	d'exploitation	(EF)	1 2	PZ1=-10,500[T/m2] PZ2=-
			surfacique		10,500[T/m2] PZ3=-10,500[T/m2]

			3р		N1X=32,50[m] N1Y=-1,15[m]
	}	1	(contour)	j	N1Z=0,0[m] N2X=32,50[m] N2Y=-
1			` ′	ł	2,15[m] N2Z=0,0[m] N3X=26,40[m]
}			}	ĺ	N3Y=-2,15[m] N3Z=0,0[m] P1(32.5, -
				1	1.15, 0) P2(32.5, -2.15, 0) P3(26.4, -
		ŀ		}	2.15, 0) P4(26.4, -1.15, 0)
27	ROUL9/2	d'exploitation	(EF)	12	PZ1=-10,500[T/m2] PZ2=-
{		,	surfacique		10,500[T/m2] PZ3=-10,500[T/m2]
		}	3p	j	N1X=32,50[m] N1Y=2,15[m]
		[(contour)	ł	N1Z=0,0[m] N2X=32,50[m]
			,	ĺ	N2Y=1,15[m] N2Z=0,0[m]
1				ŀ	N3X=26,40[m] N3Y=1,15[m]
				j	N3Z=0.0[m] P1(32.5, 2.15, 0)
					P2(32.5, 1.15, 0) P3(26.4, 1.15, 0)
1				}	P4(26.4, 2.15, 0)
27	ROUL9/2	d'exploitation	(EF)	12	PZ1=-10,500[T/m2] PZ2=-
	'		surfacique		10,500[T/m2] PZ3=-10,500[T/m2]
			3p		N1X=69,10[m] N1Y=-1,15[m]
			(contour)	[N1Z=0,0[m] N2X=69,10[m] N2Y=-
					2,15[m] N2Z=0,0[m] N3X=63,00[m]
					N3Y=-2,15[m] N3Z=0,0[m] P1(69.1, -
					1.15, 0) P2(69.1, -2.15, 0) P3(63, -
					2.15, 0) P4(63, -1.15, 0)
27	ROUL9/2	d'exploitation	(EF)	1 2	PZ1=-10,500[T/m2] PZ2=-
		-	surfacique		10,500[T/m2] PZ3=-10,500[T/m2]
			3p		N1X=69,10[m] N1Y=2,15[m]
			(contour)		N1Z=0,0[m] N2X=69,10[m]
					N2Y=1,15[m] N2Z=0,0[m]
					N3X=63,00[m] N3Y=1,15[m]
					N3Z=0,0[m] P1(69.1, 2.15, 0)
					P2(69.1, 1.15, 0) P3(63, 1.15, 0)
					P4(63, 2.15, 0)

ANNEXE 4: Tableau des combinaisons de cas - Cas: 35A88

ANNEXE 4: Tableau des combinaisons de cas - Cas: 35A88							
Combinaiso n	Type d'analyse	Nature de la combinaison	Définition				
35 (C)	Combinaison linéaire	ELU	1*1.35				
36 (C)	Combinaison linéaire	ELU	1*1.00				
37 (C)	Combinaison linéaire	ELU	1*1.35+2*1.50				
38 (C)	Combinaison linéaire	ELU	1*1.35+2*1.50+22*1.60				
39 (C)	Combinaison linéaire	ELU	1*1.35+2*1.50+23*1.60				
40 (C)	Combinaison linéaire	ELU	1*1.35+22*1.60				
41 (C)	Combinaison linéaire	ELU	1*1.35+23*1.60				
42 (C)	Combinaison linéaire	ELU	1*1.00+2*1.50				
43 (C)	Combinaison linéaire	ELU	1*1.00+2*1.50+22*1.60				
44 (C)	Combinaison linéaire	ELŪ	1*1.00+2*1.50+23*1.60				
45 (C)	Combinaison linéaire	ELU	1*1.00+22*1.60				
46 (C)	Combinaison linéaire	ELU	1*1.00+23*1.60				
47 (C)	Combinaison linéaire	ELU	1*1.35+2*1.50+24*1.60				
48 (C)	Combinaison linéaire	ELU	1*1.35+2*1.50+25*1.60				
49 (C)	Combinaison linéaire	ELU	1*1.35+24*1.60				
50 (C)	Combinaison linéaire	ELU	1*1.35+25*1.60				
51 (C)	Combinaison linéaire	ELU	1*1.00+2*1.50+24*1.60				
52 (C)	Combinaison linéaire	ELU	1*1.00+2*1.50+25*1.60				
53 (C)	Combinaison linéaire	ELU	1*1.00+24*1.60				
54 (C)	Combinaison	ELU	1*1.00+25*1.60				

	linéaire		
55 (C)	Combinaison	ELU	1*1.35+2*1.50+26*1.60
(0)	linéaire	LDC	1 1.33 2 1.30 20 1.00
56 (C)	Combinaison	ELU	1*1.35+2*1.50+27*1.60
(0)	linéaire	LLC	1 1.55 2 1.50 27 1.00
57 (C)	Combinaison	ELU	1*1.35+26*1.60
27 (0)	linéaire	LLO	1 1.33 20 1.00
58 (C)	Combinaison	ELU	1*1.35+27*1.60
30 (0)	linéaire	ELO	1-1.35+27-1.00
59 (C)	Combinaison	ELU	1*1.00+2*1.50+26*1.60
37 (0)	linéaire	LLO	1 1.00 2 1.30 20 1.00
60 (C)	Combinaison	ELU	1*1.00+2*1.50+27*1.60
00 (0)	linéaire	LLC	1 1.00 12 1.30 127 1.00
61 (C)	Combinaison	ELU	1*1.00+26*1.60
01 (0)	linéaire	LLC	1 1.00 20 1.00
62 (C)	Combinaison	ELU	1*1.00+27*1.60
02 (0)	linéaire	LLC	1 1.00 27 1.00
63 (C)	Combinaison	ELU	1*1.35+3*1.60
55 (5)	linéaire	DEO	1 1.55 5 1.00
64 (C)	Combinaison	ELU	1*1.35+4*1.60
. (0)	linéaire	220	1 1.55 1 1.00
65 (C)	Combinaison	ELU	1*1.35+5*1.60
00 (0)	linéaire	220	1 1.55 1.00
66 (C)	Combinaison	ELU	1*1.35+6*1.60
00 (0)	linéaire	220	1 1100 100
67 (C)	Combinaison	ELU	1*1.00+3*1.60
0, (0)	linéaire		1 7.00 1 7.00
68 (C)	Combinaison	ELU	1*1.00+4*1.60
(0)	linéaire		
69 (C)	Combinaison	ELU	1*1.00+5*1.60
()	linéaire		
70 (C)	Combinaison	ELU	1*1.00+6*1.60
(-)	linéaire		
71 (C)	Combinaison	ELS	1*1.00
` ′	linéaire		
72 (C)	Combinaison	ELS	(1+2)*1.00
` ´	linéaire		
73 (C)	Combinaison	ELS	(1+2)*1.00+22*1.20
, í	linéaire		
74 (C)	Combinaison	ELS	(1+2)*1.00+23*1.20
` ′	linéaire		
75 (C)	Combinaison	ELS	1*1.00+22*1.20
	linéaire		
76 (C)	Combinaison	ELS	1*1.00+23*1.20
	linéaire		
77 (C)	Combinaison	ELS	(1+2)*1.00+24*1.20
	linéaire		
78 (C)	Combinaison	ELS	(1+2)*1.00+25*1.20
	linéaire		
79 (C)	Combinaison	ELS	1*1.00+24*1.20
	linéaire		44.00.0544.00
80 (C)	Combinaison	ELS	1*1.00+25*1.20
	linéaire		

81 (C)	Combinaison linéaire	ELS	(1+2)*1.00+26*1.20
82 (C)	Combinaison linéaire	ELS	(1+2)*1.00+27*1.20
83 (C)	Combinaison linéaire	ELS	1*1.00+26*1.20
84 (C)	Combinaison linéaire	ELS	1*1.00+27*1.20
85 (C)	Combinaison linéaire	ELS	1*1.00+3*1.20
86 (C)	Combinaison linéaire	ELS	1*1.00+4*1.20
87 (C)	Combinaison linéaire	ELS	1*1.00+5*1.20
88 (C)	Combinaison linéaire	ELS	1*1.00+6*1.20

ANNEXE 5 : Tableau Réactions : Repère global - Cas: Combinaison ELU 35A70 - Enveloppe

Noeud/Cas	FZ [T]	Définition
11/ 55 (C)	64,684>>	1*1.35+2*1.50+26*1.60
11/ 36 (C)	17.702<<	1*1.00
13/ 55 (C)	138.578>>	1*1.35+2*1.50+26*1.60
13/ 68 (C)	29,915<	1*1.00+4*1.60
15/ 55 (C)	652 (0085->	1*1.35+2*1.50+26*1.60
15/ 68 (C)	70.0XV-<-	1*1.00+4*1.60
17/ 55 (C)	10 CO	1*1.35+2*1.50+26*1.60
17/ 36 (C)		1*1.00
21/ 56 (C)	74±16 -> 2	1*1.35+2*1.50+27*1.60
21/ 36 (C)	/1/686<<	1*1.00
23/ 56 (C)	27-161>	1*1.35+2*1.50+27*1.60
23/ 36 (C)	(1);086;-<	1*1.00

ANNEXE 6: Tableau Réactions: Repère global - Cas: Combinaison ELS 71A85 - Enveloppe

Noeud/Cas	FZ [T]	Définition		
11/ 81 (C)	48.158>>	(1+2)*1.00+26*1.20		
11/ 71 (C)	15/2/02	1*1.00		
13/ 81 (C)	#103.352>>	(1+2)*1.00+26*1.20		
13/ 71 (C)	29.915≪ As assauth a last	1*1.00		
15/ 81 (C)	. *103,442>>	(1+2)*1.00+26*1.20		
15/ 71 (C)	29,937<<	1*1.00		
17/ 81 (C)	48,124>>	(1+2)*1.00+26*1.20		
17/ 71 (C)	17,194	1*1.00		
21/ 82 (C)	180,215>>	(1+2)*1.00+27*1.20		
21/ 71 (C)	70,686<<	1*1.00		
23/ 82 (C)	180,215>>	(1+2)*1.00+27*1.20		
23/ 71 (C)	70,686<<	1*1.00		

ANNEXE 7 : note de calcul pour le massif de fondation des culées

Modélisation du massif parallèlement à l'axe du pont.

Poutre élémentaire

Sollicitations ELS

Désignatio	Mtmax	Mtmin	Mh	Mb	Vh	VbNmax	Nmin	
n								
	(T*m)	(T*m)	(T*m)	(T*m)	(T)	(T)	(T)	(T)
P1	0,000	-3,500	0,000	-3,500	0,000	-14,000	0,000	0,00
								0
P2	6,440	-	6,440	-	23,62	-32,375	0,000	0,00
		12,250		12,25	5			0
				0				
P3	6,440	-	-	6,440	32,37	-23,625	0,000	0,00
		12,250	12,25		5			0
			0					
P4	0,000	-3,500	-3,500	0,000	14,00	0,000	0,000	0,00
					0			0

Sections Théoriques d'Acier

Désignation	Travée	e (cm2)	Appui gauche (cm2)			Appui droit	
(cm2)							
	inf.	sup.	inf.	sup.	inf.	sup.	
P1	0,25	0,00	0,00	0,00	0,25	2,45	
P2	47,75	0,00	47,75	47,75	47,75	47,75	

P3	47,75	0,00	47,75	47,75	47,75	47,75
P4	0,25	0,00	0,25	2,45	0,00	0,00

Contrainte dans la bielle comprimée

Valeur admissible: 16,00 (MPa)

Travée	Appui	Appui
	gauche	droit
	(MPa)	(MPa)
P1	-	0,05
P2	0,22	0,31
P3	0,31	0,22
P4	0,05	

Ferraillage:

P1: Console G de 0,00 à 0,50 (m)

Ferraillage longitudinal:

• Chapeaux

8

HA
$$16.0 l = 8.47 de 0.03 à 7.97$$

Ferraillage transversal:

$$12,0 \quad 1 = 8,72$$

$$e = 1*0,20 + 1*0,10 + 1*0,30 + 3*0,10 + 1*0,20 + 3*0,10$$
 (m)

HA

$$12,0 l = 3,81$$

$$e = 1*0,20 + 1*0,10 + 1*0,30 + 3*0,10 + 1*0,20 + 3*0,10$$
 (m)

P2: Travée de 1,50 à 3,50 (m)

Ferraillage longitudinal:

• Chapeaux

8

HA
$$16.0 l = 6.67 de 0.67 à 7.33$$

8

HA
$$16.0 l = 6.20 de 0.90 à 7.10$$

Aciers de peau:

6

HA 12,0
$$l = 5,94 \text{ de } 1,03 \text{ à } 6,97$$

18 Ep HA 12,0
$$l = 3,14$$
 $e = 1*-0,30 + 5*0,40 (m)$

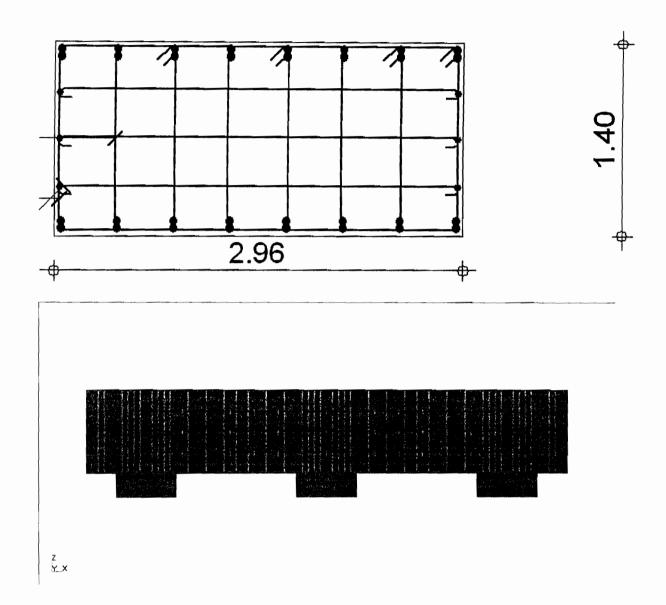
Ferraillage transversal:

P3: Travée de 4,50 à 6,50 (m)

Ferraillage longitudinal:

Aciers inférieurs

Aciers de peau:


Ferraillage transversal:

P4: Console D de 7,50 à 8,00 (m)

Ferraillage longitudinal:

Aciers de peau:

Ferraillage transversal:

Modélisation du massif perpendiculairement à l'axe du pont. Poutre élémentaire

Sections Théoriques d'Acier

Désign	nation	Travée	(cm2)	Appui	gauche	(cm2)	Appui droit (cm2)
	inf.	sup.	inf.	sup.	inf.	sup.	
	0,19	0,00	0,00	0,00	0,19	1,93	
	48,49	0,00	48,49	48,49	48,49	48,49	
	48,49	0,00	48,49	48,49	48,49	48,49	
	48,49	0,00	48,49	48,49	48,49	48,49	-
	0,19	0,00	0,19	1,93	0,00	0,00	,

Contrainte dans la bielle comprimée

Valeur admissible: 16,00 (MPa)

Travée Appui gauche Appui droit

(MPa) (MPa)

- 0,10

0,17 0,57

0,50 0,50

0,57 0,17

0,10 - 2.3 Ferraillage:

: Console G de 0,00 à 0,52 (m)

Ferraillage longitudinal:

Aciers inférieurs

8

HA 12,0 1 = 1,05 de 0,03 à 0,89

• Chapeaux

8 HA 20,0 l = 3,45 de 0,03 à 3,14

Ferraillage transversal:

2 Cad HA 16,0 1 = 8,86

e = 1*0,20 + 1*0,12 (m)

6 Cad HA 16,0 1 = 3,91

e = 1*0,20 + 1*0,12 (m)

Ferraillage spécial:

• Appui droit

4 HA 6.0 l = 5.81

: Travée de 1,52 à 3,52 (m)

Ferraillage longitudinal:

Aciers inférieurs

24 HA 14,0 1 = 2,86 de 1,09 à 3,95

8 HA 14,0 l = 3,06 de 0,99 à 4,05

• Aciers de montage (haut)

8 HA 20,0
$$l = 2,64 \text{ de } 1,05 \text{ à } 3,69$$

Chapeaux

Aciers de peau:

Ferraillage transversal:

2.3.3 : Travée de 3,92 à 5,88 (m)

Ferraillage longitudinal:

• Aciers inférieurs

• Aciers de montage (haut)

8 HA 20,0
$$1 = 2,30 \text{ de } 3,75 \text{ à } 6,05$$

Aciers de peau:

Ferraillage transversal:

: Travée de 6,28 à 8,28 (m)

Ferraillage longitudinal:

• Aciers inférieurs

• Aciers de montage (haut)

8 HA 20,0
$$l = 2,64 \text{ de } 6,11 \text{ à } 8,75$$

• Chapeaux

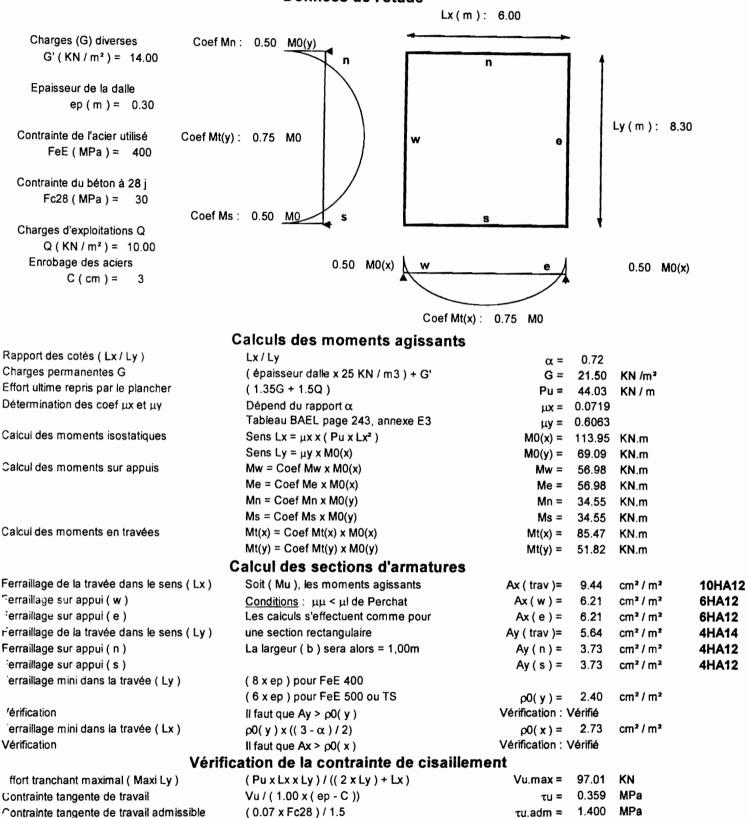
Aciers de peau:

Ferraillage transversal:

Console D de 9,28 à 9,80 (m)

Ferraillage longitudinal:

Aciers inférieurs


8 HA 12,0
$$l = 1,05 \text{ de } 8,91 \text{ à } 9,77$$

Aciers de peau:

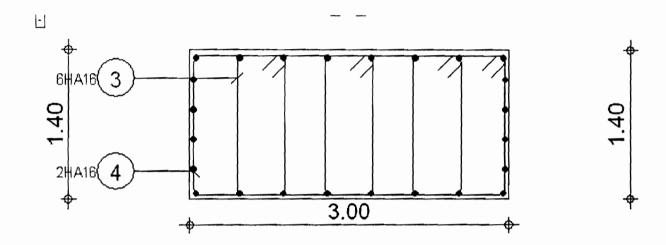
Ferraillage transversal:

Ferraillage spécial:

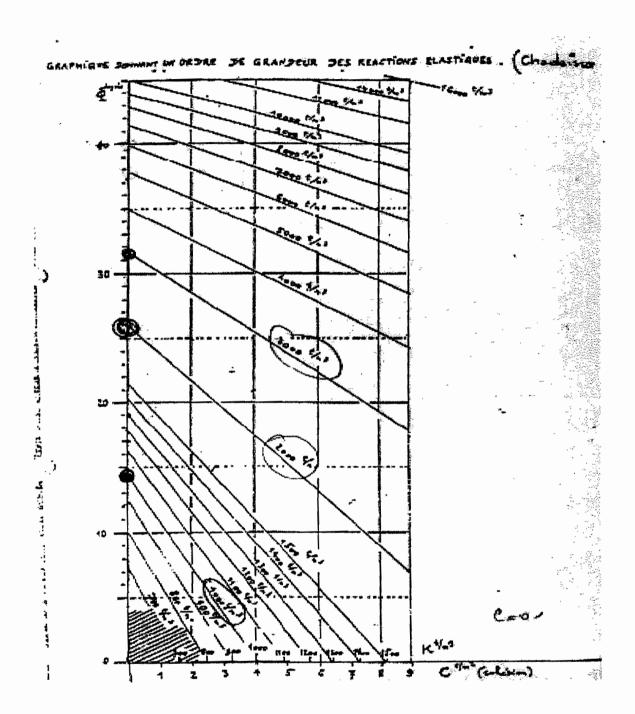
Données de l'étude

Vérification : Vérifié

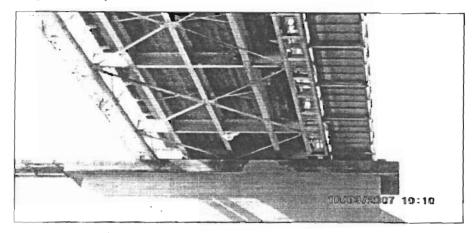
Annexe 8: Dimensionnement de la dalle de transition


τu < τu.adm

érification

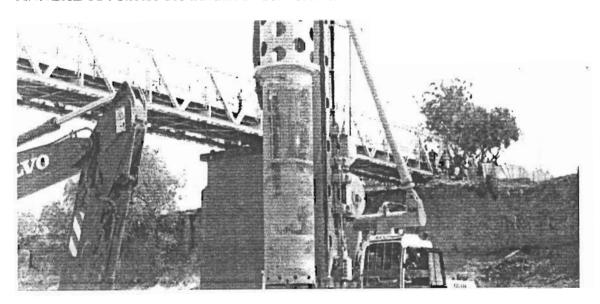

• Appui droit

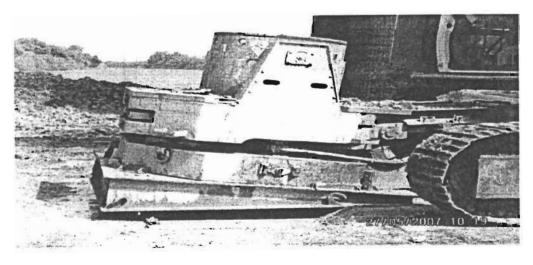
4

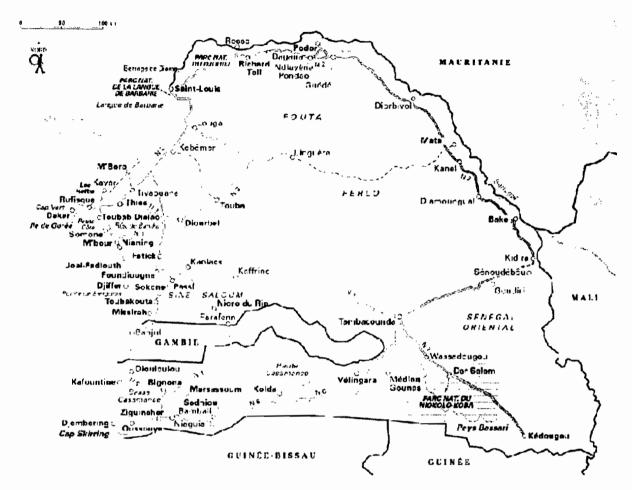

HA 6,0 l = 5,81

ANNEXE 9 : Graphique donnant l'ordre de grandeur des réactions élastiques du sol

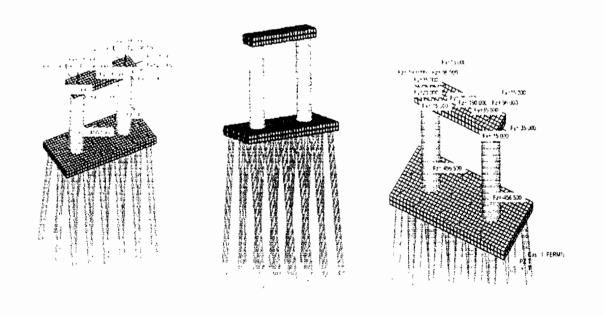
ANNEXE 10: photos du pont existant

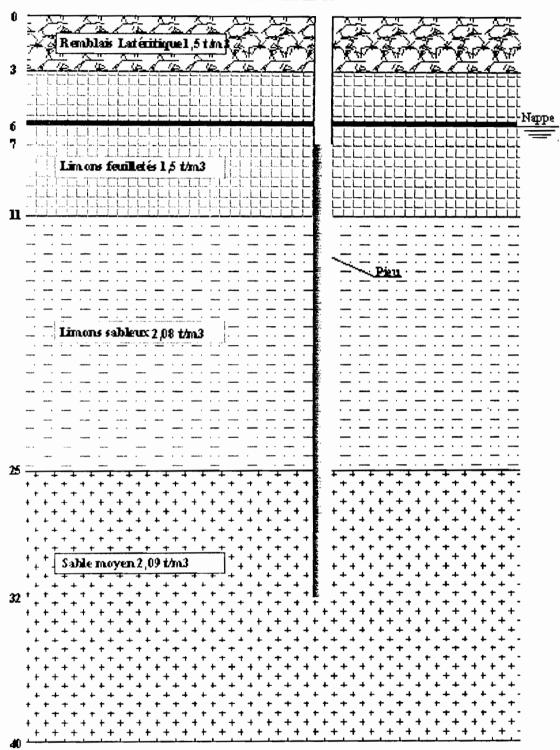




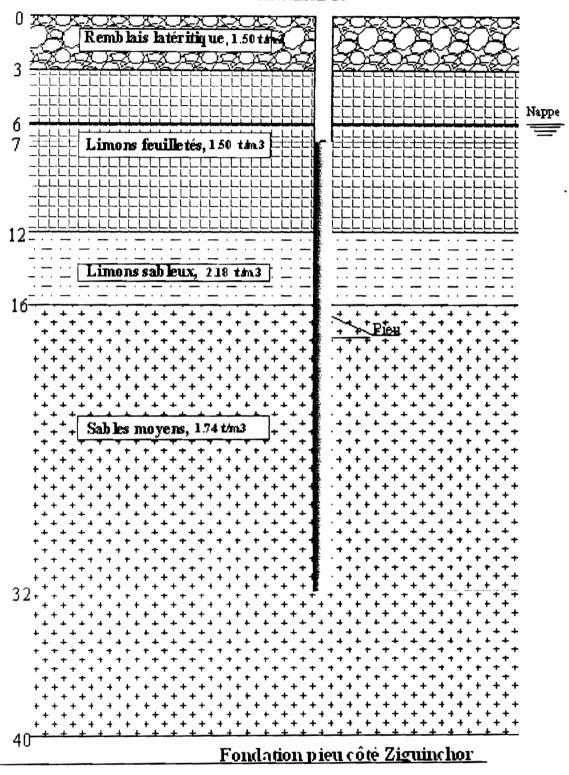

Vue générale du pont

ANNEXE 11: photos des travaux du pont proiete

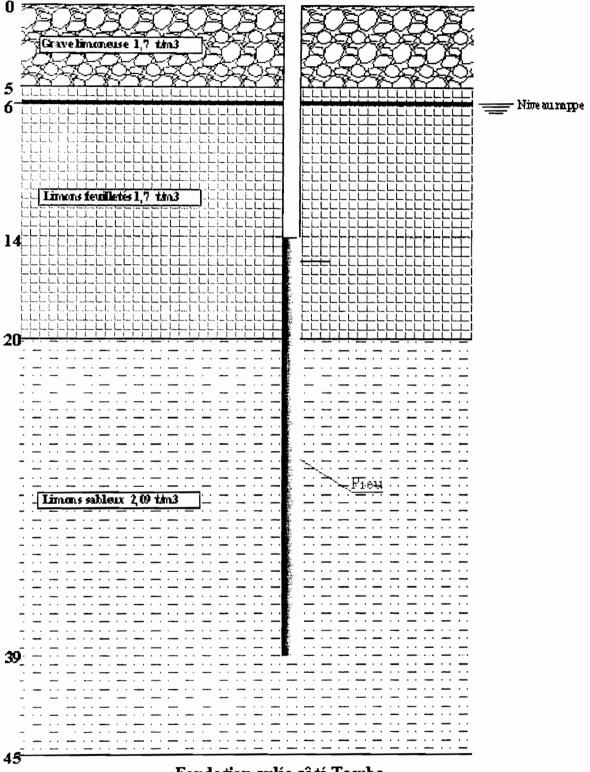



ANNEXE 12 : carte routière du Sénégal

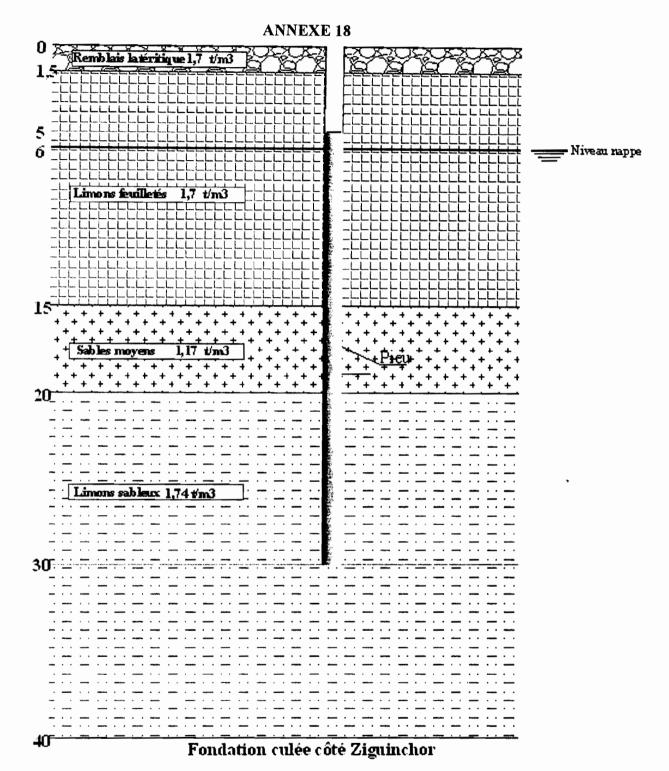
ANNEXE 13 : vue de la modélisation des piles et de leurs chargement

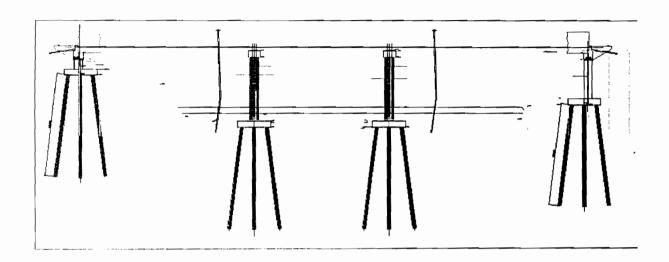


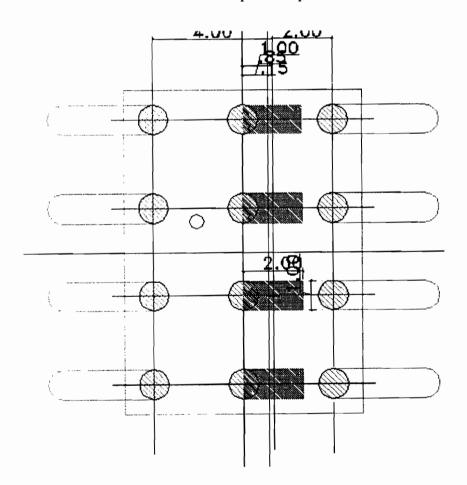
ANNEXE 15

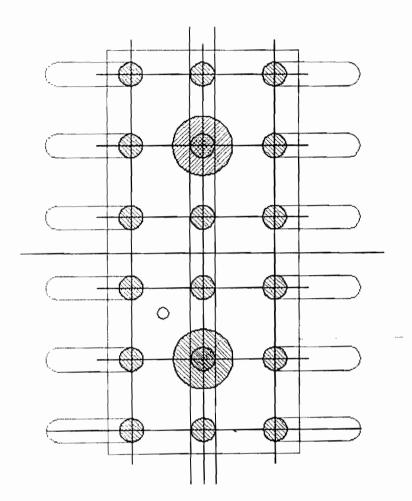


Fondation Pieu côté Tamba


ANNEXE 16


ANNEXE 17


Fondation culée côté Tamba


ANNEXE 19: coupe longitudinale du pont

ANNEXE 20 : vue en plan des pieux de culée

ANNEXE 21 : vue en plan des pieux de pile

ANNEXE 22 : annexe donnant les sollicitations maximales sur les piles et les culées fournies par le constructeur du tablier

APPROX MATE MAXIMUM REACTIONS (tonnes)

	A consideration of the desiration of the continue of the conti		SPAN 2		SPAN 1	
The state of the s	Aburraesi i	en mal	Sing 1		Die d	Instment 3
1	FIXED Bearing	SUDING Bearing	FRIED Bearing	SUDNO Booring	FIXED Bearing	SUDING Bearing
VERTICAL	**************************************	Secretaria de Servicio de Serv			and the same of th	
Dena load	Wr 95	96	49	49	95	95
	C= 95+0.12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ì	y extorement	·-a	
(ANSHTO HS25)	C2 28 x 3.2 5	K5	en a	**	fa-En	125
Honzental-						ilde
1 CONTRACTOR		- 1	THEOREM WITH # MEDIT			
Broking	4 🖟	د	±5	** **********************************	土金	 :
identitus identifications ids: Factions	IID	±13	±7.5	±/.5	±15	±15
TOTECH		# 35		±35		1.11.089.4
wand 1	±24			, 223		土24
(Demo compa)	A 15.0.2	2,4			;	